Добірка наукової літератури з теми "Biochemicol analysis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biochemicol analysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biochemicol analysis":

1

Haziraka, Abinash, Chandana M.S., and Karan Sehgal. "Biochemical Analysis of Gallstones in Patients with Calculus Cholecystitis." New Indian Journal of Surgery 8, no. 3 (2017): 319–25. http://dx.doi.org/10.21088/nijs.0976.4747.8317.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Varghese, Sanoj, Ambili Reveendran, V. senthil Kumar, Karthikeyan Tm, and Venkiteshan Ranganathan. "MICRO RAMAN SPECTROSCOPIC ANALYSIS ON BLOOD SERUM SAMPLES OF DUCTAL CARCINOMA PATIENTS." Asian Journal of Pharmaceutical and Clinical Research 11, no. 9 (September 7, 2018): 176. http://dx.doi.org/10.22159/ajpcr.2018.v11i9.26806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Objective: Identification of biochemical changes in ductal cancer patient’s serum samples using micro Raman spectroscopy.Methods: Micro Raman spectroscopy was used for the identification of Raman shift bands. Data analysis was done using K-means clustering.Results: Micro Raman spectroscopic analysis of human breast cancer patient’s serum samples was done. Biochemicals present in the samples were identified from the peak evaluations. K-means clustering analysis was used to differentiate the biochemicals present in the samples.Conclusion: From the study, we conclude that Raman spectroscopy has the potential to differentiate the biochemical changes occurring in the human body, and the differentiation can be done using K-means clustering.
3

Aytasheva, Z. G., B. A. Zhumabayeva, L. P. Lebedeva, O. A. Sapko, S. K. Baiseyitova, Zh Baqytbek, E. D. Dzhangalina, and A. Sh Utarbayeva. "Morphogenetic and biochemical analysis of domestic and external common bean seeds." International Journal of Biology and Chemistry 7, no. 2 (2014): 16–24. http://dx.doi.org/10.26577/2218-7979-2014-7-2-16-24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Manika Das, Manika Das, Sumer Singh, and Bhaben Tanti. "Biochemical Analysis of Paper Mill Effluent & Microbial Degradation of Phenol." International Journal of Scientific Research 2, no. 4 (June 1, 2012): 73–76. http://dx.doi.org/10.15373/22778179/apr2013/58.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nishimura, Keigo, Minghao Nie, Shigenori Miura, and Shoji Takeuchi. "Microfluidic Device for the Analysis of Angiogenic Sprouting under Bidirectional Biochemical Gradients." Micromachines 11, no. 12 (November 27, 2020): 1049. http://dx.doi.org/10.3390/mi11121049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we developed a spheroid culture device that can trap a spheroid in the trapping site sandwiched by two extracellular matrix gels located at the upper and lower side of the spheroid. This device can form different biochemical gradients by applying target biochemicals separately in upper and lower channels, allowing us to study the angiogenic sprouting under various biochemical gradients in different directions. In the experiments, we confirmed the trapping of the spheroids and demonstrate the investigation on the direction and extent of angiogenic sprouts under unidirectional or bidirectional biochemical gradients. We believe our device can contribute to understanding the pathophysiological phenomena driven by chemical gradients, such as tissue development and tumor angiogenesis.
6

