To see the other types of publications on this topic, follow the link: Zirconate de lithium.

Journal articles on the topic 'Zirconate de lithium'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Zirconate de lithium.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wang, Yin Jie, Ji Ping Liu, Mei Xiu Kan, and Xiao Bing Lu. "The Factors that Affect the Absorption of CO2 on the Lithium Zirconate Materials." Applied Mechanics and Materials 117-119 (October 2011): 769–72. http://dx.doi.org/10.4028/www.scientific.net/amm.117-119.769.

Full text
Abstract:
Use the Monoclinic phase of nano-scale ZrO2 , Li2ZrO3 and MgO as raw materials, with high temperature solid state reaction, we synthesized the Lithium zirconate materials which can directly absorb CO2 at high temperatures of 450~550°C. Then use the scanning electron microscopy (SEM) and X-ray diffraction (XRD) for the morphology and structure analysis. The CO2 absorption properties were tested by thermal analyzer (TG). The experimental results showed that the amount of MgO addition affected the Lithium zirconate’s CO2 absorption properties, but to the pH and surface area, there is on influence
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yin Jie, Ji Ping Liu, Ze Quan Liu, and Xiao Bing Lu. "High Temperature CO2 Adsorption on Si-Doped Lithium Zirconate." Applied Mechanics and Materials 117-119 (October 2011): 1247–49. http://dx.doi.org/10.4028/www.scientific.net/amm.117-119.1247.

Full text
Abstract:
Si-doped lithium zirconate Li2SixZr(1-x)O3(0≤x≤0.4) sorbents were prepared by a solid-state reaction method from nano-sized monoclinic ZrO2. The morphology phase, structure and adsorption properties of the prepared lithium zirconate were respectively determined by using scanning electron microscope (SEM) , X-ray diffraction (XRD) and thermogravimetric analyzer (TG).The results showed the CO2adsorption properties of material could be improved by doping suitable amount Si.
APA, Harvard, Vancouver, ISO, and other styles
3

Miller, J. M., S. R. Bokwa, D. S. Macdonald, and R. A. Verrall. "Tritium Recovery from Lithium Zirconate Spheres." Fusion Technology 19, no. 3P2A (1991): 996–99. http://dx.doi.org/10.13182/fst91-a29472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alfaro, Benjamin Jose, and Rinlee Butch M. Cervera. "Investigation on Varying Aluminum Doping Concentrations and Sintering Temperatures on the Synthesis of Garnet Li7La3Zr2O12 solid Electrolyte via Modified Pechini Method." Materials Science Forum 950 (April 2019): 160–64. http://dx.doi.org/10.4028/www.scientific.net/msf.950.160.

Full text
Abstract:
Solid electrolytes such as lithium lanthanum zirconate have shown a lot of promise in an all-solid-state Lithium-based battery since the discovery of its highly conductive cubic garnet structure. In this study, different concentrations of Al-doped Lithium Lanthanum Zirconate (Al-doped LLZ) having the formula of Li7-.3xAlxLa3Zr2O12 with x = 0.1,0 .2, 0.3, were synthesized via modified Pechini method and the effect of sintering temperatures, 1150 and 1200 °C, on the resulting properties were investigated. X-ray diffraction results have shown that cubic Al-doped LLZ can be obtained at a lower tem
APA, Harvard, Vancouver, ISO, and other styles
5

