To see the other types of publications on this topic, follow the link: ZnxCd1-xS films.

Journal articles on the topic 'ZnxCd1-xS films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'ZnxCd1-xS films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Reddy, K. T. Ramakrishna, and P. Jayarama Reddy. "Studies of ZnxCd1-xS films and ZnxCd1-xS/CuGaSe2heterojunction solar cells." Journal of Physics D: Applied Physics 25, no. 9 (1992): 1345–48. http://dx.doi.org/10.1088/0022-3727/25/9/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Latif, Humaira, Rehana Zia, Muneeb Irshad, and Huma Latif. "OPTICAL AND STRUCTURAL PROPERTIES OF ZnxCd1-xS (X=0.2, 0.4, 0.6 AND 0.8)." International Journal for Innovation Education and Research 1, no. 4 (2013): 30–46. http://dx.doi.org/10.31686/ijier.vol1.iss4.124.

Full text
Abstract:
Thin films of ZnxCd1-xS (x=0.2, 0.4, 0.6 and 0.8) were deposited on cleaned soda lime glass substrates at room temperature by thermal evaporation technique, having source current 50-65 Ampere, chamber pressure 10-5Torr and deposition rate 0.4 nm/sec. These conditions were same for all the thin films having different zinc concentrations. UV-VIS Spectrophotometry was used to study the optical properties of thin films of ZnxCd1-xS in room temperature. XRD was used to study the structure of the thin films of ZnxCd1-xS having various composition of „x‟. UV-VIS studies revealed that as the concentra
APA, Harvard, Vancouver, ISO, and other styles
3

Rasulov, D. T. "Electrical properties of ZnxCd1−xS films." Physica Status Solidi (a) 101, no. 2 (1987): K139—K142. http://dx.doi.org/10.1002/pssa.2211010251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Torres, J., and G. Gordillo. "Photoconductors based on ZnxCd1−xS thin films." Thin Solid Films 207, no. 1-2 (1992): 231–35. http://dx.doi.org/10.1016/0040-6090(92)90129-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shimaoka, G., and Y. Suzuki. "Preparation and optical properties of ZnxCd1 − xS films." Applied Surface Science 113-114 (April 1997): 528–33. http://dx.doi.org/10.1016/s0169-4332(96)00935-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

El Akkad, F., H. F. Ragaie, and M. Abdel Naby. "Properties of RF sputtered ZnxCd1?xS thin films." Applied Physics A Solids and Surfaces 48, no. 5 (1989): 493–95. http://dx.doi.org/10.1007/bf00619724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abbas, Nada K., Ahlam M. Farhan, Naan F. Majeed, and Suaad A. Muhameed. "Structural and optical properties Investigation of ZnxCd1-xS thin films." JOURNAL OF ADVANCES IN CHEMISTRY 12, no. 3 (2016): 4265–73. http://dx.doi.org/10.24297/jac.v12i3.2167.

Full text
Abstract:
CdZnXS1-X thin films with different composition have been deposited on glass substrate by by the spray pyrolysis method at RT using CdCl2 (0.1M),ZnCl2(0.1M)and H2NCSNH2(0.1M)solution and a substrate temperature of ( 400±20°C). X-ray diffraction studies reveal that the films are polycrystalline in nature with hexagonal structure and preferential orientation along (002) . The grain size of the films is found to increase form (37.397 to 46.902) nm with increasing Zinc concentration while the strain and the dislocation density of the films are found to decrease from (7.15 to 4.54) 10 4 rad and fro
APA, Harvard, Vancouver, ISO, and other styles
8

Rodriguez, J. A., and G. Gordillo. "Study of electrical properties in ZnxCd1−xS thin films." Solar Energy Materials 19, no. 6 (1989): 421–31. http://dx.doi.org/10.1016/0165-1633(89)90037-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eleruja, M. A., A. V. Adedeji, I. A. O. Ojo, et al. "Optical characterization of pyrolytically deposited ZnxCd1−xS thin films." Optical Materials 10, no. 4 (1998): 257–63. http://dx.doi.org/10.1016/s0925-3467(97)00178-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Padam, G. K., G. L. Malhotra, and S. U. M. Rao. "Studies on solution‐grown thin films of ZnxCd1−xS." Journal of Applied Physics 63, no. 3 (1988): 770–74. http://dx.doi.org/10.1063/1.340069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

