Academic literature on the topic 'Zone vadose'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Zone vadose.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Zone vadose"
Liu, Fan, Guanghui Jiang, Jia Wang, and Fang Guo. "The Recharge Process and Influencing Meteorological Parameters Indicated by Cave Pool Hydrology in the Bare Karst Mountainous Area." Sustainability 13, no. 4 (February 6, 2021): 1766. http://dx.doi.org/10.3390/su13041766.
Full textQi, Tiansong, Longcang Shu, Hu Li, Xiaobo Wang, Yanqing Men, and Portia Annabelle Opoku. "Water Distribution from Artificial Recharge via Infiltration Basin under Constant Head Conditions." Water 13, no. 8 (April 12, 2021): 1052. http://dx.doi.org/10.3390/w13081052.
Full textPanda, Banajarani, and Chidambaram S. "Influence of the vadose zone on groundwater pollution - A review." International Journal of Civil, Environmental and Agricultural Engineering 1, no. 1 (May 30, 2019): 41–44. http://dx.doi.org/10.34256/ijceae1916.
Full textSkopp, J. "Vadose Zone Hydrology." Journal of Environmental Quality 31, no. 3 (May 2002): 1042–43. http://dx.doi.org/10.2134/jeq2002.1042a.
Full textAnonymous. "Vadose zone monitoring." Eos, Transactions American Geophysical Union 69, no. 46 (1988): 1570. http://dx.doi.org/10.1029/88eo01190.
Full textCui, Tao. "Vertical Zonation in Penecontemporaneous Period of the Bauxite in WZD Area." Advanced Materials Research 989-994 (July 2014): 1380–83. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.1380.
Full textTesfaldet, Yacob T., and Avirut Puttiwongrak. "Seasonal Groundwater Recharge Characterization Using Time-Lapse Electrical Resistivity Tomography in the Thepkasattri Watershed on Phuket Island, Thailand." Hydrology 6, no. 2 (May 5, 2019): 36. http://dx.doi.org/10.3390/hydrology6020036.
Full textLiu, Rui-Ping, Fei Liu, Ping-Ping Sun, El-Wardany R.M., Ying Dong, Yi-Bing Zhang, Hua-Qing Chen, and Jian-Gang Jiao. "Research Progress of Microplastic Pollution in the Vadose Zone." Water 14, no. 21 (November 7, 2022): 3586. http://dx.doi.org/10.3390/w14213586.
Full textBarkle, Greg, Tim Clough, and Roland Stenger. "Denitrification capacity in the vadose zone at three sites in the Lake Taupo catchment, New Zealand." Soil Research 45, no. 2 (2007): 91. http://dx.doi.org/10.1071/sr06141.
Full textBaram, S., Z. Ronen, D. Kurtzman, C. Külls, and O. Dahan. "Desiccation-crack-induced salinization in deep clay sediment." Hydrology and Earth System Sciences 17, no. 4 (April 22, 2013): 1533–45. http://dx.doi.org/10.5194/hess-17-1533-2013.
Full textDissertations / Theses on the topic "Zone vadose"
Zhang, Jing. "Modeling considerations for vadose zone soil moisture dynamics." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0001982.
Full textAusland, Hayden Willis. "Vadose zone denitrification enhancement by poplars during dormancy." Thesis, University of Iowa, 2014. https://ir.uiowa.edu/etd/4566.
Full textDickinson, Jesse, and Jesse Dickinson. "Filtering of Cyclical Infiltration Forcings in the Vadose Zone." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/623171.
Full textNakajima, Hideo. "Centrifuge modeling of LNAPL movement in the vadose zone /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Full textRossi, Matteo. "Non invasive hydrogeophysical techniques for vadose zone hydrological characterization." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427485.