Ida, Jun-ichi, and Y. S. Lin. "Mechanism of High-Temperature CO2Sorption on Lithium Zirconate." Environmental Science & Technology 37, no. 9 (2003): 1999–2004. http://dx.doi.org/10.1021/es0259032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ochoa-Fernández, Esther, Magnus Rønning, Tor Grande, and De Chen. "Synthesis and CO2Capture Properties of Nanocrystalline Lithium Zirconate." Chemistry of Materials 18, no. 25 (2006): 6037–46. http://dx.doi.org/10.1021/cm061515d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zou, Yun, and Anthony Petric. "Preparation and Properties of Yttrium‐Doped Lithium Zirconate." Journal of The Electrochemical Society 140, no. 5 (1993): 1388–92. http://dx.doi.org/10.1149/1.2221565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Y., M. Sayer, L. Zou, and C. K. Jen. "Lithium tantalate/lead zirconate titanate composite ultrasonic transducers." Applied Physics Letters 74, no. 17 (1999): 2552–54. http://dx.doi.org/10.1063/1.123895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nakagawa, K. "High Temperature CO2 Absorption Using Lithium Zirconate Powder." ECS Proceedings Volumes 1998-11, no. 1 (1998): 370–76. http://dx.doi.org/10.1149/199811.0370pv.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yazdani, Sajad, Raana Kashfi-Sadabad, Mayra Daniela Morales-Acosta, et al. "Thermal transport in phase-stabilized lithium zirconate phosphates." Applied Physics Letters 117, no. 1 (2020): 011903. http://dx.doi.org/10.1063/5.0013716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hernández-Pérez, T. C., R. Bernal, C. Cruz-Vázquez, et al. "Afterglow dosimetry performance of beta particle irradiated lithium zirconate." Applied Radiation and Isotopes 138 (August 2018): 2–5. http://dx.doi.org/10.1016/j.apradiso.2017.10.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lin, T. H., D. Edwards, R. E. Reedy, K. Das, W. McGinnis, and S. H. Lee. "Thermal properties of lanthanum modified lead zirconate titanate (PLZT), lithium niobate and lithium tantalate." Ferroelectrics 77, no. 1 (1988): 153–60. http://dx.doi.org/10.1080/00150198808223238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Robben, Lars, Elena Merzlyakova, Paul Heitjans, and Thorsten M. Gesing. "Symmetry reduction due to gallium substitution in the garnet Li6.43(2)Ga0.52(3)La2.67(4)Zr2O12." Acta Crystallographica Section E Crystallographic Communications 72, no. 3 (2016): 287–89. http://dx.doi.org/10.1107/s2056989016001924.

Full text
Abstract:
Single-crystal structure refinements on lithium lanthanum zirconate (LLZO; Li7La3Zr2O12) substituted with gallium were successfully carried out in the cubic symmetry space groupI\overline{4}3d. Gallium was found on two lithium sites as well as on the lanthanum position. Due to the structural distortion of the resulting Li6.43(2)Ga0.52(3)La2.67(4)Zr2O12(Ga–LLZO) single crystals, a reduction of the LLZO cubic garnet symmetry fromIa\overline{3}dtoI\overline{4}3dwas necessary, which could hardly be analysed from X-ray powder diffraction data.
APA, Harvard, Vancouver, ISO, and other styles
14

Alvani, C., S. Casadio, and M. R. Mancini. "Water vapor adsorption on meta lithium–zirconate ceramic breeding surfaces." Journal of Nuclear Materials 250, no. 2-3 (1997): 250–53. http://dx.doi.org/10.1016/s0022-3115(97)00263-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ochoa-Fernández, Esther, Magnus Rønning, Tor Grande, and De Chen. "Nanocrystalline Lithium Zirconate with Improved Kinetics for High-Temperature CO2Capture." Chemistry of Materials 18, no. 6 (2006): 1383–85. http://dx.doi.org/10.1021/cm052075d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Fa-Qian, Guo-Hua Li, Shu-Wen Luo, et al. "Ultrafast Carbon Dioxide Sorption Kinetics Using Morphology-Controllable Lithium Zirconate." ACS Applied Materials & Interfaces 11, no. 1 (2018): 691–98. http://dx.doi.org/10.1021/acsami.8b16463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ochoa-Fernández, Esther, Magnus Rønning, Xiaofeng Yu, Tor Grande, and De Chen. "Compositional Effects of Nanocrystalline Lithium Zirconate on Its CO2Capture Properties." Industrial & Engineering Chemistry Research 47, no. 2 (2008): 434–42. http://dx.doi.org/10.1021/ie0705150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xiong, Rentian, Junichi Ida, and Y. S. Lin. "Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate." Chemical Engineering Science 58, no. 19 (2003): 4377–85. http://dx.doi.org/10.1016/s0009-2509(03)00319-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zhang, Xingxing, and Jeffrey Fergus. "Conductivity of Garnet-Type Lithium Lanthanum Zirconate Based Composite Electrolytes." ECS Transactions 85, no. 13 (2018): 1531–37. http://dx.doi.org/10.1149/08513.1531ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

