Academic literature on the topic 'ZnPt'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ZnPt.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ZnPt"
Ezhov, Artem V., Fedor Yu Vyal’ba, Kseniya A. Zhdanova, Andrey P. Zhdanov, Konstantin Yu Zhizhin, Ilya N. Kluykin, Natal’ya A. Bragina, and Andrey F. Mironov. "Synthesis of donor-π-acceptor porphyrins for DSSC: DFT-study, comparison of anchoring mode and effectiveness." Journal of Porphyrins and Phthalocyanines 24, no. 04 (March 26, 2020): 538–47. http://dx.doi.org/10.1142/s1088424619501694.
Full textMangion, Sean E., Amy M. Holmes, and Michael S. Roberts. "Targeted Delivery of Zinc Pyrithione to Skin Epithelia." International Journal of Molecular Sciences 22, no. 18 (September 8, 2021): 9730. http://dx.doi.org/10.3390/ijms22189730.
Full textWu, Yu, Qian Zhang, Jia-Cheng Liu, Ren-Zhi Li, and Neng-Zhi Jin. "Novel self-assembly with zinc porphyrin via axial coordination for dye-sensitized solar cells." Journal of Porphyrins and Phthalocyanines 21, no. 02 (February 2017): 116–21. http://dx.doi.org/10.1142/s1088424617500195.
Full textChen, Chong, Minglei Sun, Zhongpan Hu, Jintao Ren, Shoumin Zhang, and Zhong-Yong Yuan. "New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene." Catalysis Science & Technology 9, no. 8 (2019): 1979–88. http://dx.doi.org/10.1039/c9cy00237e.
Full textUmar, Marjoni Imamora Ali, Mardiani Mardiani, Elvy Rahmi Mawarnis, and Akrajas Ali Umar. "The Liquid Phase Deposition of ZnPtBNs: Study on Structural, Morphology, and Their Sheet-Resistant." Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika 5, no. 2 (July 30, 2021): 175–81. http://dx.doi.org/10.36312/esaintika.v5i2.497.
Full textLin, David L., Tung Tran, Jamal Y. Alam, Steven R. Herron, Maria Soledad Ramirez, and Marcelo E. Tolmasky. "Inhibition of Aminoglycoside 6′-N-Acetyltransferase Type Ib by Zinc: Reversal of Amikacin Resistance in Acinetobacter baumannii and Escherichia coli by a Zinc Ionophore." Antimicrobial Agents and Chemotherapy 58, no. 7 (May 12, 2014): 4238–41. http://dx.doi.org/10.1128/aac.00129-14.
Full textCai, Fufeng, Jessica Juweriah Ibrahim, Yu Fu, Wenbo Kong, Shuqing Li, Jun Zhang, and Yuhan Sun. "Methanol Steam Reforming over ZnPt/MoC Catalysts: Effects of Hydrogen Treatment." Industrial & Engineering Chemistry Research 59, no. 42 (September 28, 2020): 18756–70. http://dx.doi.org/10.1021/acs.iecr.0c03311.
Full textKatalay, Selma, Melike Merve Ayhan, and Aysel Çağlan Günal. "The effects of zinc pyrithione on total hemocyte counts of mussel (Mytilus galloprovincialis Lamarck, 1819)." Ege Journal of Fisheries and Aquatic Sciences 36, no. 2 (June 15, 2019): 185–89. http://dx.doi.org/10.12714/egejfas.2019.36.2.11.
Full textMünich, Peter W., Pawel Wagner, David L. Officer, and Dirk M. Guldi. "Use of alkylated, amphiphilic zinc porphyrins to disperse individualized SWCNTs." Journal of Porphyrins and Phthalocyanines 22, no. 07 (July 2018): 573–80. http://dx.doi.org/10.1142/s1088424618500621.
Full textFollana-Berná, Jorge, Sairaman Seetharaman, Luis Martín-Gomis, Georgios Charalambidis, Adelais Trapali, Paul A. Karr, Athanassios G. Coutsolelos, Fernando Fernández-Lázaro, Francis D’Souza, and Ángela Sastre-Santos. "Supramolecular complex of a fused zinc phthalocyanine–zinc porphyrin dyad assembled by two imidazole-C60units: ultrafast photoevents." Physical Chemistry Chemical Physics 20, no. 11 (2018): 7798–807. http://dx.doi.org/10.1039/c8cp00382c.