GORDILLO, G. "Photoluminescence and photoconductivity studies on ZnxCd1−xS thin films." Solar Energy Materials and Solar Cells 25, no. 1-2 (1992): 41–49. http://dx.doi.org/10.1016/0927-0248(92)90015-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kuroyanagi, Akio. "ZnxCd1−xS thin films grown by ion-beam deposition." Thin Solid Films 249, no. 1 (1994): 91–94. http://dx.doi.org/10.1016/0040-6090(94)90091-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Łepek, M., and B. Dogil. "Studies on Mn2+ in Thin Films of ZnxCd1−xS." Crystal Research and Technology 21, no. 7 (1986): K127—K130. http://dx.doi.org/10.1002/crat.2170210739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

SHIMAOKA, Goro, and Yoshiko SUZUKI. "Preparation of ZnxCd1-xS solid-solution films and their optical properties." SHINKU 28, no. 2 (1985): 82–86. http://dx.doi.org/10.3131/jvsj.28.82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Boratto, Miguel H., Alexandro A. Linhares, Mirko Congiu, et al. "Cu2+ cation-exchange in ZnxCd1-xS thin films for neuromorphic devices." Applied Surface Science 537 (January 2021): 147921. http://dx.doi.org/10.1016/j.apsusc.2020.147921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ghafor, W. A. S. Abdul, and K. S. Majdi. "Optical properties of ZnxCd1-xS thin films prepared by the sputtering technique." Journal of Physics: Condensed Matter 2, no. 31 (1990): 6619–22. http://dx.doi.org/10.1088/0953-8984/2/31/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tosun, B. Selin, Chelsea Pettit, Stephen A. Campbell, and Eray S. Aydil. "Structure and Composition of ZnxCd1–xS Films Synthesized through Chemical Bath Deposition." ACS Applied Materials & Interfaces 4, no. 7 (2012): 3676–84. http://dx.doi.org/10.1021/am300771k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Liping, Yujie Sun, and Xiaofei Yang. "Fabrication and characterization of ZnxCd1−xS nanoparticles in chitosan alginate nanocomposite films." Ceramics International 40, no. 3 (2014): 4869–73. http://dx.doi.org/10.1016/j.ceramint.2013.09.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Edamura, Tadataka, and Jun'ichiro Muto. "Preparation and properties of electrodeposited ternary CdSxSe1-x and ZnxCd1-xS films." Thin Solid Films 226, no. 1 (1993): 135–39. http://dx.doi.org/10.1016/0040-6090(93)90218-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mahashabde, Jyoti P., Sandip P. Patil, Jaywant P. Sonawane, Madhav S. Wagh, and Arun M. Patil. "Synthesis and Photoluminescence Characteristics of ZnxCd1-xS Thick Films Prepared by Flux Technique." JOURNAL OF SCIENTIFIC RESEARCH 65, no. 07 (2021): 129–34. http://dx.doi.org/10.37398/jsr.2021.650728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Riaz, Saira, A. Sajid, M. A. Jamil, and Shahzad Naseem. "Optical and Structural Properties of Evaporated ZnxCd1−xS (0 ≤ x ≤ 1) Thin Films." Advanced Science Letters 19, no. 3 (2013): 719–25. http://dx.doi.org/10.1166/asl.2013.4812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Barman, Biswajit, Kasturi V. Bangera, and G. K. Shivakumar. "ZnxCd1-xS thin films: A study towards its application as a reliable photodetector." Superlattices and Microstructures 137 (January 2020): 106349. http://dx.doi.org/10.1016/j.spmi.2019.106349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Reinsperger, G. U., F. Schwabe, and B. Selle. "Nondestructive analysis of thin ZnxCd1–xS films by Rutherford backscattering and optical measurements." physica status solidi (a) 88, no. 2 (1985): 745–51. http://dx.doi.org/10.1002/pssa.2210880242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

F. Mohammad, Jamal, and Hamed S. Al-jumaili. "Electrical properties of Nano crystalline ZnxCd1-xS thin films prepared by CBD technique." Engineering and Technology Journal 33, no. 7B (2015): 1267–72. http://dx.doi.org/10.30684/etj.2015.116692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