ZOU, Y., and A. PETRIC. "ChemInform Abstract: Preparation and Properties of Yttrium-Doped Lithium Zirconate." ChemInform 24, no. 35 (2010): no. http://dx.doi.org/10.1002/chin.199335314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tilekar, Ganesh, Kiran Shinde, Kishor Kale, Reshma Raskar, and Abaji Gaikwad. "The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate." Frontiers of Chemical Science and Engineering 5, no. 4 (2011): 477–91. http://dx.doi.org/10.1007/s11705-011-1107-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ida, Jun-ichi, Rentian Xiong, and Y. S. Lin. "Synthesis and CO2 sorption properties of pure and modified lithium zirconate." Separation and Purification Technology 36, no. 1 (2004): 41–51. http://dx.doi.org/10.1016/s1383-5866(03)00151-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

NAKAGAWA, Kazuaki, and Toshiyuki OHASHI. "A Reversible Change between Lithium Zirconate and Zirconia in Molten Carbonate." Electrochemistry 67, no. 6 (1999): 618–21. http://dx.doi.org/10.5796/electrochemistry.67.618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Taddia, Marco, Paolo Modesti, and Adelia Albertazzi. "Determination of macro-constituents in lithium zirconate for tritium-breeding applications." Journal of Nuclear Materials 336, no. 2-3 (2005): 173–76. http://dx.doi.org/10.1016/j.jnucmat.2004.09.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Verrall, R. A., O. D. Slagle, G. W. Hollenberg, T. Kurasawa, and J. D. Sullivan. "Irradiation of lithium zirconate pebble-bed in BEATRIX-II Phase II." Journal of Nuclear Materials 212-215 (September 1994): 902–7. http://dx.doi.org/10.1016/0022-3115(94)90966-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ali, Md Yusuf, Hans Orthner, and Hartmut Wiggers. "Spray Flame Synthesis (SFS) of Lithium Lanthanum Zirconate (LLZO) Solid Electrolyte." Materials 14, no. 13 (2021): 3472. http://dx.doi.org/10.3390/ma14133472.

Full text
Abstract:
A spray-flame reaction step followed by a short 1-h sintering step under O2 atmosphere was used to synthesize nanocrystalline cubic Al-doped Li7La3Zr2O12 (LLZO). The as-synthesized nanoparticles from spray-flame synthesis consisted of the crystalline La2Zr2O7 (LZO) pyrochlore phase while Li was present on the nanoparticles’ surface as amorphous carbonate. However, a short annealing step was sufficient to obtain phase pure cubic LLZO. To investigate whether the initial mixing of all cations is mandatory for synthesizing nanoparticulate cubic LLZO, we also synthesized Li free LZO and subsequentl
APA, Harvard, Vancouver, ISO, and other styles
27

Fauth, Daniel J., Elizabeth A. Frommell, James S. Hoffman, Randall P. Reasbeck, and Henry W. Pennline. "Eutectic salt promoted lithium zirconate: Novel high temperature sorbent for CO2 capture." Fuel Processing Technology 86, no. 14-15 (2005): 1503–21. http://dx.doi.org/10.1016/j.fuproc.2005.01.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kawamura, Hiroto, Takeo Yamaguchi, Balagopal N. Nair, Kazuaki Nakagawa, and Shin-ichi Nakao. "Dual-Ion Conducting Lithium Zirconate-Based Membranes for High Temperature CO2 Separation." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 38, no. 5 (2005): 322–28. http://dx.doi.org/10.1252/jcej.38.322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Emmerich, Thomas, Katrin Lotz, Kirill Sliozberg, Wolfgang Schuhmann, and Martin Muhler. "Catalytic Oxidation of Soot Spray-Coated Lithium Zirconate in a Plate Reactor." Chemie Ingenieur Technik 89, no. 3 (2017): 263–69. http://dx.doi.org/10.1002/cite.201600118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fergus, J., and X. Zhang. "Processing of Aluminum-Doped Lithium Lanthanum Zirconate Garnet-Type Solid Electrolyte Materials." ECS Transactions 73, no. 1 (2016): 179–82. http://dx.doi.org/10.1149/07301.0179ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Narasimharao, Katabathini, and Tarek T. Ali. "Effect of preparation conditions on structural and catalytic properties of lithium zirconate." Ceramics International 42, no. 1 (2016): 1318–31. http://dx.doi.org/10.1016/j.ceramint.2015.09.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rex, Kobiny Antony, Poobalasuntharam Iyngaran, Navaratnarajah Kuganathan, and Alexander Chroneos. "Defect Properties and Lithium Incorporation in Li2ZrO3." Energies 14, no. 13 (2021): 3963. http://dx.doi.org/10.3390/en14133963.

