Academic literature on the topic 'ZnSnO3'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ZnSnO3.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ZnSnO3"
AN, SOYEON, CHANGHYUN JIN, HYUNSU KIM, SANGMIN LEE, BONGYONG JEONG, and CHONGMU LEE. "SYNTHESIS, STRUCTURE, AND LUMINESCENCE PROPERTIES OF ZnSnO3 NANOWIRES." Nano 07, no. 02 (April 2012): 1250013. http://dx.doi.org/10.1142/s1793292012500130.
Full textMukherjee, Devajyoti, Mahesh Hordagoda, Corisa Kons, Anuja Datta, Sarath Witanachchi, and Pritish Mukherjee. "Measurements of Polarization Switching in LiNbO3-type ZnSnO3/ZnO Nanocomposite Thin Films." MRS Proceedings 1729 (2015): 111–16. http://dx.doi.org/10.1557/opl.2015.264.
Full textZang, G. Z., J. F. Wang, H. C. Chen, W. B. Su, W. X. Wang, P. Qi, and C. M. Wang. "New ZnSnO3-based varistor system." Journal of Materials Science 39, no. 10 (May 2004): 3537–39. http://dx.doi.org/10.1023/b:jmsc.0000026971.47213.2a.
Full textWang, Qiong, Na Yao, Chen Liu, Dongmin An, Yan Li, Yunling Zou, and Xiaoqiang Tong. "Synthesis of Hollow ZnSnO3 Nanospheres with High Ethanol Sensing Properties." Journal of Nanomaterials 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/2381823.
Full textAnucha, Chukwuka Bethel, IIknur Altin, Emin Bacaksiz, Vassilis N. Stathopoulos, Ismail Polat, Ahmet Yasar, and Ömer Faruk Yüksel. "Silver Doped Zinc Stannate (Ag-ZnSnO3) for the Photocatalytic Degradation of Caffeine under UV Irradiation." Water 13, no. 9 (May 4, 2021): 1290. http://dx.doi.org/10.3390/w13091290.
Full textChoi, Kyung Hyun, Ghayas Uddin Siddiqui, Bong-su Yang, and Maria Mustafa. "Synthesis of ZnSnO3 nanocubes and thin film fabrication of (ZnSnO3/PMMA) composite through electrospray deposition." Journal of Materials Science: Materials in Electronics 26, no. 8 (May 20, 2015): 5690–96. http://dx.doi.org/10.1007/s10854-015-3121-1.
Full textDatta, Anuja, Devajyoti Mukherjee, Corisa Kons, Sarath Witanachchi, and Pritish Mukherjee. "Ferroelectricity in Strategically Synthesized Pb-free LiNbO3-type ZnSnO3 Nanostructure Arrayed Thick Films." MRS Proceedings 1729 (2015): 105–10. http://dx.doi.org/10.1557/opl.2015.171.
Full textChoi, Yoon-Young, Han-Ki Kim, Hyun-Woo Koo, Tae-Woong Kim, and Sung-Nam Lee. "Flexible ZnSnO3/Ag/ZnSnO3 multilayer electrodes grown by roll-to-roll sputtering on flexible polyethersulfone substrates." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 29, no. 6 (November 2011): 061502. http://dx.doi.org/10.1116/1.3632999.
Full textLin, Hung-Ming, and Kao-Shuo Chang. "Synergistic piezophotocatalytic and photoelectrochemical performance of poly(vinylidene fluoride)–ZnSnO3 and poly(methyl methacrylate)–ZnSnO3 nanocomposites." RSC Advances 7, no. 49 (2017): 30513–20. http://dx.doi.org/10.1039/c7ra05175a.
Full textFOUAD, O. A., G. GLASPELL, and M. S. EL-SHALL. "STRUCTURAL, OPTICAL AND GAS SENSING PROPERTIES OF ZnO, SnO2 AND ZTO NANOSTRUCTURES." Nano 05, no. 04 (August 2010): 185–94. http://dx.doi.org/10.1142/s1793292010002098.