Narasinga Rao V, Narasinga Rao V., and DSVGK Kaladhar DSVGK Kaladhar. "Biochemical and Phytochemical Analysis of The Medicinal Plant, Kaempferia Galanga Rhizome Extracts." International Journal of Scientific Research 3, no. 1 (June 1, 2012): 18–20. http://dx.doi.org/10.15373/22778179/jan2014/6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Poronnik, О. О. "OBTAINING OF PLANT TISSUE CULTURE Scutellaria baicalensis GEORGI. AND ITS BIOCHEMICAL ANALYSIS." Biotechnologia Acta 14, no. 6 (December 2021): 53–58. http://dx.doi.org/10.15407/biotech14.06.0053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Aim. To obtain a plant tissue culture of S. baicalensis as a possible source of biologically active compounds (BAC) with a wide range of pharmacological action. Methods. Plant tissue culture, photocolorimetric method, reversed-phase high performance liquid chromatography (HPLC) method. Results. Two stably productive plant tissue culture strains (16SB3 and 20SB4) of S. baicalensis were obtained from fragments of roots seedling on a specially developed agar nutrient medium 5С01. The yield of dry biomass from 1 liter of this medium per passage (21st day of growth) for strain 16SB3 is 25–30 g, for strain 20SB4 – 30–40 g. The total content of flavonoids in dry biomass was in terms of routine for strains 16SB3 and 20SB4 – 0.6–0.9 and 0.7–0.9 mg/g, respectively, and the yield of flavonoids – 18–27 and 21–36 mg/l of nutrient medium, respectively. BAC typical for plants in nature, in particular, flavonoids vogonin, baikalein, neobaikalein, skulkapfavon and their derivatives, were found in the studied biomass of both strains. Conclusions. It was found that the biomass of the two strains of S. baicalensis plant tissue culture accumulated the same BAC, in particular, flavonoids, as do plants in natural conditions. The resulting plant tissue culture is promising as a possible source of Baikal skullcap BAC.
8

Shashidharan, A., та S. N. Plomindas. "Биохимический анализ некоторых морских макроводорослей побережья Коллама (Индия)". Algologia 27, № 2 (30 червня 2017): 129–44. http://dx.doi.org/10.15407/alg27.02.129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rout, G. R., and P. Das. "Rapid hydroponic screening for molybdenum tolerance in rice through morphological and biochemical analysis." Plant, Soil and Environment 48, No. 11 (December 22, 2011): 505–12. http://dx.doi.org/10.17221/4404-pse.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
High yielding varieties of rice (Oryza sativa) cultivars were tested for their tolerance to different levels of molybdenum (Mo) (0.1&micro;M &ndash; control, 0.2, 0.4, 0.8 and 1.6&micro;M) in nutrient solution at pH 6.8. Seeds of rice were germinated and grown in presence of molybdenum under controlled environmental conditions. Standard growth parameters such as root length, shoot length, root/shoot dry biomass and root/shoot tolerance index were tested as markers of molybdenum toxicity. Measurements as early as 48 hours after the germination did not yield consistent results. However, root measurement on 3<sup>rd</sup>, 6<sup>th</sup>&nbsp;and 9<sup>th</sup>&nbsp;day after root emergence showed significant differences among cultivars of rice. Rice cultivars Annapurna, Kusuma, Deepa and Vaghari developed better root system while, Paridhan-1, Pusa-2-21 and Ratna showed poor growth of the roots in presence (0.8&micro;M) of molybdenum. The root tolerance index (RTI) and the shoot tolerance index (STI) in Annapurna, Kusuma and Deepa in rice were high indicating their tolerance to molybdenum; Paridhan-1 and Ratna, however, showed low RTI and STI. Based on the growth parameters, twenty cultivars of rice were ranked in respect of their tolerance to molybdenum: Annapurrna &gt; Deepa &gt; Kusuma &gt; Vaghari &gt; Hamsa &gt; Vikram &gt; Bharati &gt; Paridhan-2 &gt; Aswathi &gt; Subhadra &gt; Sankar &gt; Sakti &gt; Nilgiri &gt; Rudra &gt; Hema &gt; Pragati &gt; Pusa-2-21 &gt; Ratna &gt; Paridhan-1, respectively. Molybdenum toxicity was correlated with increased peroxidase and catalase activity in different cultivars of rice. This method can be employed for quick screening of rice cultivars for molybdenum tolerance in breeding programmes.
10

Sansom, Clare. "Biochemical image analysis." Biochemist 36, no. 2 (April 1, 2014): 40–41. http://dx.doi.org/10.1042/bio03602040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Biochemicol analysis":