Full textL’idrogeofisica è una disciplina che è emersa ed ha avuto un importante sviluppo nelle ultime due decadi. Lo scopo di questa disciplina è la caratterizzazione idrologica ed idrogeologica del sottosuolo attraverso tecniche geofisiche non invasive. Le tecniche di campionamento convenzionali sono di norma spazialmente distribuite ed acquisite ad una scala impropria. Le tecniche geofisiche invece permettono indagini spazialmente più fitte in 2D o 3D. Il presente lavoro si focalizza sulla caratterizzazione idrologica della zona vadosa. I dati ottenuti dalle tecniche geofisiche possono essere utilizzati per calibrare modelli fisico matematici del flusso nella zona del non-saturo. Tale approccio idrogeofisico è basato su relazioni petrofisiche che legano le quantità geofisiche con le variabili idrologiche. Il classico approccio idrogeofisico parte dalle misure geofisiche per ottenere una stima di parametri idrologici, che a loro volta vengono impiegati in modelli idraulici in grado di fornire ulteriori proprietà del sistema idraulico del sottosuolo. I modelli idrologici vengono successivamente validati e calibrati con i risultati delle inversioni geofisiche in time-lapse. Questo approccio prevede l’inversione del dato geofisico, metodo che può portare ad immagini del sottosuolo che contengono artefatti e che non tengono conto della risoluzione della tecnica applicata. Un approccio differente prevede che ai parametri stimati dai modelli idraulici siano applicate le relazioni petrofisiche, al fine di tradurre le quantità idrologiche in quantità geofisiche. A questo punto la simulazione di modelli geofisici diretti permette un confronto immediato con i dati misurati, senza l’ausilio dell’inversione geofisica. Il presente lavoro è suddiviso in due parti. La prima parte è centrata sulla caratterizzazione idrologica dello stato stazionario iniziale attraverso misure radar (GPR). Lo scopo principale del lavoro è quello di quantificare quanto le misure GPR a zero offset profiling (ZOP) siano informative delle geometrie del sottosuolo e delle relative condizioni di contenuto idraulico dei materiali. Questo lavoro è essenziale per ottenere una stima del contenuto idrico del sottosuolo e della relativa incertezza che ne deriva, poiché tali stime sono il punto di partenza delle simulazioni idrauliche. La seconda parte del lavoro è focalizzata sulla inversione idrogeofisica di un test con tracciante salino condotto ad Hatfield (UK). L’approccio idrogeofisico adottato è quello di simulare misure geofisiche direttamente dalla distribuzione dei parametri idrologici calcolati, per ottenere una calibrazione di quelle quantità idrologiche scopo della metodologia applicata. La ricostruzione dell’evoluzione di un plume iniettato nella zona vadosa è interessante ai fini di identificare i possibili percorsi di un contaminante nel sottosuolo. A tale scopo un codice di particle tracking è stato applicato ai risultati dell’inversione idrologica. Il codice di partcle tracking è in grado di distinguere i percorsi dell’acqua iniettata dall’acqua già presente nel sistema e movimentata del cambiamento di pressione in atto, ‘effetto pistone’. Le inversioni delle misure geofisiche non permettono di distinguere il fluido tracciante dai cambiamenti del contenuto idrico dei materiali adiacenti al plume iniettato.
Lookingbill, Scott David, and Scott David Lookingbill. "Effects of concentration-dependent surface tension on vadose zone instrumentation." Thesis, The University of Arizona, 1997. http://hdl.handle.net/10150/626774.
Full textUnc, Adrian. "Transport of faecal bacteria from manure through the vadose zone." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ40445.pdf.
Full textBashir, Rashid Smith James E. Stolle Dieter. "Quantification of surfactant-induced unsaturated flow in the vadose zone." *McMaster only, 2007.
Find full textDippenaar, Matthys Alois. "Assessment of vadose zone hydrology : concepts, methods, applications and guidelines." Thesis, University of Pretoria, 2014. http://hdl.handle.net/2263/43319.
Full textThesis (PhD)--University of Pretoria, 2014.
lk2014
Geology
PhD
Unrestricted
Patton, Erik Mark. "Modeling vadose zone wells and infiltration basins to compare recharge efficiency in unconfined aquifers." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/38217.