Full textDissertations / Theses on the topic "ZnSnO3"
Oliveira, Nara Lúcia de. "Síntese e caracterização de SrSnO3 e ZnSnO3 obtidos pelo método de coprecipitação sem e com tratamento hidrotérmico assistido por micro-ondas." Universidade Federal de Goiás, 2018. http://repositorio.bc.ufg.br/tede/handle/tede/8283.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-04-02T12:15:14Z (GMT) No. of bitstreams: 2 Dissertação - Nara Lúcia de Oliveira - 2018.pdf: 3506287 bytes, checksum: 7dcae9c4c0620421fdfd1b8117f3408c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-04-02T12:15:14Z (GMT). No. of bitstreams: 2 Dissertação - Nara Lúcia de Oliveira - 2018.pdf: 3506287 bytes, checksum: 7dcae9c4c0620421fdfd1b8117f3408c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-27
The development of ceramic materials is important for the advancement of new technologies and the emergence of new economically viable materials. Modifying the synthesis method and relating its physical and chemical characteristics to possible industrial applications is part of the improvement process and offers alternatives to current production in improving the final product. In the present work, the synthesis and structural characterization of strontium and zinc stannates by the co-precipitation method, with and without microwave-assisted hydrothermal treatment, was carried out. The interest in the study with the application of the microwaves is in the sense of reducing the time and temperature of obtaining the main phase, perovskite. From the results of X-ray diffraction (XRD) it was possible to identify the formation of strontium and zinc stannates, monophasic after the addition of polyethylene glycol. The strontium stannate perovskite phase was obtained from the methodology with and without hydrothermal treatment assisted by microwave after calcination at 600 ºC for 2 hours. The zinc stannate with perovskite structure was obtained by the methodology with and without hydrothermal treatment assisted by microwaves without calcination. From the UV-VIS results optical values were obtained using Wood and Tauc theory. These values were all compatible with semiconductor materials, values between 2 and 4 eV. The images of the Electronic Transmission Electron Microscopy (ETM) characterization show the formation of nanotubes for the SrSnO3 samples and the cube morphology for the ZnSnO3 sample. The best performance was presented by the sample of ZnSnO3 calcined at 600 ºC, after hydrothermal treatment, presenting by XRD the formation of secondary phases, such as the spinel and rutile structure.
O desenvolvimento de materiais cerâmicos é importante para o avanço de novas tecnologias e o surgimento de novos materiais economicamente viáveis. Modificar o método de síntese e relacionar as suas características físicas e químicas com possíveis aplicações industriais, faz parte do processo de melhoramento e oferece alternativas à produção atual em melhorar o produto final. No presente trabalho realizou-se o estudo da síntese e a caracterização estrutural de estanatos de estrôncio e de zinco pelo método de coprecipitação, sem e com tratamento hidrotérmico assistido por micro-ondas. O interesse no estudo com a aplicação das micro-ondas é no sentido de reduzir o tempo e a temperatura de obtenção da fase principal, perovskita. Dos resultados de Difração de Raios X (DRX) foi possível identificar a formação de estanato de estrôncio e de zinco, monofásico após a adição de polietilenoglicol. O estanato de estrôncio a fase perovskita foi obtida da metodologia com e sem tratamento hidrotérmico assistido por micro-ondas após calcinação a 600 ºC por 2 horas. O estanato de zinco com estrutura perovskita foi obtido pela metodologia com e sem tratamento hidrotérmico assistido por micro-ondas sem calcinação. Dos resultados de UV-VIS foram obtidos valores de “gap” óptico utilizando teoria de Wood e Tauc. Estes valores foram todos compatíveis com materiais semicondutores, valores entre 2 e 4 eV. As imagens da caracterização por Microscopia Eletrônica de Transmissão (MET), mostram a formação de nano-tubos para as amostras de SrSnO3 e a morfologia de cubos para a amostra de ZnSnO3. O melhor desempenho foi apresentado pela amostra de ZnSnO3 calcinada a 600 ºC, após tratamento hidrotérmico, apresentando por DRX a formação fases secundárias, tais como a estrutura espinélio e rutilo.