1

Delompre, Thomas. "Compréhension des mécanismes de perception sensorielle de compléments nutritionnels sous différentes formulations." Thesis, Bourgogne Franche-Comté, 2021. http://www.theses.fr/2021UBFCK038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La prise de compléments nutritionnels est utile lorsque l’alimentation quotidienne ne suffit plus à couvrir les besoins de l’organisme en nutriments et en énergie. Les ingrédients actifs de ces produits sont principalement des vitamines, des minéraux, des éléments traces, des extraits de plantes. Le mode d’administration par voie orale est largement plébiscité par les consommateurs, c’est pourquoi les produits sont commercialisés sous forme de comprimés effervescents, à croquer, sous forme de poudres et comprimés à mettre en bouche ou sous formes gélifiées. Outre leur efficacité sur le plan nutritionnel, ces produits doivent satisfaire le consommateur sur le plan organoleptique. Cependant, ces compléments nutritionnels sont souvent décrits avec des défauts de goûts non identifiés qui limitent leur acceptabilité.La caractérisation sensorielle de ces « mauvais goûts », l’identification des composés impliqués et la compréhension des mécanismes à l’origine de leur détection sont un véritable challenge pour les industries concernées. Dans ce travail, une méthodologie basée sur des approches sensorielles et cellulaires a été mise en œuvre afin d’améliorer les connaissances sur la perception des « mauvais goûts » des compléments nutritionnels et mettre en évidence des pistes envisageables pour de nouvelles stratégies de masquage.Pour la caractérisation et la quantification des « mauvais goût », les profils sensoriels de différentes gammes et formes de compléments nutritionnels ont été déterminés par des panels de dégustateurs. Un protocole d’analyse sensorielle adapté à la forme galénique évalué (effervescente ou orodispersible) a permis d’identifier et de quantifier certaines perceptions négatives. Les résultats obtenus démontrent en autre la présence d’une amertume prononcée pour de nombreux compléments nutritionnels, qui pourraient contribuer de manière récurrente à leur « mauvais goût ». Une analyse sensorielle de ces mêmes compléments nutritionnels dans des conditions avec et sans blocage du flux rétronasal a révélé des interactions perceptives positives et/ou négatives entre molécules aromatiques et sapides, dont l’origine bien que discutée reste à démontrer.La corrélation entre les profils sensoriels et les compositions nutritives des compléments nutritionnels a révélé que certains composés actifs comme des vitamines pouvaient être responsable de cette amertume. L’être humain possède 25 structures moléculaires spécialisées dans la reconnaissance des molécules amères que l’on appelle des TAS2Rs. L’utilisation d’un protocole d’expérimentation fonctionnelle in vitro a montré que quatre composés vitaminiques étaient capables d’activer un ou plusieurs TAS2R(s). Parallèlement, nous avons complété cette expérimentation fonctionnelle par des mesures psychométriques de seuil de détection à l’amertume chez l’humain. La comparaison des jeux de données sensoriels et cellulaires a révélé l’impact de la physiologie orale et de l’intégration centrale de l’information sur la perception d’un stimulus gustatif. Les résultats obtenus ont démontré que la combinaison d’une approche cellulaire et sensorielle semblait être une méthode alternative efficace pour évaluer la contribution d’un ou plusieurs composés aux perceptions sensorielles négatives des compléments nutritionnels
Taking nutritional supplements is recommended when a normal diet is no sufficient to maintain a good nutritional status. The active ingredients of these products are mainly vitamins, minerals, trace elements and plant extracts. The oral method of administration is widely preferred by consumers, therefore the products are marketed as effervescent tablets, chewable, orodispersible powders and tablets or gelled forms. In addition to their nutritional effectiveness, these products must meet consumer’s expectations as “taste” or “flavor”. However, these nutritional supplements are often described with not identified taste defects, which limit their acceptability.The sensory characterization of these “off-tastes”, the involved compounds identification and the understanding of the mechanisms at the origin of their detection are a real challenge for industry concerned. In this work, a methodology based on sensory and cellular approaches has been implemented in order to improve knowledge on the perception of nutritional supplements “off-tastes” and to highlight possible options for new masking strategies.For the “off-tastes” characterization and quantification, the sensory profiles of different ranges and forms of nutritional supplements were determined by panels of tasters. A sensory analysis protocol adapted to the galenic form evaluated (effervescent or orodispersible) allows to identify and quantify some negative perceptions. The results obtained also demonstrated the presence of a slightly strong bitterness for many nutritional supplements, which could recurrently contribute to their "off-taste". A sensory analysis of these same nutritional supplements with and without retronasal flow blockage conditions revealed positive and/or negative perceptual interactions between aromatic and sapid molecules whose origin remains to be demonstrated.The correlation between sensory profiles and nutritional supplements compositions revealed that some active ingredients such as vitamins could be involved in their bitterness. In humans, bitter substances are detected in the mouth by 25 bitter taste receptors called TAS2Rs. In vitro functional experimental protocol showed that four vitamin compounds were able to activate one or more TAS2R(s). In parallel, we completed this functional experiment with psychometric measurements of the human bitter detection threshold. Comparison of sensory and cellular data revealed the importance of oral physiology and information central integration on the taste stimulus perception. The results obtained demonstrated that the combination of a cellular and sensory approach seemed to be an effective alternative method to evaluate the real contribution of one or more compounds to the negative sensory perceptions of nutritional supplements
2