., L. A. Patil, A. M. Patil ., and M. S. Wagh . "Structural Properties of Screen Printed Thick Films of ZnxCd1-xS Prepared by Flux Technique." Trends in Applied Sciences Research 1, no. 4 (2006): 362–67. http://dx.doi.org/10.3923/tasr.2006.362.367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Torres, J., and G. Gordillo. "Photoconductors based on ZnxCd1−xS and CdSe1−ySy thin films, fabricated with multilayer structure." Thin Solid Films 310, no. 1-2 (1997): 310–16. http://dx.doi.org/10.1016/s0040-6090(97)00356-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Wenzhong, Wei Zhu, and Haolan Xu. "Monodisperse, Mesoporous ZnxCd1−xS Nanoparticles as Stable Visible-Light-Driven Photocatalysts." Journal of Physical Chemistry C 112, no. 43 (2008): 16754–58. http://dx.doi.org/10.1021/jp805359r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Torres, J., J. I. Cisneros, G. Gordillo, and F. Alvarez. "A simple method to determine the optical constants and thicknesses of ZnxCd1−xS thin films." Thin Solid Films 289, no. 1-2 (1996): 238–41. http://dx.doi.org/10.1016/s0040-6090(96)08931-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

ABDELNABY, M., A. ZEKRY, F. ELAKKAD, and H. RAGAIE. "Dependence of dark current on zinc concentration in ZnxCd1−xS/ZnTe heterojunctions." Solar Energy Materials and Solar Cells 29, no. 2 (1993): 97–108. http://dx.doi.org/10.1016/0927-0248(93)90067-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Song, Woo-Chang, and Jae-Hyeong Lee. "Growth and Characterization of ZnxCd1-xS Films Prepared by Using Chemical Bath Deposition for Photovoltaic Devices." Journal of the Korean Physical Society 54, no. 4 (2009): 1660–65. http://dx.doi.org/10.3938/jkps.54.1660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

., A. M. Patil, and L. A. Patil . "Optical Properties of Screen Printed Thick Films of ZnxCd1-XS Solid Solutions Prepared by Flux Technique." Trends in Applied Sciences Research 1, no. 6 (2006): 645–49. http://dx.doi.org/10.3923/tasr.2006.645.649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Barman, Biswajit, Kasturi V. Bangera, and G. K. Shivakumar. "A comprehensive study on the structural, morphological, compositional and optical properties of ZnxCd1−xS thin films." Materials Research Express 6, no. 12 (2020): 126441. http://dx.doi.org/10.1088/2053-1591/ab5df0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kumar, Bhaskar, Parag Vasekar, Shirish A. Pethe, Neelkanth G. Dhere, and Galymzhan T. Koishiyev. "ZnxCd1−xS as a heterojunction partner for CuIn1−xGaxS2 thin film solar cells." Thin Solid Films 517, no. 7 (2009): 2295–99. http://dx.doi.org/10.1016/j.tsf.2008.10.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hossain, M. S., M. A. Islam, Q. Huda, et al. "Growth optimization of ZnxCd1−xS thin films by radio frequency magnetron co-sputtering for solar cell applications." Thin Solid Films 548 (December 2013): 202–9. http://dx.doi.org/10.1016/j.tsf.2013.09.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhang, Chenyang, Wanni Wang, Mengli Zhao, et al. "Construction of ZnxCd1−xS/Bi2S3 composite nanospheres with photothermal effect for enhanced photocatalytic activities." Journal of Colloid and Interface Science 546 (June 2019): 303–11. http://dx.doi.org/10.1016/j.jcis.2019.03.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Li, Wenjuan, Danzhen Li, Zhixin Chen, et al. "High-efficient Degradation of Dyes by ZnxCd1−xS Solid Solutions under Visible Light Irradiation." Journal of Physical Chemistry C 112, no. 38 (2008): 14943–47. http://dx.doi.org/10.1021/jp8049075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mahdi, M. A., Z. Hassan, J. J. Hassan, S. S. Ng, and S. J. Kasim. "Preparation and characterization of ZnxCd1−xS ternary alloys micro/nanostructures grown by thermal evaporation." Materials Research Express 2, no. 1 (2014): 016501. http://dx.doi.org/10.1088/2053-1591/2/1/016501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