Alnjiman, Fahad. "ZnSnN2 thin films for photovoltaic applications." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0296/document.
Full textZinc tin nitride (ZnSnN2) thin films have been deposited by reactive magnetron co-sputtering at room temperature. The stoichiometry of the films has been controlled by optimizing the deposition conditions such as the voltage applied to the metallic targets, the deposition pressure and the composition of the gas mixture. By using the optimized parameters, the deposited films are highly crystallized on the different used substrates. A special attention has been devoted to the determination of the film structure. Among the various structures reported in the literature, we have shown by transmission electron microscopy that the films crystallised in a hexagonal structure. Nevertheless, the structure of our films does not fit with that reported in the literature for the hexagonal ZnSnN2 material. In addition to this structural study, we have performed fine characterization using conversion electron Mossbauer spectrometry and X-ray photoemission spectroscopy. Both methods show that the optimized films contain Sn4+ ions in tetrahedral configuration. Nevertheless, oxygen contamination at the column boundaries has been evidenced. The electrical and optical properties of the films have been determined has a function of the film composition. The results obtained in this PhD work clearly evidence that ZnSnN2 is a suitable material for photovoltaic applications
Kons, Corisa. "Synthesis, Characterization and Ferroelectric Properties of LN-Type ZnSnO3 Nanostructures." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5976.
Full textBosson, Christopher John. "Understanding Cu₂ZnSnS₄ as a photovoltaic absorber for the future of solar electricity." Thesis, Durham University, 2018. http://etheses.dur.ac.uk/12586/.
Full textBlanton, Eric Williams. "Characterization and Control of ZnGeN2 Cation Lattice Ordering and a Thermodynamic Model for ZnGeN2-ZnSnN2 Alloy Growth." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1448295996.
Full textNakatsuka, Shigeru. "Fabrication of bulk crystal and thin film of Ⅱ-Ⅳ-Ⅴ2 type compound semiconductor ZnSnP2 for photovoltaic application." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225559.
Full textGangam, Srikanth. "Optical Investigations of Cd Free Cu2ZnSnS4 Solar Cells." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1345088305.
Full textLevalois, Marc. "Etude par diffraction de rayons X de la densité électronique dans les semi-conducteurs GaAs, ZnSiAs, ZnGeAs et ZnSnAs." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37607338k.
Full textWang, Yejiao. "Fabrication of Cu2ZnSnSe4 Thin-film Solar Cells by a Two-stage Process." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6154.
Full textFairbrother, Andrew. "Development of Cu(2)ZnSn(S,Se)(4) based solar cells." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/145615.