Klose, Robert John. "Biochemical analysis of MeCP2." Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/10997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
MeCP2 is a transcriptional repressor that recruits the Sin3a chromatin remodelling complex to methylated loci. Sin3a-associated histone deacetylases contribute to the ability of MeCP2 to repress transcription and modulate chromatin structure. The biomedical importance of normal MeCP2 function is highlighted by the discovery that inactivating mutations in MeCP2 cause the severe neurological disease Rett syndrome. By deleting the Mecp2 gene, a mouse model of Rett syndrome has been generated and used to study the molecular and physiological outcome of MeCP2 deficiency. Inefficient regulation of neuronal gene expression may have a role in the etiology of Rett syndrome. By studying the biochemical properties of MeCP2 this thesis addresses in detail three basic questions; (1) what are the native biochemical properties of MeCP2? (2) what specific DNA sequences does MeCP2 bind? and (3) what are the affects of post-translational modification on MeCP2? To address the composition of any mammalian MeCP2 complexes, native MeCP2 was purified to near homogeneity from rat brain. Native MeCP2 is an elongated monomer that does not stably associated with other cofactors including Sin3a. Analysis of MeCP2 binding sites in vivo demonstrates that MeCP2 binds unique loci when compared to other MBP’s. Using an unbiased in vitro DNA binding site evolution assay, Methyl-SELEX, MeCP2 was shown to require methyl-CpG sequences containing a flanking run of A/T rich DNA for high affinity binding. Finally, biochemical fractionation of nuclear proteins revealed activities that phosphorylate MeCP2, and the potential affects of this modification were explored.
3

Lyst, Matthew James. "Biochemical analysis of MBD1." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Methylation of cytosines within CpG dinucleotides is a feature of vertebrate DNA. The precise role of DNA methylation is unknown to date, although it has been implicated in several processes relating to transcriptional regulation. One approach to study DNA methylation is the characterization of proteins that bind specifically to methylated DNA. One such family of proteins is the methyl-CpG binding domain (MBD) containing family and MBD1 is a member of this family. MBD1 is implicated in transcriptional repression and various mechanisms by which it might bring about gene silencing have been proposed. These are mainly based on studies reporting interactions between MBD1 and various proteins that regulate chromatin structure. Also MBD1 function can be modified by PIAS proteins, which stimulate its conjugation to SUMO (small ubiquitinlike modifier).The original aim of this work was to address two questions about MBD1: (1) Does MBD1 form part of a stable complex with other factors, and if so, what are the identities of the other components? Purification of MBD1 revealed the presence of no stably bound interacting proteins. However, some evidence indicates MBD1 may interact with itself and form dimers, a finding which impacts on many aspects of the function of MBD1. Also a proteomics screen for transient interaction partners identified candidate binding partners for MBD1 and the related protein MeCP2, which may throw light on the function of these proteins. (2) Are there any activities which regulate MBD1 function by the removal of SUMO from this protein? No activities capable of removing SUMO from native MBD1 were found but it was demonstrated that this modification leads to the destabilization of MBD1 in vitro. The relevance of this finding in vivo is yet to be determined.
4

