To see the other types of publications on this topic, follow the link: Zirconium-based metal–organic frameworks.

Journal articles on the topic 'Zirconium-based metal–organic frameworks'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Zirconium-based metal–organic frameworks.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rimoldi, Martino, Ashlee J. Howarth, Matthew R. DeStefano, et al. "Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks." ACS Catalysis 7, no. 2 (2016): 997–1014. http://dx.doi.org/10.1021/acscatal.6b02923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kung, Chung-Wei, Subhadip Goswami, Idan Hod, et al. "Charge Transport in Zirconium-Based Metal–Organic Frameworks." Accounts of Chemical Research 53, no. 6 (2020): 1187–95. http://dx.doi.org/10.1021/acs.accounts.0c00106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hobday, Claire, Stephen Moggach, Carole Morrison, Tina Duren, and Ross Forgan. "Compressibility Studies of Zirconium Based Metal-Organic Frameworks." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C157. http://dx.doi.org/10.1107/s2053273314098428.

Full text
Abstract:
Metal-organic frameworks (MOFs) are a well-studied class of porous materials with the potential to be used in many applications such as gas storage and catalysis.[1] UiO-67 (UiO = University of Oslo), a MOF built from zirconium oxide units connected with 4,4-biphenyldicarboxylate (BDC) linkers, forms a face centred cubic structure. Zirconium has a high affinity towards oxygen ligands making these bridges very strong, resulting in UiO-based MOFs having high chemical and thermal stability compared to other MOF structures. Moreover, UiO-67 has become popular in engineering studies due to its high mechanical stability.[2] Using high pressure x-ray crystallography we can exert MOFs to GPa pressures, experimentally exploring the mechanical stability of MOFs to external pressure. By immersing the crystal in a hydrostatic medium, pressure is applied evenly to the crystal. On surrounding a porous MOF with a hydrostatic medium composed of small molecules (e.g. methanol), the medium can penetrate the MOF, resulting in medium-dependant compression. On compressing MOF-5 (Zn4O(BDC)3) using diethylformamide as a penetrating medium, the framework was shown to have an increased resistance to compression, becoming amorphous several orders of magnitude higher in pressure than observed on grinding the sample.[3] Here we present a high-pressure x-ray diffraction study on the UiO-based MOF UiO-67, and several new synthesised derivatives built from same metal node but with altered organic linkers, allowing us to study in a systematic way, the mechanical stability of the MOF, and its pressure dependence on both the linker, and pressure medium.
APA, Harvard, Vancouver, ISO, and other styles
4

Bueken, Bart, Niels Van Velthoven, Tom Willhammar, et al. "Gel-based morphological design of zirconium metal–organic frameworks." Chemical Science 8, no. 5 (2017): 3939–48. http://dx.doi.org/10.1039/c6sc05602d.

