Journal articles on the topic 'Zr-Cu'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Zr-Cu.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cai, Yanqing, Xinggang Chen, Qian Xu, and Ying Xu. "Anodic behaviour of Cu, Zr and Cu–Zr alloy in molten LiCl–KCl eutectic." Royal Society Open Science 6, no. 1 (2019): 181278. http://dx.doi.org/10.1098/rsos.181278.
Full textPi, Zhao Hui, Guang Qiang Li, Yan Ping Xiao, Zhan Zhang, Zhuo Zhao, and Yong Xiang Yang. "An Experimental Investigation on the Solubility of Zr in Cu-Sn Alloys." Advanced Materials Research 887-888 (February 2014): 324–28. http://dx.doi.org/10.4028/www.scientific.net/amr.887-888.324.
Full textLiu, C. J., and J. S. Chen. "Influence of Zr additives on the microstructure and oxidation resistance of Cu(Zr) thin films." Journal of Materials Research 20, no. 2 (2005): 496–503. http://dx.doi.org/10.1557/jmr.2005.0068.
Full textZhilli, Dong, Atsushi Sekiya, Wataru Fujitani, and Shigenori Hori. "Age Hardening of Cu-Zr and Cu-Zr-Si Alloys." Journal of the Japan Institute of Metals 53, no. 7 (1989): 672–77. http://dx.doi.org/10.2320/jinstmet1952.53.7_672.
Full textDinda, G. P., H. Rösner, and G. Wilde. "Cold-rolling induced amorphization in Cu–Zr, Cu–Ti–Zr and Cu–Ti–Zr–Ni multilayers." Journal of Non-Crystalline Solids 353, no. 32-40 (2007): 3777–81. http://dx.doi.org/10.1016/j.jnoncrysol.2007.05.147.
Full textKondoh, Katsuyoshi, Junji Fujita, Junko Umeda, and Tadashi Serikawa. "Estimation of Compositions of Zr-Cu Binary Sputtered Film and Its Characterization." Advances in Materials Science and Engineering 2008 (2008): 1–5. http://dx.doi.org/10.1155/2008/518354.
Full textOh, Ki Hwan, Hob Yung Kim, and Sun Ig Hong. "Mechanical and Microstructural Analyses of Three Layered Cu-Ni-Zn/Cu-Zr/Cu-Ni-Zn Clad Material Processed by High Pressure Torsioning (HPT)." Advanced Materials Research 557-559 (July 2012): 1161–65. http://dx.doi.org/10.4028/www.scientific.net/amr.557-559.1161.
Full textKim, Young-Min, and Byeong-Joo Lee. "A modified embedded-atom method interatomic potential for the Cu–Zr system." Journal of Materials Research 23, no. 4 (2008): 1095–104. http://dx.doi.org/10.1557/jmr.2008.0130.
Full textZhai, Yan Nan, Hun Zhang, Kun Yang, Zhao Xin Wang, and Li Li Zhang. "Improvement of Zr-N Diffusion Barrier Performance in Cu Metallization by Insertion of a Thin Zr Layer." Applied Mechanics and Materials 347-350 (August 2013): 1148–52. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.1148.
Full textLi, Hui Qiang, and Long Fei Liu. "Calculation of the Viscosity of Zr-Based Metallic Glass Alloys." Advanced Materials Research 239-242 (May 2011): 548–51. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.548.
Full textZhang, J. Y., Y. Liu, J. Chen, et al. "Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers." Materials Science and Engineering: A 552 (August 2012): 392–98. http://dx.doi.org/10.1016/j.msea.2012.05.056.
Full textSun, Haoliang, Xiaoxue Huang, Xinxin Lian, and Guangxin Wang. "Discrepancies in the Microstructures of Annealed Cu–Zr Bulk Alloy and Cu–Zr Alloy Films." Materials 12, no. 15 (2019): 2467. http://dx.doi.org/10.3390/ma12152467.
Full textZhang, Ailong, Ding Chen, and Zhenhua Chen. "Effect of Cu/Zr content ratio on the thermal stability of Cu–Zr-rich Cu–Zr–Al BMGs." Philosophical Magazine Letters 93, no. 5 (2013): 283–91. http://dx.doi.org/10.1080/09500839.2013.769069.