K. Abbas, Nada, Lamia K. Abbas, and Suaad A-Muhameed. "Effect Of Thickness On Structural And Optical Properties Of ZnxCd1-xS Thin Films Prepared By Chemical Spray Pyrolysis." International Journal of Thin Films Science and Technology 2, no. 2 (2013): 127–32. http://dx.doi.org/10.12785/ijtfst/020208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hou, Linrui, Caifeng Wang, Li Chen, and Su Chen. "pH-Controlled interfacial assembly and disassembly of highly luminescent blue emitting ZnxCd1−xS/dodecylamine complexes." Journal of Colloid and Interface Science 349, no. 2 (2010): 626–31. http://dx.doi.org/10.1016/j.jcis.2010.05.090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ouyang, Jianying, Christopher I. Ratcliffe, David Kingston, et al. "Gradiently Alloyed ZnxCd1-xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach." Journal of Physical Chemistry C 112, no. 13 (2008): 4908–19. http://dx.doi.org/10.1021/jp710852q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fang, Zheng, Lu Liu, Jian Wang, and Xinhua Zhong. "Depositing a ZnxCd1−xS Shell around CdSe Core Nanocrystals via a Noninjection Approach in Aqueous Media." Journal of Physical Chemistry C 113, no. 11 (2009): 4301–6. http://dx.doi.org/10.1021/jp809653c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kim, Mee Rahn, Sun-Young Park, and Du-Jeon Jang. "Composition Variation and Thermal Treatment of ZnxCd1−xS Alloy Nanoparticles to Exhibit Controlled and Efficient Luminescence." Journal of Physical Chemistry C 114, no. 14 (2010): 6452–57. http://dx.doi.org/10.1021/jp100834f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Luo, Xiang, Xunyi Zhou, and Song Wei. "Ionic liquid-assisted green solution approach for high-performance full-color emission quantum dot films of Ag-doped ZnxCd1−xS." Inorganic Chemistry Communications 149 (March 2023): 110421. http://dx.doi.org/10.1016/j.inoche.2023.110421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhao, Sheng, Jing Xu, Min Mao, Lingjiao Li, and Xuanhao Li. "NiCo2S4@Zn0.5Cd0.5S with direct Z-scheme heterojunction constructed by band structure adjustment of ZnxCd1-xS for efficient photocatalytic H2 evolution." Applied Surface Science 528 (October 2020): 147016. http://dx.doi.org/10.1016/j.apsusc.2020.147016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cao, Bingqian, Shipeng Wan, Yanan Wang, Haiwei Guo, Man Ou, and Qin Zhong. "Highly-efficient visible-light-driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/ZnxCd1-xS photocatalyst." Journal of Colloid and Interface Science 605 (January 2022): 311–19. http://dx.doi.org/10.1016/j.jcis.2021.07.113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Li, Hongying, Xuqiang Hao, Yang Liu, Yanbing Li, and Zhiliang Jin. "ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution." Journal of Colloid and Interface Science 572 (July 2020): 62–73. http://dx.doi.org/10.1016/j.jcis.2020.03.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ghosh, Batu, and Amlan J. Pal. "Transport Gap vis-à-vis Electrical Bistability of Alloyed ZnxCd1−xS (x = 0 to 1) Quantum Dots." Journal of Physical Chemistry C 114, no. 32 (2010): 13583–88. http://dx.doi.org/10.1021/jp1048056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chen, Yiqing, Xinhua Zhang, Chong Jia, Yong Su, and Qiang Li. "Synthesis and Characterization of ZnS, CdS, and Composition-Tunable ZnxCd1−xS Alloyed Nanocrystals via a Mix-Solvothermal Route." Journal of Physical Chemistry C 113, no. 6 (2009): 2263–66. http://dx.doi.org/10.1021/jp8091122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hossain, M. S., K. S. Rahman, M. A. Islam, et al. "Growth optimization of ZnxCd1-xS films on ITO and FTO coated glass for alternative buffer application in CdTe thin film solar cells." Optical Materials 86 (December 2018): 270–77. http://dx.doi.org/10.1016/j.optmat.2018.09.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zia, Rehana, Farhat Saleemi, and Shahzad Naseem. "Dependence of optical, structural and electrical properties of ZnxCd1–xS thin films prepared by co-evaporation on the composition forx= 0 – 1." International Journal of Materials Research 101, no. 2 (2010): 316–20. http://dx.doi.org/10.3139/146.110265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!