Full text
Abstract:
The ability of zirconium metal–organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications.
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Yong-Jun, Yifa Chen, Chang Miao, et al. "Metal–organic framework-based foams for efficient microplastics removal." Journal of Materials Chemistry A 8, no. 29 (2020): 14644–52. http://dx.doi.org/10.1039/d0ta04891g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rowe, Jennifer M., Jie Zhu, Erin M. Soderstrom, Wenqian Xu, Andrey Yakovenko, and Amanda J. Morris. "Sensitized photon upconversion in anthracene-based zirconium metal–organic frameworks." Chemical Communications 54, no. 56 (2018): 7798–801. http://dx.doi.org/10.1039/c8cc01893f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pakamorė, Ignas, Jolanta Rousseau, Cyril Rousseau, Eric Monflier, and Petra Ágota Szilágyi. "An ambient-temperature aqueous synthesis of zirconium-based metal–organic frameworks." Green Chemistry 20, no. 23 (2018): 5292–98. http://dx.doi.org/10.1039/c8gc02312c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Drout, Riki J., Lee Robison, Zhijie Chen, Timur Islamoglu, and Omar K. Farha. "Zirconium Metal–Organic Frameworks for Organic Pollutant Adsorption." Trends in Chemistry 1, no. 3 (2019): 304–17. http://dx.doi.org/10.1016/j.trechm.2019.03.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gao, Wen-Yang, Timmy Thiounn, Lukasz Wojtas, Yu-Sheng Chen, and Shengqian Ma. "Two highly porous single-crystalline zirconium-based metal-organic frameworks." Science China Chemistry 59, no. 8 (2016): 980–83. http://dx.doi.org/10.1007/s11426-016-0071-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bayazit, Şahika Sena, and Selin Şahin. "Acid-modulated zirconium based metal organic frameworks for removal of organic micropollutants." Journal of Environmental Chemical Engineering 8, no. 5 (2020): 103901. http://dx.doi.org/10.1016/j.jece.2020.103901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Marshall, Ross J., and Ross S. Forgan. "Postsynthetic Modification of Zirconium Metal-Organic Frameworks." European Journal of Inorganic Chemistry 2016, no. 27 (2016): 4310–31. http://dx.doi.org/10.1002/ejic.201600394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Taddei, Marco, Giulia M. Schukraft, Michael E. A. Warwick, et al. "Band gap modulation in zirconium-based metal–organic frameworks by defect engineering." Journal of Materials Chemistry A 7, no. 41 (2019): 23781–86. http://dx.doi.org/10.1039/c9ta05216j.

Full text
Abstract:
A simple defect engineering approach to systematically tune the band gap of the prototypical zirconium-based metal–organic framework UiO-66 is reported. Defect engineered materials display enhanced photocatalytic activity.
APA, Harvard, Vancouver, ISO, and other styles
13

Užarević, Krunoslav, Timothy C. Wang, Su-Young Moon, et al. "Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks." Chemical Communications 52, no. 10 (2016): 2133–36. http://dx.doi.org/10.1039/c5cc08972g.

Full text
Abstract:
Mechanochemistry and accelerated aging are new routes to zirconium metal–organic frameworks, yielding UiO-66 and catalytically active UiO-66-NH<sub>2</sub> accessible on the gram scale through mild solid-state self-assembly, without strong acids, high temperatures or excess reactants.
APA, Harvard, Vancouver, ISO, and other styles
14

Ji, Zhe, Hao Zhang, Hao Liu, Omar M. Yaghi, and Peidong Yang. "Cytoprotective metal-organic frameworks for anaerobic bacteria." Proceedings of the National Academy of Sciences 115, no. 42 (2018): 10582–87. http://dx.doi.org/10.1073/pnas.1808829115.

Full text
Abstract:
We report a strategy to uniformly wrap Morella thermoacetica bacteria with a metal-organic framework (MOF) monolayer of nanometer thickness for cytoprotection in artificial photosynthesis. The catalytic activity of the MOF enclosure toward decomposition of reactive oxygen species (ROS) reduces the death of strictly anaerobic bacteria by fivefold in the presence of 21% O2, and enables the cytoprotected bacteria to continuously produce acetate from CO2 fixation under oxidative stress. The high definition of the MOF–bacteria interface involving direct bonding between phosphate units on the cell surface and zirconium clusters on MOF monolayer, provides for enhancement of life throughout reproduction. The dynamic nature of the MOF wrapping allows for cell elongation and separation, including spontaneous covering of the newly grown cell surface. The open-metal sites on the zirconium clusters lead to 600 times more efficient ROS decomposition compared with zirconia nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
15