Full textChen, Cunguang, Qianyue Cui, Chengwei Yu, Pei Li, Weihao Han, and Junjie Hao. "Effects of Zr-Cu Alloy Powder on Microstructure and Properties of Cu Matrix Composite with Highly-Aligned Flake Graphite." Materials 13, no. 24 (2020): 5709. http://dx.doi.org/10.3390/ma13245709.
Full textCai, An Hui, Wei Ke An, Xiao Song Li, Yun Luo, and Tie Lin Li. "Property of Cu-Zr-Ti Ternary Alloys." Advanced Materials Research 146-147 (October 2010): 1477–81. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.1477.
Full textJanovszky, Dóra, and Kinga Tomolya. "Designing Amorphous/Crystalline Composites by Liquid-Liquid Phase Separation." Materials Science Forum 790-791 (May 2014): 473–78. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.473.
Full textLi, Hui Qiang, and Long Fei Liu. "Quantitative Evaluation of the Glass Forming Ability of (Cu-Zr) Based Glass Alloys with Thermodynamics Method." Advanced Materials Research 239-242 (May 2011): 1622–25. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.1622.
Full textTian, Feng, Jing-wen Qu, Ming-hua Shi, Bo-shuai Li, and Jie Li. "Study on Effects of Cu content on Microstructure and corrosion resistance of Zr-Nb alloys." Journal of Physics: Conference Series 2539, no. 1 (2023): 012010. http://dx.doi.org/10.1088/1742-6596/2539/1/012010.
Full textSimic, M., J. Ruzic, D. Bozic, et al. "The influence of boron addition on properties of copper-zirconium alloys." Science of Sintering, no. 00 (2023): 3. http://dx.doi.org/10.2298/sos220421003s.
Full textWang, C. C., and C. H. Wong. "Interpenetrating networks in Zr–Cu–Al and Zr–Cu metallic glasses." Intermetallics 22 (March 2012): 13–16. http://dx.doi.org/10.1016/j.intermet.2011.10.022.
Full textBASKOUTAS, S., V. KAPAKLIS, and C. POLITIS. "BULK AMORPHOUS Zr57Cu20Al10Ni8Ti5 AND Zr55Cu19Al8Ni8Ti5Si5 ALLOYS PREPARED BY ARC MELTING." International Journal of Modern Physics B 16, no. 24 (2002): 3707–14. http://dx.doi.org/10.1142/s0217979202013018.
Full textTurchanin, M. A., P. G. Agraval, and A. R. Abdulov. "Thermodynamic assessment of the Cu-Ti-Zr system. II. Cu-Zr and Ti-Zr systems." Powder Metallurgy and Metal Ceramics 47, no. 7-8 (2008): 428–46. http://dx.doi.org/10.1007/s11106-008-9039-x.
Full textThaiyanurak, Tittaya, Olivia Gordon, Muyang Ye, Zhengming Wang, and Donghua Xu. "Compositional Effects on the Tensile Behavior of Atomic Bonds in Multicomponent Cu93−xZrxAl7 (at.%) Metallic Glasses." Molecules 30, no. 12 (2025): 2602. https://doi.org/10.3390/molecules30122602.
Full textSong, Tae-Ung, Ja-Uk Koo, Seung-Byeong Jeon, and Chang-Yeol Jeong. "Investigation of Phase Transformation and Mechanical Properties of A356 Alloy with Cu and Zr Addition during Heat Treatment." Korean Journal of Metals and Materials 61, no. 5 (2023): 311–23. http://dx.doi.org/10.3365/kjmm.2023.61.5.311.
Full textZhai, Yannan, Zhaoxin Wang, Hui Zhang, Ling Gao, and Changhong Ding. "Improvement of thermal stability of Ta-N film in Cu metallization by a Zr-Si interlayer." E3S Web of Conferences 271 (2021): 04015. http://dx.doi.org/10.1051/e3sconf/202127104015.