Full textDissertations / Theses on the topic "ZnPt"
Missenard, Charles. "Intérêt de la zinc - protoporphyrine (ZnPP) : en chimie clinique." Nancy 1, 1988. http://www.theses.fr/1988NAN10396.
Full textBalesaria, Sara. "ZnT-1 and zinc regulation in teleost fish gill." Thesis, King's College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409639.
Full textFeuser, Paulo Emilio. "Encapsulamento simultâneo de nanopartículas magnéticas (NPMS) com ftalocianina de zinco (ZNPC) via polimerização em miniemulsão." reponame:Repositório Institucional da UFSC, 2012. https://repositorio.ufsc.br/xmlui/handle/123456789/122562.
Full textMade available in DSpace on 2014-08-06T17:04:12Z (GMT). No. of bitstreams: 1 327717.pdf: 2405163 bytes, checksum: ded464e3384619c872511448eb58c9ac (MD5) Previous issue date: 2012
Uma das alternativas mais promissoras para o tratamento do câncer é a Terapia Fotodinâmica (TFD). A Ftalocianina de Zinco (ZnPc) é um fotossensibilizante de segunda geração com caráter hidrofóbico e necessita ser incorporado em um sistema de liberação adequado para ser injetado sistemicamente. Nanopartículas magnéticas, NPMs, constituída principalmente de magnetita (Fe3O4) apresentam alto valor de magnetização com grande potencial de aplicação no tratamento do câncer por hipertermia. O encapsulamento simultâneo de fármacos com NPMs tem sido reconhecido como uma técnica promissora para o tratamento do câncer por possibilitar a ação sinergética dos diferentes tipos de tratamento. O objetivo deste trabalho foi a síntese, caracterização e avaliação da toxicidade e fototoxicidade das NPMs, do encapsulamento da NPMs e ZnPc e o encapsulamento simultâneo de ZnPc com NPMs via polimerização em miniemulsão. As NPMs com ácido oléico (AO) foram preparadas pelo método de co-precipitação em meio aquoso e a análise de DRX mostrou picos característicos da magnetita (Fe3O4) com diâmetro médio de nanopartículas de 13nm. As NPMs apresentaram um alto valor de magnetização de saturação (Ms) (64 emu/g óxido de ferro). O encapsulamento das NPMs foi realizado via polimerização em miniemulsão com metacrilato de metila (MMA). As NPMs encapsuladas apresentaram um diâmetro aproximado de 100nm com valor de Ms de 34 emu/g de óxido de ferro. Para o encapsulamento da ZnPc utilizou-se duas técnicas de encapsulamento. A primeira foi a técnica de miniemulsão com auxílio da técnica de nanoprecipitação (PMMA/ZnPc)(FA)) e a segunda utilizou-se apenas a técnica de miniemulsão direta (PMMA/ZnPc(FO)). O teor de ZnPc nas nanopartículas poliméricas foi um pouco superior na amostra PMMA/ZnPc(FA) (3,7µg/mg) do que na amostra de PMMA/ZnPc(FO) (3,0 µg/mg). Ambas as técnicas resultaram em um tamanho médio de aproximadamente 100nm. Ao encapsular a ZnPc simultaneamente com as NPMs (PMMA/ZnPc/NPMs) não alteração em relação ao tamanho das nanopartículas (100nm), concentração de ZnPc (3,6 µg/mg) e propriedades magnéticas (31 emu/g de óxido de ferro) em relação ao encapsulamento em separado da ZnPc e NPMs. A liberação da ZnPc das nanopartículas poliméricas foi sustentada e lenta. Nas primeiras 20 horas cerca de 5-10% do ZnPc contida nas nanopartículas poliméricas foi liberada em todas as amostras. No ensaio de toxicidade (ausência de luz), as nanopartículas encapsuladas mostraram baixa toxicidade. No ensaio de atividade fotobiológica, observou-se, que a luz isoladamente (sem nanopartículas contendo ZnPc) não foi capaz de induzir efeito citotóxico sobre a cultura de células. Ao utilizar nanopartículas contendo ZnPc observou-se uma redução acentuada da viabilidade celular para 22% (PMMA/ZnPc(FA)) e 30% (PMMA/ZnPc/NPMs).