Full textDepartment of Geology
Saugata Datta
In specific lithologic and hydrogeological settings, Managed Aquifer Recharge (MAR) projects using vadose zone wells have the potential to outperform infiltration basins in terms of volume of water recharged. Numerical modeling can assist in determining which recharge method is most efficient in infiltrating water to unconfined alluvial aquifers of differing unsaturated zone lithologic complexities. The Sagamore Lens Aquifer (SLA) in Cape Cod, Massachusetts is an example of an aquifer with minimal lithologic complexity while the Hueco Bolson Aquifer (HBA) near El Paso, Texas has greater lithologic complexity. This research combines two U.S. Geological Survey numerical models to simulate recharge from infiltration basins and vadose wells at these two locations. VS2DTI, a vadose zone model, and MODFLOW-2005, a saturated zone model, were run sequentially at both sites and with both vadose well and infiltration basin recharge methods simulated. Results were compared to determine the relative effectiveness of each method at each location and to determine the effects of vadose zone complexity on recharge. At the HBA location, soil samples were tested for conductivity and grain size distribution and a microgravity survey was begun to constrain the models. The infiltration basin structure proved to be more efficient, infiltrating more water volume at both locations. Lithologic complexity formed perched conditions in the HBA model, significantly affecting infiltration rates from both infiltration methods at that location. Methods and conclusion from this study can assist in the modeling and design of future MAR projects, especially in locations with thick or lithologically complex vadose zones.
Books on the topic "Zone vadose"
Nielsen, DM, and AI Johnson, eds. Ground Water and Vadose Zone Monitoring. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1990. http://dx.doi.org/10.1520/stp1053-eb.
Full textBar-Yosef, Bnayahu, N. J. Barrow, and J. Goldshmid, eds. Inorganic Contaminants in the Vadose Zone. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74451-8.
Full text1929-, Wilson L. G., Everett Lorne G, and Cullen Stephen J, eds. Handbook of vadose zone characterization & monitoring. Boca Raton: Lewis Publishers, 1995.
Find full textC, Hern S., and Melancon S. M, eds. Vadose zone modeling of organic pollutants. Chelsea, Mich: Lewis Publishers, 1986.
Find full textNational Risk Management Research Laboratory (U.S.), Center for Remediation Technology and Tools (U.S.), and Dynamac Corporation, eds. Estimation of infiltration rate in the vadose zone. Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1998.
Find full textKogovšek, Janja. Characteristics of percolation through the karst vadose zone. Ljubljana: Založba ZRC, 2010.
Find full textNielsen, DM, and MN Sara, eds. Current Practices in Ground Water and Vadose Zone Investigations. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1992. http://dx.doi.org/10.1520/stp1118-eb.
Full textRitchey, JD, and JO Rumbaugh, eds. Subsurface Fluid-Flow (Ground-Water and Vadose Zone) Modeling. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1996. http://dx.doi.org/10.1520/stp1288-eb.
Full textDavid, Nielsen, and Sara Martin N. 1946-, eds. Current practices in ground water and vadose zone investigations. Philadelphia: ASTM, 1992.
Find full textBook chapters on the topic "Zone vadose"
Everett, Lorne G. "Vadose zone monitoring." In Geotechnical Practice for Waste Disposal, 651–75. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3070-1_24.
Full textMathias, Simon A. "Vadose Zone Processes." In Hydraulics, Hydrology and Environmental Engineering, 373–403. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-41973-7_17.
Full textKing, R. Barry, Gilbert M. Long, and John K. Sheldon. "Vadose Zone Bioremediation." In Practical Environmental Bioremediation, 153–60. 2nd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003421269-11.
Full textSurbeck, Cristiane Q., and Jeff Kuo. "Vadose Zone Soil Remediation." In Site Assessment and Remediation for Environmental Engineers, 121–72. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021. |: CRC Press, 2021. http://dx.doi.org/10.1201/9780429427107-5.
Full textMaliva, Robert G. "Vadose Zone Testing Techniques." In Springer Hydrogeology, 287–305. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11084-0_10.
Full textMaliva, Robert G. "Vadose Zone Infiltration Systems." In Springer Hydrogeology, 567–601. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11084-0_17.
Full textMaliva, Robert G. "Vadose Zone Hydrology Basics." In Springer Hydrogeology, 43–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11084-0_3.
Full textShukla, Manoj K. "Water in the Vadose Zone." In Soil Physics, 117–56. 2nd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429264849-8.
Full textShukla, Manoj K. "Flow through the Vadose Zone." In Soil Physics, 157–86. 2nd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429264849-9.
Full textShukla, Manoj K. "Airflow through the Vadose Zone." In Soil Physics, 287–96. 2nd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429264849-14.