Full text
Abstract:
Lithium zirconate is a candidate material in the design of electrochemical devices and tritium breeding blankets. Here we employ an atomistic simulation based on the classical pair-wise potentials to examine the defect energetics, diffusion of Li-ions, and solution of dopants. The Li-Frenkel is the lowest defect energy process. The Li-Zr anti-site defect cluster energy is slightly higher than the Li-Frenkel. The Li-ion diffuses along the c axis with an activation energy of 0.55 eV agreeing with experimental values. The most favorable isovalent dopants on the Li and Zr sites were Na and Ti resp
APA, Harvard, Vancouver, ISO, and other styles
33

ESSAKI, Kenji, Kazuaki NAKAGAWA, and Masahiro KATO. "Acceleration Effect of Ternary Carbonate on CO2 Absorption Rate in Lithium Zirconate Powder." Journal of the Ceramic Society of Japan 109, no. 1274 (2001): 829–33. http://dx.doi.org/10.2109/jcersj.109.1274_829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pfeiffer, Heriberto, and Pedro Bosch. "Thermal Stability and High-Temperature Carbon Dioxide Sorption on Hexa-lithium Zirconate (Li6Zr2O7)." Chemistry of Materials 17, no. 7 (2005): 1704–10. http://dx.doi.org/10.1021/cm047897+.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Radfarnia, Hamid R., and Maria C. Iliuta. "Surfactant-Template/Ultrasound-Assisted Method for the Preparation of Porous Nanoparticle Lithium Zirconate." Industrial & Engineering Chemistry Research 50, no. 15 (2011): 9295–305. http://dx.doi.org/10.1021/ie102417q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Khokhani, Mrinal, Ramdas B. Khomane, and Bhaskar D. Kulkarni. "Sodium-doped lithium zirconate nano squares: synthesis, characterization and applications for CO2 sequestration." Journal of Sol-Gel Science and Technology 61, no. 2 (2011): 316–20. http://dx.doi.org/10.1007/s10971-011-2629-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhan, Xiaowen, Yang‐Tse Cheng, and Mona Shirpour. "Nonstoichiometry and Li‐ion transport in lithium zirconate: The role of oxygen vacancies." Journal of the American Ceramic Society 101, no. 9 (2018): 4053–65. http://dx.doi.org/10.1111/jace.15583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

WANG, Fei, Yoshinori YOSHIMURA, Shinji HIRAI, and Toshihiro KUZUYA. "CO2 Absorption/Release Properties of Lithium Zirconate Powder Prepared by the Sol-Gel Process." Resources Processing 58, no. 3 (2011): 108–13. http://dx.doi.org/10.4144/rpsj.58.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pannocchia, Gabriele, Monica Puccini, Maurizia Seggiani, and Sandra Vitolo. "Experimental and Modeling Studies on High-Temperature Capture of CO2Using Lithium Zirconate Based Sorbents." Industrial & Engineering Chemistry Research 46, no. 21 (2007): 6696–706. http://dx.doi.org/10.1021/ie0616949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yi, Kwang Bok, and Dag Øistein Eriksen. "Low Temperature Liquid State Synthesis of Lithium Zirconate and its Characteristics as a CO2Sorbent." Separation Science and Technology 41, no. 2 (2006): 283–96. http://dx.doi.org/10.1080/01496390500496884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kaur, Navjot, and Amjad Ali. "Lithium zirconate as solid catalyst for simultaneous esterification and transesterification of low quality triglycerides." Applied Catalysis A: General 489 (January 2015): 193–202. http://dx.doi.org/10.1016/j.apcata.2014.10.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Oyaidzu, M., H. Kimura, A. Yoshikawa, et al. "Correlation between annihilation of irradiation defects and tritium release in neutron-irradiated lithium zirconate." Fusion Engineering and Design 81, no. 1-7 (2006): 583–88. http://dx.doi.org/10.1016/j.fusengdes.2005.06.361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chen, Zhi Peng, Wei Lu, De Lin Chu, et al. "Preparation of High Sphericity Li2TiO3 Tritium Breeder by Polymer Assisted Sedimentation Method." Materials Science Forum 944 (January 2019): 692–98. http://dx.doi.org/10.4028/www.scientific.net/msf.944.692.