Abstract : Photodynamic therapy (TFD) is one of the most promising alternatives for the treatment of the cancer. Zinc phtalocyanine (ZnPc) is a second generation photosensitizer with hydrophobic character that should be incorporated in a suitable delivery system to be injected systemically. Magnetics nanoparticles (NPMs) consisting mainly of magnetite (Fe3O4) present high value of magnetization with great potential of application in the treatment of the cancer by hyperthermia. The simultaneous encapsulation of drugs with NPMs has been recognized as one promising technique for the treatment of the cancer making possible a synergetic action of the different types of treatment. The objective of this work was the synthesis, characterization and evaluation of the toxicity and phototoxicity of the NPMs, the encapsulation of the NPMs and ZnPc and the simultaneous encapsulation of ZnPc with NPMs by miniemulsion polymerization. The NPMs with oleic acid (AO) had been prepared by the co-precipitation method in aqueous solution. DRX analysis showed characteristic peaks of magnetite (Fe3O4) with average particle diameter of 13nm. The NPMs had presented high value of magnetization of saturation (Ms) (61 emu/g of iron oxide). The encapsulation of the NPMs was carried through methyl methacrylate (MMA) miniemulsion polymerization. The polymeric particles with NPMs encapsulated presented an average diameter of 100nm with value of Ms of 34 emu/g of iron oxide. Two techniques of encapsulation were employed for the encapsulation of ZnPc. The first one was the miniemulsion polymerization with the nanoprecipitation technique (PMMA/ZnPc) (FAN)) and second one used only the miniemulsion polymerization technique (PMMA/ZnPc (FO)). The amount of ZnPc in polymeric nanoparticles was higher in PMMA/ZnPc(FA) sample (3,7µg/mg) when compared to the sample of PMMA/ZnPc (FO) (3,0 µg/mg). Both techniques resulted in polymeric nanoparticles with an average diameter of approximately 100nm. The simultaneous encapsulation of ZnPc with NPMs (PMMA/ZnPc/NPMs) presented very similar values of average particle size (100nm), concentration of ZnPc (3,6 µg/mg) and magnetic properties (31 emu/g of iron oxide) when compared to the single encapsulation of ZnPc and NPMs. The release of the encapsulated ZnPc was supported and slow. In the first 20 hours approximately 5-10% of the encapsulated ZnPc was released in all samples. In the toxicity assay (light absence), the encapsulated nanoparticles had shown low toxicity. In the assay of phototoxicity activity, it was observed that the light (without polymeric nanoparticles containing ZnPc) was not able to induce cytotoxic effect on the culture of cells. When using polymeric nanoparticles with encapsulated ZnPc an accentuated reduction of the cellular viability of 22% (PMMA/ZnPc (FA)) and 30% (PMMA/ZnPc/NPMs) was observed.
Bekale, Laurent Adonis. "Élaboration de cellules solaires organiques à base de tétra-tert-butyl-phthalocyanine de zinc (TTB-ZnPc)." Thèse, Université du Québec à Trois-Rivières, 2012. http://depot-e.uqtr.ca/5165/1/030350161.pdf.
Full textBochukov, Ivelin [Verfasser], and Arne [Akademischer Betreuer] Thomas. "Hybrid interface engineering in ZnPc/C60 bi-layer heterojunction organic solar cells / Ivelin Bochukov. Betreuer: Arne Thomas." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2013. http://d-nb.info/1033027847/34.
Full textHussain, Afzal. "Charge Transport Properties of Metal / Metal-Phthalocyanine / n-Si Structures." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-63623.
Full textLob, Felice. "Untersuchungen zur Regulation der Genexpression des diabetes-assoziierten Autoantigens ZnT-8 in INS-1-Insulinomazellen." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-139659.
Full textDoolittle, John William Jr. "Synthesis of microporous faujasitic zincophosphates in novel environments." The Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=osu1116983708.
Full textKang, Young Sill [Verfasser]. "Antitumor effect of PEG-ZnPP in rat glioma cells, F98 and C6, and in rat brainstem tumor models / Young Sill Kang." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2019. http://d-nb.info/1202045030/34.
Full textDevergnas, Séverine. "Etude et caractérisation de l'expression de nouveaux transporteurs de zinc de la famille ZnT chez les mammifères." Université Joseph Fourier (Grenoble), 2005. http://www.theses.fr/2005GRE10237.