Hairer, Gabriel. "Fluidic microsystems for biochemical analysis." Aachen Shaker, 2009. http://d-nb.info/999573519/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McEuen, Scott Jacob. "Thermal analysis of biochemical systems." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 109-112).
Scientists, both academic and industrial, develop two main types of drugs: 1) small molecule drugs, which are usually chemically synthesized and are taken orally and 2) large molecule, biotherapeutic, or protein-based drugs, which are often synthesized via ribosome transcription in bacteria cells and are injected. Historically, the majority of drug development, revenue, and products has come from small molecule drugs. However, recently biotherapeutic drugs have become more common due to their increased potency and specificity (the ability to chemically bond to the targeted protein of interest). Researchers now estimate that as much as 50% of current drug development activities (pre-market approval) are focused on these protein-based drugs. There are several well-documented steps necessary in the development of a new large molecule drug. One critical element during the end of the biotherapeutic drug discovery phase and the beginning of the manufacturing phase is known as preformulation or formulation development. During this stage scientists systematically test the effects of adding various excipients (non-protein additives added to enhance the protein stability, solubility, activity of the drug, etc.) to the potential large molecule drug. Differential scanning calorimetry (DSC) is a common technique used to perform these formulation studies. In a classic DSC experiment, a protein is heated from 20-80°C and the heat absorbed while the protein unfolds is measured. Many researchers prefer the use of a DSC instrument because of its label-free nature, meaning that no fluorescent or radio-labeled tag is necessary to perform the measurement. The heat absorbed during the unfolding event(s) is directly measured. However, current commercial DSC instruments suffer from high protein consumption (especially when compared to other labeled techniques), low sensitivity, and slow throughput. The aim of this thesis is to address two of the three areas mentioned above: high protein consumption and slow throughput. Since many formulation development studies are performed at therapeutic or high protein concentrations, one can reduce the experimental cell volume and thereby reduce the amount of protein material consumed. However, since there is less sample, less heat is produced. While in the literature there are several heat transfer models that describe how a DSC instrument literature there are several heat transfer models that describe how a DSC instrument functions, there are surprisingly few heat transfer models that detail how ambient temperature disturbances impact the thermal measurement. To better describe this behavior, a simplified state-space thermal model was created to predict the disturbance rejection of a custom DSC instrument. This model was verified experimentally using linear stochastic system identification techniques. To reduce sample throughput, the prototype calorimeter cell was made from disposable materials. Because the majority of protein systems are thermodynamically irreversible, at elevated temperatures the protein solution often aggregates and needs to be cleaned before a subsequent experiment can be run. This cleaning process constitutes a significant portion of the overall time to run an experiment. This thesis documents a fully functional DSC instrument that, while not completely disposable, has been designed, built, and tested with disposable microfluidic materials. Future work would then solve the technical hurdles of repeatably loading disposable microfluidic cells into the DSC instrument.
by Scott Jacob McEuen.
Ph.D.
6