Full textLiang, Zhoubing, Huan Li, Jianrong Xie, Songshou Ye, Jinbao Zheng, and Nuowei Zhang. "Cu/ZrO2 Catalyst Modified with Y2O3 for Effective and Stable Dehydration of Glycerol to Acetol." Molecules 29, no. 2 (2024): 356. http://dx.doi.org/10.3390/molecules29020356.
Full textLityńska, Lidia, Jan Dutkiewicz, and Krzysztof Parliński. "Experimental and theoretical characterization of Al3Sc precipitates in Al–Mg–Si–Cu–Sc–Zr alloys." International Journal of Materials Research 97, no. 3 (2006): 321–24. http://dx.doi.org/10.1515/ijmr-2006-0051.
Full textInoue, Akihisa, Bao Long Shen, and Akira Takeuchi. "Syntheses and Applications of Fe-, Co-, Ni- and Cu-Based Bulk Glassy Alloys." Materials Science Forum 539-543 (March 2007): 92–99. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.92.
Full textGuo, Pan-Pan, Zhen-Hong He, Shao-Yan Yang, et al. "Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes." Green Chemistry 24, no. 4 (2022): 1527–33. http://dx.doi.org/10.1039/d1gc04284j.
Full textMartínez, C., F. Briones, P. Rojas, S. Ordoñez, C. Aguilar, and D. Guzmán. "Microstructure and Mechanical Properties of Copper, Nickel and Ternary Alloys Cu-Ni-Zr Obtained by Mechanical Alloying and Hot Pressing." MRS Advances 2, no. 50 (2017): 2831–36. http://dx.doi.org/10.1557/adv.2017.519.
Full textJia, Zhengfeng, Yuchang Su, Yanqiu Xia, Xin Shao, Yanxin Song, and Junjie Ni. "Friction and wear behavior of Cu–Cr–Zr alloy lubricated with acid rain." Industrial Lubrication and Tribology 66, no. 3 (2014): 473–80. http://dx.doi.org/10.1108/ilt-02-2012-0015.
Full textZhang, Jiale, Huihui Song, Jinyu Fang, et al. "Study on Coated Zr-V-Cr Getter with Pore Gradient Structure for Hydrogen Masers." Materials 15, no. 17 (2022): 6147. http://dx.doi.org/10.3390/ma15176147.
Full textCho, Hoon. "Development of High Strength and High Conductivity Cu-Ag-Zr Alloy." Materials Science Forum 654-656 (June 2010): 1323–26. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1323.
Full textMorozova, A., R. Mishnev, A. Belyakov, and R. Kaibyshev. "Microstructure and Properties of Fine Grained Cu-Cr-Zr Alloys after Termo-Mechanical Treatments." REVIEWS ON ADVANCED MATERIALS SCIENCE 54, no. 1 (2018): 56–92. http://dx.doi.org/10.1515/rams-2018-0020.
Full textSun, Ju-Hyun, Dong-Myoung Lee, Chi-Hwan Lee, Joo-Wha Hong, and Seung-Yong Shin. "A novel Zr-Ti-Ni-Cu eutectic system with low melting temperature for the brazing of titanium alloys near 800 °C." Journal of Materials Research 25, no. 2 (2010): 296–302. http://dx.doi.org/10.1557/jmr.2010.0047.
Full textOkamoto, H. "Cu-Zr (Copper-Zirconium)." Journal of Phase Equilibria and Diffusion 29, no. 2 (2008): 204. http://dx.doi.org/10.1007/s11669-008-9267-2.
Full textOkamoto, H. "Cu-Zr (Copper-Zirconium)." Journal of Phase Equilibria and Diffusion 33, no. 5 (2012): 417–18. http://dx.doi.org/10.1007/s11669-012-0077-1.
Full textArias, D., and J. P. Abriata. "Cu-Zr (Copper-Zirconium)." Journal of Phase Equilibria 11, no. 5 (1990): 452–59. http://dx.doi.org/10.1007/bf02898260.