Full textZinc is an essential trace element. It is involved in many cellular processes because it is a cofactor of enzymes, nuc1ear factors and hormones. Therefore, is a very important component of cell viability Zinc homeostasis results from a coordinated regulation of different proteins: ZIP (uptake), metallothioneins (intracellular storage/trafficking), and ZnT (excretion). Using genomic databanks, we have analyzed and identified two novel SLC30 genes: SLC30A8 and SLC30A10. Zinc homeostasis is maintained by the action of these proteins, and their transcription is partly dependent of extra cellular zinc concentration. Ln case of zinc deficiency, ZnT-5, -5c and -7 genes are over-expressed. These transporters that we have localized in the Golgi apparatus could provide essential zinc to neo-synthesised proteins for their functionality. Furthermore, we showed that ZnT-8 is a zinc transporter specifie of pancreas and expressed in beta cells. ZnT -8 facilitates the accumulation of zinc from the cytoplasm into insulin vesic1es, and its transcription regulation is dependent, like insulin, of extra cellular glucose concentration. Zinc is implicated in all metabolic and structural aspects of the different cellular compartments. Therefore the cellular control of Zinc requires to be understood and is essential tot fear the cellular working
Books on the topic "ZnPt"
Rodionov, Vladimir. Rasovye mify nat Łsizma: Vraga nado znat £. Moskva: I ŁAuza-press, 2010.
Find full textSamsonov, A. M. Znat' i pomnit': Dialog istorika s chitatelem. Moskva: Izd-vo polit. lit-ry, 1988.
Find full textKorte, Diana. Chto dolzhna znat' o sebe kazhdai︠a︡ zhenshchina. Moskva: KRON-PRESS, 1996.
Find full textek, Slavoj Z. iz. To, c to vy vsegda hoteli znat' o Lakane no boa lis' sprosit' u Hic koka. Moskva: Logos, 2003.
Find full textBook chapters on the topic "ZnPt"
Ferro, M., N. Giommoni, C. T. Baldari, Elisa A. Bellomo, Guy A. Rutter, and Gerd Schmitz. "ZnT." In Encyclopedia of Signaling Molecules, 2029. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_101483.
Full textDorogan, A. V., S. I. Beril, I. G. Stamov, and N. N. Syrbu. "Me-ZnP2 Diodes Sensible to Optical Gyration." In IFMBE Proceedings, 167–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31866-6_34.
Full textInoue, Kazuo, Shuichi Kawamata, Kiichi Okuda, and Leonid Grigoryan. "Magnetic Torque of ZnPc-Intercalated Bi2212 Single Crystal." In Advances in Superconductivity VIII, 599–602. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-66871-8_132.
Full textMeyer, Holt. "“(kakˮ znat’)”. The (Epistemological) Bracket in Tatiana’s Letter and “Rhythmanalysis”." In Taktungen und Rhythmen, edited by Sabine Schmolinsky, Diana Hitzke, and Heiner Stahl, 243–64. Berlin, Boston: De Gruyter, 2018. http://dx.doi.org/10.1515/9783110466591-012.
Full textZhang, C. S., Z. G. Wang, M. J. Shi, W. B. Peng, H. W. Diao, X. B. Liao, G. L. Kong, and X. B. Zeng. "Zinc Phthalocyanine (ZNPC) Incorporated into Silicon Matrix Grown by Plasma Enhanced Chemical Vapor Deposition (PECVD)." In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 1326–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_268.
Full textPan, Rong, and Ke Jian Liu. "ZNT-1 Expression Reduction Enhances Free Zinc Accumulation in Astrocytes After Ischemic Stroke." In Acta Neurochirurgica Supplement, 257–61. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-18497-5_45.
Full textZapolsky, Ivan, Evan Kyzar, Jeremy Green, Siddharth Gaikwad, Mimi Pham, Simon Chanin, Caroline Fryar, et al. "Utilizing the Zebrafish Neurophenome Project (ZNP) Database for Analyses of Complex Neurophenotypes in Zebrafish Models." In Neuromethods, 343–53. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-597-8_27.