Hanna, Sylvia L., David X. Rademacher, Donald J. Hanson, et al. "Structural Features of Zirconium-Based Metal–Organic Frameworks Affecting Radiolytic Stability." Industrial & Engineering Chemistry Research 59, no. 16 (2020): 7520–26. http://dx.doi.org/10.1021/acs.iecr.9b06820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Celis-Salazar, Paula J., Charity C. Epley, Spencer R. Ahrenholtz, William A. Maza, Pavel M. Usov, and Amanda J. Morris. "Proton-Coupled Electron Transport in Anthraquinone-Based Zirconium Metal–Organic Frameworks." Inorganic Chemistry 56, no. 22 (2017): 13741–47. http://dx.doi.org/10.1021/acs.inorgchem.7b01656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Saiz, Paula G., Naroa Iglesias, Bárbara González Navarrete, et al. "Chromium Speciation in Zirconium‐Based Metal–Organic Frameworks for Environmental Remediation." Chemistry – A European Journal 26, no. 61 (2020): 13861–72. http://dx.doi.org/10.1002/chem.202001435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Liang, Weibin, and Deanna M. D'Alessandro. "Microwave-assisted solvothermal synthesis of zirconium oxide based metal–organic frameworks." Chemical Communications 49, no. 35 (2013): 3706. http://dx.doi.org/10.1039/c3cc40368h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lee, Jae-Hyoung, Trang Thi Thu Nguyen, Linh Ho Thuy Nguyen, Thang Bach Phan, Sang Sub Kim, and Tan Le Hoang Doan. "Functionalization of zirconium-based metal–organic frameworks for gas sensing applications." Journal of Hazardous Materials 403 (February 2021): 124104. http://dx.doi.org/10.1016/j.jhazmat.2020.124104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pereira, Carla F., Ashlee J. Howarth, Nicolaas A. Vermeulen, et al. "Towards hydroxamic acid linked zirconium metal–organic frameworks." Materials Chemistry Frontiers 1, no. 6 (2017): 1194–99. http://dx.doi.org/10.1039/c6qm00364h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mishra, Ashish A., та Bhalchandra M. Bhanage. "Zirconium-MOF-catalysed selective synthesis of α-hydroxyamide via the transfer hydrogenation of α-ketoamide". New Journal of Chemistry 43, № 16 (2019): 6160–67. http://dx.doi.org/10.1039/c9nj00900k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, Xinlei, Chenghong Wang, Bo Wang, and Kang Li. "Novel Organic-Dehydration Membranes Prepared from Zirconium Metal-Organic Frameworks." Advanced Functional Materials 27, no. 3 (2016): 1604311. http://dx.doi.org/10.1002/adfm.201604311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ahmad, Khalil, Muhammad Altaf Nazir, Ahmad Kaleem Qureshi, et al. "Engineering of Zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents." Materials Science and Engineering: B 262 (December 2020): 114766. http://dx.doi.org/10.1016/j.mseb.2020.114766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Xiao, Wei Qi, Yuefei Wang, Rongxin Su, and Zhimin He. "Exploration of Intrinsic Lipase-Like Activity of Zirconium-Based Metal-Organic Frameworks." European Journal of Inorganic Chemistry 2018, no. 41 (2018): 4579–85. http://dx.doi.org/10.1002/ejic.201800898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Liu, Tao, Shourong Zheng, and Liuyan Yang. "Magnetic zirconium-based metal–organic frameworks for selective phosphate adsorption from water." Journal of Colloid and Interface Science 552 (September 2019): 134–41. http://dx.doi.org/10.1016/j.jcis.2019.05.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhang, Guoyu, Kui Tan, Shikai Xian, et al. "Ultrastable Zirconium-Based Cationic Metal–Organic Frameworks for Perrhenate Removal from Wastewater." Inorganic Chemistry 60, no. 16 (2021): 11730–38. http://dx.doi.org/10.1021/acs.inorgchem.1c00512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rasero-Almansa, Antonia M., Marta Iglesias, and Félix Sánchez. "Synthesis of bimetallic Zr(Ti)-naphthalendicarboxylate MOFs and their properties as Lewis acid catalysis." RSC Advances 6, no. 108 (2016): 106790–97. http://dx.doi.org/10.1039/c6ra23143h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Mocniak, Katarzyna A., Ilona Kubajewska, Dominic E. M. Spillane, Gareth R. Williams, and Russell E. Morris. "Incorporation of cisplatin into the metal–organic frameworks UiO66-NH2 and UiO66 – encapsulation vs. conjugation." RSC Advances 5, no. 102 (2015): 83648–56. http://dx.doi.org/10.1039/c5ra14011k.