Full textСавиных, Д. О., С. А. Хайнаков, А. И. Орлова, С. Гарсия-Гранда та Л. С. Алексеева. "Синтез и тепловое расширение фосфатов Na-Zr-Cu и Ca-Zr-Cu". Неорганические материалы 56, № 4 (2020): 408–14. http://dx.doi.org/10.31857/s0002337x20040144.
Full textLekka, Ch E. "Cu–Zr and Cu–Zr–Al clusters: Bonding characteristics and mechanical properties." Journal of Alloys and Compounds 504 (August 2010): S190—S193. http://dx.doi.org/10.1016/j.jallcom.2010.02.067.
Full textSun, Xiao Jun, Jie He, and Jiu Zhou Zhao. "Microstructure Formation and Nanoindentation Behavior of Rapidly Solidified Cu-Fe-Zr Immiscible Alloys." Materials Science Forum 993 (May 2020): 39–44. http://dx.doi.org/10.4028/www.scientific.net/msf.993.39.
Full textFeng, Lu, Quanming Liu, Weimin Long, Guoxiang Jia, Haiying Yang, and Yangyang Tang. "Microstructures and Mechanical Properties of V-Modified Ti-Zr-Cu-Ni Filler Metals." Materials 16, no. 1 (2022): 199. http://dx.doi.org/10.3390/ma16010199.
Full textXia, Peng, Shuncheng Wang, Huilan Huang, Nan Zhou, Dongfu Song, and Yiwang Jia. "Effect of Sc and Zr Additions on Recrystallization Behavior and Intergranular Corrosion Resistance of Al-Zn-Mg-Cu Alloys." Materials 14, no. 19 (2021): 5516. http://dx.doi.org/10.3390/ma14195516.
Full textKang, Dae Hoon, and In-Ho Jung. "Critical thermodynamic evaluation and optimization of the Ag–Zr, Cu–Zr and Ag–Cu–Zr systems and its applications to amorphous Cu–Zr–Ag alloys." Intermetallics 18, no. 5 (2010): 815–33. http://dx.doi.org/10.1016/j.intermet.2009.12.013.
Full textBhatt, J., and B. S. Murty. "Identification of Bulk Metallic Forming Compositions through Thermodynamic and Topological Models." Materials Science Forum 649 (May 2010): 67–73. http://dx.doi.org/10.4028/www.scientific.net/msf.649.67.
Full textTillmann, W., J. Pfeiffer, L. Wojarski, and J. E. Indacochea. "Reaktives Diffusionslöten von Keramik an Stahl mittels Zr-Cu-Zr- und Zr-Ni-Cu-Zr-Schichten für Anwendungen im Hochtemperaturbereich." Materialwissenschaft und Werkstofftechnik 45, no. 6 (2014): 512–21. http://dx.doi.org/10.1002/mawe.201400267.
Full textXu, Xiangping, Yi Wang, Jiasheng Zou, and Chunzhi Xia. "Interfacial Microstructure and Properties of Si3N4 Ceramics/Cu/304 Stainless Steel Brazed by Ti40Zr25B0.2Cu Amorphous Solder." Materials 11, no. 11 (2018): 2226. http://dx.doi.org/10.3390/ma11112226.
Full textHuang, Fu Xiang. "Microsture and Properties of a Cu-Cr-Zr-Fe-Ti Alloy." Applied Mechanics and Materials 723 (January 2015): 556–60. http://dx.doi.org/10.4028/www.scientific.net/amm.723.556.
Full textLi, Zhuo Ran, Guang Dong Wu, Zheng Zheng Wang, and Ji Cai Feng. "Microstructure and Mechanical Property of the ZrB2-Based Ultra-High-Temperature Ceramic Composites Brazed Joint." Advanced Materials Research 314-316 (August 2011): 1184–88. http://dx.doi.org/10.4028/www.scientific.net/amr.314-316.1184.
Full textPan, X. F., H. F. Zhang, A. M. Wang, B. Z. Ding, and Z. Q. Hu. "Preparation of superfine Fe-base alloy by liquidus casting." Journal of Materials Research 16, no. 12 (2001): 3459–63. http://dx.doi.org/10.1557/jmr.2001.0475.
Full text