Journal articles on the topic 'Zr – 1 %Nb alloy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Zr – 1 %Nb alloy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tian, Feng, Jing-wen Qu, Ming-hua Shi, Bo-shuai Li, and Jie Li. "Study on Effects of Cu content on Microstructure and corrosion resistance of Zr-Nb alloys." Journal of Physics: Conference Series 2539, no. 1 (2023): 012010. http://dx.doi.org/10.1088/1742-6596/2539/1/012010.
Full textKASHKAROV, E. B., T. L. MURASHKINA, D. G. KROTKEVICH, M. KOPTSEV, and A. M. LIDER. "Microstructure and phase composition of multicomponent Nb–Ni–Ti–Zr–Co alloys." Izvestiya vysshikh uchebnykh zavedenii. Fizika 67, no. 1 (2024): 55–62. https://doi.org/10.17223/00213411/67/1/7.
Full textSoboleva, T. Y., N. V. Konovalova, I. M. Abdyukhanov, A. S. Tsapleva, M. V. Kravtsova, and M. V. Alekseev. "Effect of heat treatment on the structure and mechanical properties of the semi-finished products from NbTa(Zr,Hf,Y) alloy for the manufacture of Nb3Sn superconductors." Superconductivity: Fundamental and Applied Research, no. 2 (July 2024): 42–56. http://dx.doi.org/10.62539/2949-5644-2024-0-2-42-56.
Full textEroshenko, A. Yu, Yu P. Sharkeev, M. A. Khimich, et al. "Affect of prolonged thermal exposure on microstructure and mechanical properties of ultrafine-grained bioinert Zr - 1 wt. % Nb and Ti - 45 wt. % Nb alloys." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 11 (2020): 9–16. http://dx.doi.org/10.17223/00213411/63/11/9.
Full textMiao, Yupeng, Chunlei Gan, Ming Wang, et al. "Defect analysis of the Cu-Cr-Zr-Nb alloys prepared by the non-vacuum melting process." Journal of Physics: Conference Series 2690, no. 1 (2024): 012007. http://dx.doi.org/10.1088/1742-6596/2690/1/012007.
Full textIsaenkova, Margarita, Olga Krymskaya, Kristina Klyukova, et al. "Regularities of Changes in the Structure of Different Phases of Deformed Zirconium Alloys as a Result of Raising the Annealing Temperature According to Texture Analysis Data." Metals 13, no. 10 (2023): 1784. http://dx.doi.org/10.3390/met13101784.
Full textGunderov, Dmitry, Andrey Stotskiy, Yuri Lebedev, and Veta Mukaeva. "Influence of HPT and Accumulative High-Pressure Torsion on the Structure and Hv of a Zirconium Alloy." Metals 11, no. 4 (2021): 573. http://dx.doi.org/10.3390/met11040573.
Full textHua, Z., B. Zuo, Y. M. Sun, X. N. Wang, L. R. Dong, and B. Li. "Crystallization processes and magnetic properties of Fe78Co2Zr8Nb2B10-xGex (x = 0, 1, 2, 3) amorphous alloys." Modern Physics Letters B 28, no. 20 (2014): 1450160. http://dx.doi.org/10.1142/s0217984914501607.
Full textTodai, Mitsuharu, Keisuke Fukunaga та Takayoshi Nakano. "Athermal ω Phase and Lattice Modulation in Binary Zr-Nb Alloys". Materials 15, № 6 (2022): 2318. http://dx.doi.org/10.3390/ma15062318.
Full textKorenev, A. A., and A. G. Illarionov. "Influence of cold deformation on the structure, texture, elastic and microdurometric properties of biocompatible beta-titanium alloys based on the Ti–Nb–Zr system." Физика металлов и металловедение 124, no. 6 (2023): 492–99. http://dx.doi.org/10.31857/s0015323022601763.
Full textPang, Shujie, Tao Zhang, Katsuhiko Asami, and Akihisa Inoue. "Formation, corrosion behavior, and mechanical properties of bulk glassy Zr–Al–Co–Nb alloys." Journal of Materials Research 18, no. 7 (2003): 1652–58. http://dx.doi.org/10.1557/jmr.2003.0227.
Full textPang, C., H. Li, W. L. Zhao, and C. H. Zhang. "Influence of Nb content on the mechanical behavior of zirconium alloys." Journal of Physics: Conference Series 2353, no. 1 (2022): 012003. http://dx.doi.org/10.1088/1742-6596/2353/1/012003.