Full text
Abstract:
This work demonstrates synthetic strategies for the incorporation of an anticancer drug, cisplatin, and a Pt(iv) cisplatin prodrug into two zirconium-based metal–organic-frameworks (MOFs): UiO66 and UiO66-NH<sub>2</sub>.
APA, Harvard, Vancouver, ISO, and other styles
29

Gutiérrez, Mario, Cristina Martin, Koen Kennes, et al. "New OLEDs Based on Zirconium Metal-Organic Framework." Advanced Optical Materials 6, no. 6 (2018): 1701060. http://dx.doi.org/10.1002/adom.201701060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Naeem, Ayesha, Valeska P. Ting, Ulrich Hintermair, et al. "Mixed-linker approach in designing porous zirconium-based metal–organic frameworks with high hydrogen storage capacity." Chemical Communications 52, no. 50 (2016): 7826–29. http://dx.doi.org/10.1039/c6cc03787a.

Full text
Abstract:
New zirconium based metal–organic framework (UBMOF-31) synthesised using mixed-linker strategy showing permanent porosity, excellent hydrogen uptake, and high selectivity for adsorption of CO<sub>2</sub> over N<sub>2</sub>.
APA, Harvard, Vancouver, ISO, and other styles
31

Peh, Shing Bo, Youdong Cheng, Jian Zhang, et al. "Cluster nuclearity control and modulated hydrothermal synthesis of functionalized Zr12 metal–organic frameworks." Dalton Transactions 48, no. 21 (2019): 7069–73. http://dx.doi.org/10.1039/c8dt05060k.

Full text
Abstract:
Cluster nuclearity control over the SBUs of zirconium MOFs to target Zr<sub>6</sub>-based and Zr<sub>2</sub>-based phases is demonstrated for the Zr terephthalate system (Zr-BDC) using a modulated hydrothermal synthesis method.
APA, Harvard, Vancouver, ISO, and other styles
32

Bukowski, Brandon C., and Randall Q. Snurr. "Topology-Dependent Alkane Diffusion in Zirconium Metal–Organic Frameworks." ACS Applied Materials & Interfaces 12, no. 50 (2020): 56049–59. http://dx.doi.org/10.1021/acsami.0c17797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yuan, Shuai, Lanfang Zou, Haixia Li, et al. "Flexible Zirconium Metal-Organic Frameworks as Bioinspired Switchable Catalysts." Angewandte Chemie 128, no. 36 (2016): 10934–38. http://dx.doi.org/10.1002/ange.201604313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yuan, Shuai, Lanfang Zou, Haixia Li, et al. "Flexible Zirconium Metal-Organic Frameworks as Bioinspired Switchable Catalysts." Angewandte Chemie International Edition 55, no. 36 (2016): 10776–80. http://dx.doi.org/10.1002/anie.201604313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Feng, Liang, Gregory S. Day, Kun-Yu Wang, Shuai Yuan, and Hong-Cai Zhou. "Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks." Chem 6, no. 11 (2020): 2902–23. http://dx.doi.org/10.1016/j.chempr.2020.09.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Schaate, Andreas, Pascal Roy, Thomas Preuße, Sven Jare Lohmeier, Adelheid Godt, and Peter Behrens. "Porous Interpenetrated Zirconium-Organic Frameworks (PIZOFs): A Chemically Versatile Family of Metal-Organic Frameworks." Chemistry - A European Journal 17, no. 34 (2011): 9320–25. http://dx.doi.org/10.1002/chem.201101015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Van de Voorde, Ben, Ivo Stassen, Bart Bueken, et al. "Improving the mechanical stability of zirconium-based metal–organic frameworks by incorporation of acidic modulators." Journal of Materials Chemistry A 3, no. 4 (2015): 1737–42. http://dx.doi.org/10.1039/c4ta06396a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Xing, Hongzhu, Dashu Chen, Xingyu Li, Yue Liu, Chungang Wang, and Zhongmin Su. "A visible-light responsive zirconium metal–organic framework for living photopolymerization of methacrylates." RSC Advances 6, no. 71 (2016): 66444–50. http://dx.doi.org/10.1039/c6ra12134a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Liu, Guoliang, Ziqi Yang, Mi Zhou, Yuxiang Wang, Daqiang Yuan, and Dan Zhao. "Heterogeneous postassembly modification of zirconium metal–organic cages in supramolecular frameworks." Chemical Communications 57, no. 51 (2021): 6276–79. http://dx.doi.org/10.1039/d1cc01606g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Valekar, Anil H., Kyung-Ho Cho, Sachin K. Chitale та ін. "Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal–organic frameworks". Green Chemistry 18, № 16 (2016): 4542–52. http://dx.doi.org/10.1039/c6gc00524a.