Full textConference papers on the topic "Zone vadose"
Triplett, Mark B., Mark D. Freshley, Michael J. Truex, Dawn M. Wellman, Kurt D. Gerdes, Briant L. Charboneau, John G. Morse, Robert W. Lober, and Glen B. Chronister. "Integrated Strategy to Address Hanford’s Deep Vadose Zone Remediation Challenges." In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40262.
Full textShuangping, Han, and Jing Jihong. "Soil Solution Extraction Technic in Vadose Zone." In 2009 International Conference on Energy and Environment Technology. IEEE, 2009. http://dx.doi.org/10.1109/iceet.2009.593.
Full textMikula, J. Bradley, Shirley E. Clark, Brett V. Long, and Daniel P. Treese. "Vadose Zone Modeling Applied to Stormwater Infiltration." In World Environmental and Water Resources Congress 2007. Reston, VA: American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40927(243)14.
Full textJansik, Danielle, Dawn M. Wellman, Shas V. Mattigod, Lirong Zhong, Yuxin Wu, Martin Foote, Fred Zhang, and Susan Hubbard. "Foam: Novel Delivery Technology for Remediation of Vadose Zone Environments." In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59019.
Full textMikula, J. B., S. E. Clark, and K. H. Baker. "Applying a Vadose Zone Model to Stormwater Infiltration." In World Environmental and Water Resources Congress 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40856(200)379.
Full textSchroeder, Paul R., and Nadim M. Aziz. "Effect of Vadose Zone on CDF Leachate Concentration." In Third Specialty Conference on Dredging and Dredged Material Disposal. Reston, VA: American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/40680(2003)33.
Full textWellman, Dawn M., Shas V. Mattigod, Susan Hubbard, Ann Miracle, Lirong Zhong, Martin Foote, Yuxin Wu, and Danielle Jansik. "Advanced Remedial Methods for Metals and Radionuclides in Vadose Zone Environments." In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40235.
Full textHahesy, Paula, Graham Heinson, Anthony L. Endres, and John L. Hutson. "Geophysical Signature of Moisture Distributions in the Vadose Zone." In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2000. Environment and Engineering Geophysical Society, 2000. http://dx.doi.org/10.4133/1.2922749.
Full textIndraratna, B., B. Fatahi, and H. Khabbaz. "Numerical Prediction of Vadose Zone Behaviour Influenced by Vegetation." In Fourth International Conference on Unsaturated Soils. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40802(189)191.
Full textHahesy, Paula, Graham Heinson, Anthony L. Endres, and John L. Hutson. "Geophysical Signature Of Moisture Distributions In The Vadose Zone." In 13th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists & Engineers, 2000. http://dx.doi.org/10.3997/2214-4609-pdb.200.2000_029.
Full textReports on the topic "Zone vadose"
Springer, Sarah D. Central Plateau Vadose Zone Geoframework. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1603767.
Full textCarrigan, C. R. Dynamics of Vadose Zone Transport: a Field and Modeling Study using the Vadose Zone Observatory. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/15001983.
Full textButcher, B. T. Vadose zone flow convergence test suite. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1361662.
Full textEfurd, D. W. Vadose zone drilling at the NTS. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/145322.
Full textCarrigan, Charles R. The Dynamics of Vadose Zone Transport: A Field and Modeling Study Using the Vadose Zone Observatory. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/833625.
Full textGee, Glendon W., and Anderson L. Ward. Vadose Zone Transport Field Study: Status Report. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/789919.
Full textWard, Andy L., Mark E. Conrad, William D. Daily, James B. Fink, Vicky L. Freedman, Glendon W. Gee, Gary M. Hoversten, et al. Vadose Zone Transport Field Study: Summary Report. Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/889068.
Full textGee, Glendon W., and Anderson L. Ward. Vadose Zone Transport Field Study: Status Report. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/965668.
Full textKupar, J., T. R. Jarosch, D. G. Jr Jackson, B. B. Looney, K. M. Jerome, B. D. Riha, J. Rossabi, and R. S. Van Pelt. A/M Area Vadose Zone Monitoring Plan. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/653919.
Full textRobert C. Roback and Yemane Asmerom. Field-scale in Situ measurements of Vadose Zone Flow and Transport Using Multiple Tracers at INEEL Vadose Zone Research. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/882479.
Full text