Full textLiu, Qiang, Dongyan Ding, and Congqin Ning. "Anodic Fabrication of Ti-Nb-Zr-O Nanotube Arrays." Journal of Nanomaterials 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/240346.
Full textOlsson, C. O. A., and D. Landolt. "Anodisation of a Nb–Zr alloy." Electrochimica Acta 48, no. 27 (2003): 3999–4011. http://dx.doi.org/10.1016/s0013-4686(03)00540-1.
Full textAli, Imran, Gunel Imanova, Teymur Agayev, et al. "Seawater Splitting for Hydrogen Generation Using Zirconium and Its Niobium Alloy under Gamma Radiation." Molecules 27, no. 19 (2022): 6325. http://dx.doi.org/10.3390/molecules27196325.
Full textFan, Bojian, Xingwei Liu, Shengping Si, Shuang Liu, Ruyue Xie, and Jinxu Liu. "Study on the key features of dynamic compressive fracture strain of Ti-Zr-Nb solid solution alloys through random forest regressor." Journal of Physics: Conference Series 2355, no. 1 (2022): 012078. http://dx.doi.org/10.1088/1742-6596/2355/1/012078.
Full textSergienko, K. V., M. A. Sevostyanov, A. S. Demin, et al. "Research of the effect of pulsed fluxes of helium ions and helium plasma on the mechanical properties of Ti – Nb – Mo – Zr – Al group alloys." Perspektivnye Materialy 4 (2025): 49–57. https://doi.org/10.30791/1028-978x-2025-4-49-57.
Full textElkin, Maxim A., Alexey S. Kiselev, and Mikhail S. Slobodyan. "Pulsed laser welding of Zr 1%Nb alloy." Nuclear Engineering and Technology 51, no. 3 (2019): 776–83. http://dx.doi.org/10.1016/j.net.2018.12.016.
Full textBelozerova, A., S. Belozerov, and V. Shamardin. "MULTIDIMENSIONAL DATA ANALYSIS BASED ON THE RESULTS OF NUCLEAR TRANSMUTATION CALCULATIONS IN ZIRCONIUM ALLOYS." PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2020, no. 1 (2020): 25–36. http://dx.doi.org/10.55176/2414-1038-2020-1-25-36.
Full textBanaszek, Grzegorz, Kirill Ozhmegov, Anna Kawalek, Sylwester Sawicki, Medet Magzhanov, and Alexandr Arbuz. "Investigation of the Influence of Hot Forging Parameters on the Closing Conditions of Internal Metallurgical Defects in Zirconium Alloy Ingots." Materials 16, no. 4 (2023): 1427. http://dx.doi.org/10.3390/ma16041427.
Full textWatanabe, N., G. Zhang, Hiroshi Yukawa, et al. "Hydrogen Solubility and Resistance to Hydrogen Embrittlement of Nb-Pd Based Alloys for Hydrogen Permeable Membrane." Advanced Materials Research 26-28 (October 2007): 873–76. http://dx.doi.org/10.4028/www.scientific.net/amr.26-28.873.
Full textGunderov, D. V., A. G. Stotsky, V. R. Aubakirova, S. D. Gunderova, and Yu A. Lebedev. "The investigation of the slippage effect, transformation of the structure and properties of the Zr–1%Nb alloy during high-pressure torsion deformation." Frontier materials & technologies, no. 4 (2022): 30–37. http://dx.doi.org/10.18323/2782-4039-2022-4-30-37.
Full textSopousek, Jiri, and Marie Svobodová. "Thermodynamic Prediction of Zr-Nb-O-H Phase Diagram Sections." Solid State Phenomena 172-174 (June 2011): 487–92. http://dx.doi.org/10.4028/www.scientific.net/ssp.172-174.487.
Full textSukaryo, S. G., B. Bandriyana, N. Shabrina, et al. "Synthesis and Ti-N Sputtering of Zr-Nb Alloys for Dental Implant Material." Journal of Physics: Conference Series 2556, no. 1 (2023): 012024. http://dx.doi.org/10.1088/1742-6596/2556/1/012024.
Full textPoletika, T. M., V. I. Danilov, G. N. Narimanova, O. V. Gimranova, and L. B. Zuev. "Plastic flow localization upon stretching Zr-1% Nb alloy." Technical Physics 47, no. 9 (2002): 1125–29. http://dx.doi.org/10.1134/1.1508076.