Full textEn los últimos años ha habido un rápido desarrollo en las tecnologías de celdas solares basadas en capa delgada, siendo hasta el momento los dispositivos basados en calcopiritas (Cu(In,Ga)Se2) los que han mostrado una mayor eficiencia de conversión fotovoltaica a escala de laboratorio. Sin embargo, y a pesar de tan prometedores resultados, existe una preocupación sobre la viabilidad a medio y largo término de estos materiales debido a la presencia en su composición de elementos relativamente escasos en la corteza terrestre, como son el In y el Ga. Esto ha llevado al desarrollo de tecnologías fotovoltaicas basadas en kesterita (Cu2ZnSn(S,Se)4), que es especialmente prometedora dada su gran similitud con la calcopirita. En este compuesto, el indio y el galio son reemplazados por elementos más abundantes como son el cinc y el estaño. Los valores de eficiencia de los dispositivos aún están por debajo de los del Cu(In,Ga)Se2, pero nuevas investigaciones y técnicas de desarrollo han llevado a importantes avances en los últimos años. A día de hoy, tanto los parámetros de fabricación como la estructura de los dispositivos basados en kesterita han seguido un camino prácticamente idéntico al de las tecnologías basadas en calcopiritas. El objetivo de esta tesis es el de profundizar en el desarrollo de las tecnologías basadas en kesterita, lo que cubre algunos de los retos básicos relacionados con ellas, como son la formación e identificación de fases secundarias o la optimización de las áreas de contacto frontal y posterior. Se ha puesto especial énfasis en la deposición y los procesos térmicos implicados en el crecimiento de este compuesto, y en ver cómo afectan a la posible formación de las fases secundarias y las propiedades del dispositivo. La tesis en sí está estructurada a partir de los diversos estudios publicados en revistas científicas. Dichos estudios incluyen una caracterización detallada por espectroscopia de dispersión Raman, difracción de rayos X, microscopia electrónica de barrido, y otras técnicas. Los puntos principales de este trabajo son: el desarrollo de un ataque químico selectivo para la eliminación del ZnS (una fase secundaria comúnmente presente en este sistema), con la consecuente mejora de las características del dispositivo; la elaboración de un método de sulfo-selenización para la formación de Cu2ZnSn(S,Se)4 a partir de precursores metálicos; y la resolución de cómo influyen los parámetros de los diferentes procesos térmicos en la formación y distribución de las fases.
Books on the topic "ZnSnO3"
The 2006-2011 World Outlook for Zinc Sulfate (100 Percent ZnSO4.H2O). Icon Group International, Inc., 2005.
Find full textBook chapters on the topic "ZnSnO3"
Prabakaran, P., M. Victor Antony Raj, Jobin Job Mathen, S. Prathap, and J. Madhavan. "Hollow ZnSnO3 Crystallites: Structural, Electrical and Optical Properties." In Springer Proceedings in Physics, 255–62. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44890-9_24.
Full textPathan, I. G., D. N. Suryawanshi, A. R. Bari, D. S. Rane, and L. A. Patil. "Preparation and Gas Sensing Properties of Nanostructured ZnSnO3 Thin Films." In Springer Proceedings in Physics, 143–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34216-5_15.
Full textHolze, Rudolf. "Ionic conductance of ZnSO4." In Electrochemistry, 1776–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1591.
Full textGutowski, J., K. Sebald, and T. Voss. "ZnSxO1-x: energy gaps, bowing parameter." In New Data and Updates for III-V, II-VI and I-VII Compounds, 443. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_327.
Full textLaidouci, A., A. Aissat, and J. P. Vilcot. "Simulation and Optimization of Cds/ZnSnN2 Structure for Solar Cell Applications with SCAPS-1D Software." In Lecture Notes in Electrical Engineering, 211–22. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6259-4_21.
Full textWibowo, Rachmat Adhi, W. S. Kim, Badrul Munir, and Kyoo Ho Kim. "Growth and Properties of Stannite-Quaternary Cu2ZnSnSe4 Thin Films Prepared by Selenization of Sputtered Binary Compound Precursors." In Advanced Materials and Processing IV, 79–82. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-466-9.79.
Full textPriya, Alisha, Prashant Kumar, and Shiva Nand Singh. "Optimization of ZnSnO/CIGS Solar Cell with the Incorporation of Cu2O-EBL Layer." In A Collection of Contemporary Research Articles in Electronics, Communication and Computation, 355. Mantech Publications, 2021. http://dx.doi.org/10.47531/mantech/ecc.2021.54.
Full textMockett, Robin I., William C. Orr, and Rajindar S. Sohal. "Overexpression of Cu,ZnSOD and MnSOD in transgenic Drosophila." In Methods in Enzymology, 213–20. Elsevier, 2002. http://dx.doi.org/10.1016/s0076-6879(02)49336-6.