Full text
Abstract:
A series of zirconium-based MOFs with different ligand functionalities and porosities were applied for catalytic transfer hydrogenation of ethyl levulinate to form γ-valerolactone, using isopropanol as a hydrogen donor.
APA, Harvard, Vancouver, ISO, and other styles
41

Cadiau, Amandine, Lilia S. Xie, Nikita Kolobov, et al. "Toward New 2D Zirconium-Based Metal–Organic Frameworks: Synthesis, Structures, and Electronic Properties." Chemistry of Materials 32, no. 1 (2019): 97–104. http://dx.doi.org/10.1021/acs.chemmater.9b02462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ploskonka, Ann M., Stephanie E. Marzen, and Jared B. DeCoste. "Facile Synthesis and Direct Activation of Zirconium Based Metal–Organic Frameworks from Acetone." Industrial & Engineering Chemistry Research 56, no. 6 (2017): 1478–84. http://dx.doi.org/10.1021/acs.iecr.6b04361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Deria, Pravas, Diego A. Gómez-Gualdrón, Wojciech Bury, et al. "Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology." Journal of the American Chemical Society 137, no. 40 (2015): 13183–90. http://dx.doi.org/10.1021/jacs.5b08860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Li, Yu, Mengyao Hu, Xiaoyu Huang, et al. "Multicomponent zirconium-based metal-organic frameworks for impedimetric aptasensing of living cancer cells." Sensors and Actuators B: Chemical 306 (March 2020): 127608. http://dx.doi.org/10.1016/j.snb.2019.127608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gu, Yue, Donghua Xie, Yue Ma, et al. "Size Modulation of Zirconium-Based Metal Organic Frameworks for Highly Efficient Phosphate Remediation." ACS Applied Materials & Interfaces 9, no. 37 (2017): 32151–60. http://dx.doi.org/10.1021/acsami.7b10024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kirlikovali, Kent O., Zhijie Chen, Timur Islamoglu, Joseph T. Hupp, and Omar K. Farha. "Zirconium-Based Metal–Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents." ACS Applied Materials & Interfaces 12, no. 13 (2020): 14702–20. http://dx.doi.org/10.1021/acsami.9b20154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Sujing, Nertil Xhaferaj, Mohammad Wahiduzzaman, et al. "Engineering Structural Dynamics of Zirconium Metal–Organic Frameworks Based on Natural C4 Linkers." Journal of the American Chemical Society 141, no. 43 (2019): 17207–16. http://dx.doi.org/10.1021/jacs.9b07816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Guillerm, V., F. Ragon, M. Dan-Hardi, et al. "A Series of Isoreticular, Highly Stable, Porous Zirconium Oxide Based Metal-Organic Frameworks." Angewandte Chemie International Edition 51, no. 37 (2012): 9267–71. http://dx.doi.org/10.1002/anie.201204806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sun, Xiaodong, Litong Shi, Haijun Hu, Hongwei Huang, and Tianyi Ma. "Ligand Functionalization in Zirconium‐Based Metal‐Organic Frameworks for Enhanced Carbon Dioxide Fixation." Advanced Sustainable Systems 4, no. 9 (2020): 2000098. http://dx.doi.org/10.1002/adsu.202000098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Guillerm, V., F. Ragon, M. Dan-Hardi, et al. "A Series of Isoreticular, Highly Stable, Porous Zirconium Oxide Based Metal-Organic Frameworks." Angewandte Chemie 124, no. 37 (2012): 9401–5. http://dx.doi.org/10.1002/ange.201204806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!