Full textLi, Weina, Jiqing Yang, Sida Zheng, Jun Wen, Mingming Zhai, and Yuansheng Liu. "The Study of Comparing the Efficiency of ZnPc-PDT and HPD-PDT in Killing Mice Lewis Lung Cancer Cells." In IFMBE Proceedings, 1644–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_431.
Full textFerro, M., N. Giommoni, C. T. Baldari, Elisa A. Bellomo, Guy A. Rutter, and Gerd Schmitz. "Zinc Transport in the Pancreatic β-Cell: Roles of ZnT (SLC30A) and ZiP (SLC39A) Family Members." In Encyclopedia of Signaling Molecules, 2018–23. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_499.
Full textBellomo, Elisa A., and Guy A. Rutter. "Zinc Transport in the Pancreatic β-Cell: Roles of ZnT (SLC30A) and ZiP (SLC39A) Family Members." In Encyclopedia of Signaling Molecules, 6047–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_499.
Full textConference papers on the topic "ZnPt"
Arimoto, Osamu, Mitsuru Sugisaki, Kaizo Nakamura, Koichiro Tanaka, and Tohru Suemoto. "Resonant secondary emisssion in beta-ZnP2." In Excitonic Processes in Condensed Matter: International Conference, edited by Jai Singh. SPIE, 1995. http://dx.doi.org/10.1117/12.200975.
Full textEspinosa, Pedro Mabil, Jaime Martinez-Castillo, Alejandro Vega, and Alfredo Marquez. "Modeling and characterization of a photodetector PEDOT:PSS, ZnPc." In 2016 IEEE International Engineering Summit. II. IEEE, 2016. http://dx.doi.org/10.1109/iesummit.2016.7459769.
Full textSugisaki, Mitsuru, Osamu Arimoto, Kaizo Nakamura, Koichiro Tanaka, and Tohru Suemoto. "Exciton luminescence in beta-ZnP2: 2s and 3s." In Excitonic Processes in Condensed Matter: International Conference, edited by Jai Singh. SPIE, 1995. http://dx.doi.org/10.1117/12.200981.
Full textZhang, Junzhi, Yue Shen, Feng Gu, Fei Zheng, and Jiancheng Zhang. "Preparation and photoelectric properties of ZnPc-PPV/TAZnPc films." In Sixth International Conference on Thin Film Physics and Applications. SPIE, 2008. http://dx.doi.org/10.1117/12.792381.
Full textBorshch, Volodymyr V., V. A. Gnatyuk, and R. V. Yaremko. "Self-induced optical activity in CdP2 and ZnP2 crystals." In Nonlinear Optics of Liquid and Photorefractive Crystals, edited by Gertruda V. Klimusheva and Andrey G. Iljin. SPIE, 1996. http://dx.doi.org/10.1117/12.239212.
Full textRoy, Dhrubojyoti, Nayan Mani Das, Mukul Gupta, and P. S. Gupta. "Study of polymorphism of ZnPc LB thin film on annealing." In DAE SOLID STATE PHYSICS SYMPOSIUM 2015. Author(s), 2016. http://dx.doi.org/10.1063/1.4947612.
Full textYamada, I., M. Umeda, Y. Hayashi, T. Soga, and N. Shibata. "Fundamental Study on Organic Solar Cells based on Soluble ZnPc." In 2011 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2011. http://dx.doi.org/10.7567/ssdm.2011.p-10-16.
Full textSenthilarasu, S., R. Sathyamoorthy, K. Kanmani, S. Lalitha, and A. Subbarayan. "Structural, Optical and Electrical Properties of Zinc Phthalocyanine (ZnPc) thin films." In Proceedings of the Symposium F. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704344_0050.
Full textGarasevich, S. G., Victor O. Gubanov, P. Korenyuk, Sergiy Koryakov, A. V. Slobodyanyuk, and Z. A. Yanchuk. "Two-phonon Raman spectra of tetragonal crystals ZnP2, CdP2, and TeO2." In SPIE Proceedings, edited by Galyna O. Puchkovska, Tatiana A. Gavrilko, and Olexandr I. Lizengevich. SPIE, 2004. http://dx.doi.org/10.1117/12.569596.
Full textOpris, Dorina, Martin Molberg, Christiane Lo¨we, Frank Nu¨esch, Christopher Plummer, and Yves Leterrier. "Improved Materials for Dielectric Elastomer Actuators." In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59193.
Full text