Full textRozhnov, A. B., S. A. Nikulin, V. A. Belov, and E. V. Li. "Influence of impurity and alloying elements on high temperature oxidation resistance of E110 type zirconium alloys." Deformation and Fracture of Materials, no. 4 (2021): 27–32. http://dx.doi.org/10.31044/1814-4632-2021-4-27-32.
Full textLegostaeva, E. V., Yu P. Sharkeev, O. A. Belyavskaya, et al. "The influence of utrafine-grained state on thermo-physical properties of Zr-1 wt.% Nb and Ti-45 wt.% Nb alloys and processes of dissipation and accumulation of energy during deformation." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 11 (2020): 28–35. http://dx.doi.org/10.17223/00213411/63/11/28.
Full textLoureiro, S. A., Daniel Fruchart, Sophie Rivoirard, Dílson S. dos Santos, and L. M. Tavares. "Synthesis, Hydrogenation and Mechanical Milling of Pseudo-Binary Zr(NbxV1-x)2 (0≤x≤0.65) Alloys." Materials Science Forum 570 (February 2008): 45–51. http://dx.doi.org/10.4028/www.scientific.net/msf.570.45.
Full textPerlovich, Yuriy, Margarita Isaenkova, Vladimir Fesenko, Olga Krymskaya, Mikhail Lenskiy та Alexander Zavodchikov. "Texture Formation in α-Zr of Zr-1%Nb Alloy under Radial Forging". Materials Science Forum 702-703 (грудень 2011): 842–45. http://dx.doi.org/10.4028/www.scientific.net/msf.702-703.842.
Full textMishchenko, Oleg, Oleksandr Ovchynnykov, Oleksii Kapustian, and Maksym Pogorielov. "New Zr-Ti-Nb Alloy for Medical Application: Development, Chemical and Mechanical Properties, and Biocompatibility." Materials 13, no. 5 (2020): 1306. https://doi.org/10.3390/ma13061306.
Full textAl Deen, Haydar H. J. Jamal, and Salih Jawad Hamza. "Experimental Study of the Electrochemical and Biological Properties of (Nb-1%Zr-xGe) Alloy for Biomedical Applications." NeuroQuantology 20, no. 2 (2022): 288–301. http://dx.doi.org/10.14704/nq.2022.20.2.nq22307.
Full textBehera, A. N., A. Chaudhuri, R. Kapoor, J. K. Chakravartty, and S. Suwas. "High temperature deformation behavior of Nb–1 wt.%Zr alloy." Materials & Design 92 (February 2016): 750–59. http://dx.doi.org/10.1016/j.matdes.2015.12.077.
Full textLiu, Fuxin, Benpeng Wang, Lu Wang, and Yunfei Xue. "Solid-solution strengthening of Ti-Zr-Hf-Nb-Ta-Fe refractory high-entropy alloy." Journal of Physics: Conference Series 2383, no. 1 (2022): 012141. http://dx.doi.org/10.1088/1742-6596/2383/1/012141.
Full textMishchenko, Oleg, Oleksandr Ovchynnykov, Oleksii Kapustian, and Maksym Pogorielov. "New Zr-Ti-Nb Alloy for Medical Application: Development, Chemical and Mechanical Properties, and Biocompatibility." Materials 13, no. 6 (2020): 1306. http://dx.doi.org/10.3390/ma13061306.
Full textShen, Wenzhu, Chenwei Liu, Penghui Lei, and Guang Ran. "Investigation of Particles and Gas Bubbles in Zr–0.8Sn–1Nb–0.3Fe Zr Alloys Irradiated by Krypton Ions." Materials 11, no. 10 (2018): 2056. http://dx.doi.org/10.3390/ma11102056.
Full textSypchenko, V. S., N. N. Nikitenkov, and Yu I. Tyurin. "Thermal Desorption of Hydrogen from Titanium, Zirconium Alloy Zr–1% Nb, and the Thin-Film Ti/Zr–1% Nb System." Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 16, no. 5 (2022): 870–75. http://dx.doi.org/10.1134/s1027451022050354.
Full textSheremetyev, Vadim, Muhammad Farzik Ijaz, Anastasia Kudryashova, Anton S. Konopatsky, Sergey Prokoshkin та Vladimir Brailovski. "Characterization of the Superelastic and Structural Characteristics of β-Ti Alloys by Strain-Controlled Cycling after Thermomechanical Processing and Subsequent Ageing". Journal of Metastable and Nanocrystalline Materials 31 (січень 2019): 43–50. http://dx.doi.org/10.4028/www.scientific.net/jmnm.31.43.