Full text
Abstract:
The tritium breeder materials used in solid tritium breeding blanket of fusion reactor are lithium-based ceramics, like lithium titanate (Li2TiO3), lithium orthosilicate (Li4SiO4), lithium aluminate(LiA1O2) and lithium zirconate (Li8ZrO6). Among them, Li2TiO3 has the advantages of stable chemical property, high mechanical strength and high lithium content, so it has become one of the preferred materials. Based on the design of solid blanket and tritium extraction process, breeder materials need to be made into a certain shape of pebbles. B Spherical breeder is widely used in the design of fusi
APA, Harvard, Vancouver, ISO, and other styles
44

Guo, Li Li, Mi Mi Li, Min Sun, Dong Yu Xu, and Shi Feng Huang. "Fabrication and Properties of 1-3 Polymer Modified Cement Based Piezoelectric Composites." Advanced Materials Research 306-307 (August 2011): 305–8. http://dx.doi.org/10.4028/www.scientific.net/amr.306-307.305.

Full text
Abstract:
A piezoelectric ceramic(lead niobium lithium zirconate titanate, P(LN)ZT), sulphoaluminate cement and polymer were used to fabricate polymer modified cement based piezoelectric composites by cut-filling technique. The influence of P(LN)ZT volume fraction on the electromechanical properties and acoustic impedance of composite was investigated. Comparing with P(LN)ZT Piezoelectric ceramic, the vibration at thickness mode of 1-3 type piezoelectric composite is strengthened, and the electromechanical quality factor is reduced. When P(LN)ZT volume fraction is 30.86%, the acoustic impedance value is
APA, Harvard, Vancouver, ISO, and other styles
45

Cao, Hong Xia, Chuang Zhang, Qing Quan Liu, and You Bao Wang. "Elastomechanical Study of Magnetoeletric Coupling in Bilayer of Lithium Zinc Ferrite and Lead Zirconate Titanate." Advanced Materials Research 602-604 (December 2012): 813–20. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.813.

Full text
Abstract:
A theoretical model based on the constitutive equations of piezoelectrics and magnetostrictor is introduced to discuss the magnetoelectric (ME) coupling in freebody bilayer containing magnetostrictive and piezoelectric phases. The ME coupling at low frequency of Ni0.8Zn0.2Fe2O4–PZT bilayer have been studied by using the model and the corresponding material parameters of individual phases. The results show that the ME voltage coefficients can increase to a maximum at a given volume fraction of piezoelectric phase. An approximately linear increase of the maximum has been obtained with strengthen
APA, Harvard, Vancouver, ISO, and other styles
46

Kaur, Avneet, and Amjad Ali. "Lithium Zirconate as a Selective and Cost-Effective Mixed Metal Oxide Catalyst for Glycerol Carbonate Production." Industrial & Engineering Chemistry Research 59, no. 7 (2020): 2667–79. http://dx.doi.org/10.1021/acs.iecr.9b05747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Teshima, Toyoshi, та Motoji Ikeya. "Electron Spin Resonance Study on Defects in Lithium Zirconate (Li2ZrO3) Produced by 77 K γ-Irradiation". Japanese Journal of Applied Physics 41, Part 1, No. 2A (2002): 685–89. http://dx.doi.org/10.1143/jjap.41.685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tsuchiya, B., S. Bandow, S. Nagata, K. Saito, K. Tokunaga, and K. Morita. "The Effect of Platinum-coatings on Hydrogen- and Water-absorption and Desorption Characteristics of Lithium Zirconate." Physics Procedia 66 (2015): 287–91. http://dx.doi.org/10.1016/j.phpro.2015.05.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Earnshaw, John W., Frank A. Londry, and Paul J. Gierszewski. "The Effective Thermal Conductivity of a Bed of 1.2-mm-diam Lithium Zirconate Spheres in Helium." Fusion Technology 33, no. 1 (1998): 31–37. http://dx.doi.org/10.13182/fst98-a13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nair, Balagopal N., Takeo Yamaguchi, Hiroto Kawamura, Shin-Ichi Nakao, and Kazuaki Nakagawa. "Processing of Lithium Zirconate for Applications in Carbon Dioxide Separation: Structure and Properties of the Powders." Journal of the American Ceramic Society 87, no. 1 (2004): 68–74. http://dx.doi.org/10.1111/j.1551-2916.2004.00068.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!