Full textCarmela, Maria, Bonaccorsi Di Patti, Anna Giartosio, Giuseppe Rotilio, and Andrea Battistoni. "[5] Analysis of Cu,ZnSOD conformational stability by differential scanning calorimetry." In Methods in Enzymology, 49–61. Elsevier, 2002. http://dx.doi.org/10.1016/s0076-6879(02)49320-2.
Full textEmerit, Ingrid, Paulo Filipe, Joao Freitas, Alfonso Fernandes, Frédéric Garban, and Jany Vassy. "Assaying binding capacity of Cu,ZnSOD and MnSOD: Demonstration of their localization in cells and tissues." In Methods in Enzymology, 321–27. Elsevier, 2002. http://dx.doi.org/10.1016/s0076-6879(02)49347-0.
Full textConference papers on the topic "ZnSnO3"
Para, Touseef Ahmad, Hilal Ahmad Reshi, and Vilas Shelke. "Synthesis of ZnSnO3 nanostructure by sol gel method." In DAE SOLID STATE PHYSICS SYMPOSIUM 2015. Author(s), 2016. http://dx.doi.org/10.1063/1.4947656.
Full textDeepa, K., S. Lilly Angel, N. Rajamanickam, K. Jayakumar, and K. Ramachandran. "Structural and dielectric studies on Ag doped nano ZnSnO3." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5028639.
Full textPathan, Idris G., Dinesh N. Suryawanshi, Anil R. Bari, and Lalchand A. Patil. "Effect of iron doping on structural and microstructural properties of nanocrystalline ZnSnO3 thin films prepared by spray pyrolysis techniques." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032450.
Full textBhattacharya, Anannya, Susomon Dutta, Sreeparna Paul, Subhrajit Sikdar, and Sanatan Chattopadhyay. "Growth of ZnSnO3 nano-crystalloids on Sisubstrate by employing chemical bath deposition (CBD) technique for self-powered UV-light sensing applications." In 2020 International Symposium on Devices, Circuits and Systems (ISDCS). IEEE, 2020. http://dx.doi.org/10.1109/isdcs49393.2020.9262987.
Full textJayatunga, Benthara Hewage Dinushi, Md Rezaul Karim, Menglin Zhu, Jinwoo Hwang, Hongping Zhao, and Kathleen Kash. "MOCVD Growth and Characterization of ZnSnN2." In 62nd Electronic Materials Conference June 24-26, 2020 Virtual. US DOE, 2020. http://dx.doi.org/10.2172/1677510.
Full textZhao, T. S., C. Zhao, C. Z. Zhao, W. Y. Xu, L. Yang, I. Z. Mitrovic, S. Hall, E. G. Lim, and S. C. Yu. "Solution Processed ZnSnO Thin-film Transistors with Peroxide- Aluminum Oxide Dielectric." In 2019 International Conference on IC Design and Technology (ICICDT). IEEE, 2019. http://dx.doi.org/10.1109/icicdt.2019.8790915.
Full textMakin, Robert A., Krystal York, Nancy Senabulyay, James Mathisy, Roy Clarkey, Nathaniel Feldbergz, Patrice Miska, et al. "Order Parameter and Band Gap of ZnSnN2." In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8548103.
Full textMaeda, T., S. Nakamura, and T. Wada. "First principles calculations of defect formation in In-free photovoltaic semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4." In 2010 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2010. http://dx.doi.org/10.7567/ssdm.2010.k-5-2.
Full textMopurisetty, Sundara Murthy, Mohit Bajaj, and Swaroop Ganguly. "Predictive TCAD of Cu2 ZnSnS4(CZTS) Solar Cells." In 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2018. http://dx.doi.org/10.1109/sispad.2018.8551619.
Full textHuzenko, O. I., O. A. Dobrozhan, D. I. Kurbatov, and A. S. Opanasyuk. "Ag, ZnO, Cu2 ZnSnS4 Nanoinks for Printed Electronics." In 2018 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). IEEE, 2018. http://dx.doi.org/10.1109/ukrmico43733.2018.9047591.
Full text