Full textBottino, M. C., D. K. Oyafuso, Paulo Guilherme Coelho, et al. "Ceramic Bonding to Biocompatible Titanium Alloys Obtained by Powder Metallurgy." Materials Science Forum 530-531 (November 2006): 605–11. http://dx.doi.org/10.4028/www.scientific.net/msf.530-531.605.
Full textRen, Junzhao, Hongyan Wu, Lu Wang, et al. "Molecular Dynamics Simulation of Nanoindentation of Nb-Zr Alloys with Different Zr Content." Metals 12, no. 11 (2022): 1820. http://dx.doi.org/10.3390/met12111820.
Full textRiedkina, G., V. Grytsyna, S. Klymenko, and Т. Chernyayeva. "Effect of Hydrogen, Hydride Orientation and Temperature on Low-Cycle Fatigue Resistance of Zr-1%Nb Fuel Rod Claddings." Nuclear and Radiation Safety, no. 4(92) (December 15, 2021): 53–59. http://dx.doi.org/10.32918/nrs.2021.4(92).07.
Full textVazquez, Carolina, Ana María Fortis, and Patricia B. Bozzano. "Comparison of Mechanical Properties of Zr-1%Nb and Zr-2.5%Nb Alloys." Procedia Materials Science 8 (2015): 478–85. http://dx.doi.org/10.1016/j.mspro.2015.04.099.
Full textQu, Wentao, and Sizhu Huang. "Thermal Cycling Stability of Ti-Zr-Nb-Al Shape Memory Alloy." Academic Journal of Science and Technology 11, no. 1 (2024): 7–12. http://dx.doi.org/10.54097/xacj0x65.
Full textHolt, R. A., M. Griffiths, and R. W. Gilbert. "c-Component dislocations in Zr-2.5 wt% Nb Alloy." Journal of Nuclear Materials 149, no. 1 (1987): 51–56. http://dx.doi.org/10.1016/0022-3115(87)90497-1.
Full textIsaenkova, Margarita, Yuriy Perlovich, Vladimir Fesenko, et al. "Plastic Deformation of Zr-Based Alloys at Temperatures of Phase Transformations." Materials Science Forum 550 (July 2007): 637–42. http://dx.doi.org/10.4028/www.scientific.net/msf.550.637.
Full textda Silva, Melissa Rohrig Martins, R. G. T. Fim, S. C. Silva, Julio Cesar Serafim Casini, P. A. P. Wendhausen, and Hidetoshi Takiishi. "Influence of Alloying Elements Zr, Nb and Mo on the Microstructure and Magnetic Properties of Sintered Pr-Fe-Co-B Based Permanent Magnets." Materials Science Forum 930 (September 2018): 440–44. http://dx.doi.org/10.4028/www.scientific.net/msf.930.440.
Full textBocharov, O., S. Zavodchikov, V. Belov, et al. "Temperature and Strain Rate Effects on Zr-1%Nb Alloy Deformation." Journal of ASTM International 2, no. 7 (2005): 12335. http://dx.doi.org/10.1520/jai12335.
Full textPoletika, T. M., A. P. Pshenichnikov, and S. L. Girsova. "Structural-orientational instability of plastic flow in Zr-1% Nb alloy." Technical Physics Letters 37, no. 4 (2011): 298–301. http://dx.doi.org/10.1134/s1063785011040122.
Full textHammad, A. M., S. M. El-Mashri, and M. A. Nasr. "Mechanical properties of the Zr-1% Nb alloy at elevated temperatures." Journal of Nuclear Materials 186, no. 2 (1992): 166–76. http://dx.doi.org/10.1016/0022-3115(92)90331-e.
Full textGladkov, V. P., V. I. Petrov, A. V. Svetlov, et al. "Iodine diffusion in the alpha phase of Zr-1% Nb alloy." Atomic Energy 75, no. 2 (1993): 606–12. http://dx.doi.org/10.1007/bf00738998.
Full textArbuz, А., N. Lutchenko, Е. Panin, А. Lepsibayev, and M. Magzhanov. "Using of FEM simulation for radial-shear rolling of ZR-1%NB alloy." Vestnik KazNRTU 141, no. 5 (2020): 755–61. http://dx.doi.org/10.51301/vest.su.2020.v141.i5.127.
Full text