Goel, Gautam. "Biochemical Systems Toolbox." Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The field of biochemical systems modeling and analysis is faced with an unprecedented flood of data from experimental methodologies of molecular biology. While these techniques continue to leapfrog ahead in the speed, volume and finesse with which they generate data, the methods of data analysis and interpretation, however, are still playing the catch-up game. The notions of systems analysis have found a new foothold, under the banner of Systems Biology, with the promise of uncovering the rationale for the designs of biological systems from their parts lists, as they are generated by experimentation and sorted and managed by bioinformatics tools. With an aim to complement hypothesis-driven and reductionistic biological research, and not replace it, a systems biologist relies on the tools of mathematical and computational modeling to be able to contribute meaningfully to any ongoing bio-molecular systems research. These systems analysis tools, however, should not only have their roots steeped well in the theoretical foundations of biochemistry, mathematics and numerical computation, but they should be married to a framework that facilitates the required systems way of thought for all its users computational scientists, experimentalists and molecular biologists alike. Hopefully, such framework-based tools would go beyond just providing fancy GUIs, numerical packages for integrating ODEs and/or optimization libraries. The intent of this thesis is to present a framework and toolbox for biochemical systems modeling, with an application in metabolic pathway analysis and/or metabolic engineering. The research presented here builds upon the tenets of a very well established and generic approach to biological systems modeling and analysis, called Biochemical Systems Theory (BST), which is almost forty years old. The nuances of modeling and practical hurdles to analysis are presented in the context of a real-time case study of analyzing the glucolytic pathway in the bacterium Lactococcus lactis. Alongside, the thesis presents the features of a MATLAB-based software application that has been built upon the framework of BST and is aptly named as Biochemical Systems Toolbox (BSTBox). The thesis presents novel contributions, made by the author during the course of his research, to state-of-the-art techniques in parameter estimation, and robustness and sensitivity analysis topics that, as this thesis will show, remain to be the most restrictive bottlenecks in the world of biological systems modeling and analysis.
7

Coe, Robert Ashley. "The introgression of novel biochemical traits into tomato, a biochemical analysis." Thesis, University of Sheffield, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hastings, Ian M. "Genetic and biochemical analyses of growth." Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/10948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nabi, A. "Immobilized bioluminescent reagents in flow injection analysis." Thesis, University of Hull, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381888.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Maharaj, Ramsey. "Genetic analysis of resistance to apple scab (Venturia inaequalis) in apple (Malus x domestica Borkh)." Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_4347_1258010463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

Amongst the many problems facing the apple industry, apple scab is one of the most challenging experienced by producers. This disease is caused by Venturia inaequalis, which causes lesions to develop on both the fruit and leaves. The fungus is usually controlled by extensive use of sprays, but molecular genetics have made more environmentally friendly techniques available. This study was aimed at constructing a genetic linkage map from apple, which would be used in marker-assisted selection (MAS).

Книги з теми "Biochemicol analysis":

1

Blackman, David S. The logic of biochemical sequencing. Boca Raton: CRC Press, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Glick, David, ed. Methods of Biochemical Analysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1985. http://dx.doi.org/10.1002/9780470110522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Glick, David, ed. Methods of Biochemical Analysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1987. http://dx.doi.org/10.1002/9780470110539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Glick, David, ed. Methods of Biochemical Analysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1988. http://dx.doi.org/10.1002/9780470110546.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Suelter, Clarence H., and J. Throck Watson, eds. Methods of Biochemical Analysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1990. http://dx.doi.org/10.1002/9780470110553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Suelter, Clarence H., ed. Methods of Biochemical Analysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1991. http://dx.doi.org/10.1002/9780470110560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Suelter, Clarence H., and Larry Kricka, eds. Methods of Biochemical Analysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1992. http://dx.doi.org/10.1002/9780470110577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Suelter, Clarence H., ed. Methods of Biochemical Analysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1993. http://dx.doi.org/10.1002/9780470110584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Anderson, David F., and Thomas G. Kurtz. Stochastic Analysis of Biochemical Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16895-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wong, Lee-Jun C. Mitochondrial disorders: Biochemical and molecular analysis. New York: Humana Press, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Biochemicol analysis":

1

Patnaik, Pradyot. "Oxygen Demand, Biochemical." In Handbook of Environmental Analysis, 241–46. Third edition. | Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315151946-42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hardie, D. G. "Cell Surface Receptors — Analysis and Identification." In Biochemical Messengers, 109–46. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3108-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hershkovitz, Mark A., and Detlef D. Leipe. "Phylogenetic Analysis." In Methods of Biochemical Analysis, 189–230. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470110607.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sperry, Warren M. "Lipide Analysis." In Methods of Biochemical Analysis, 83–111. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470110188.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grabar, Pierre. "Immunoelectrophoretic Analysis." In Methods of Biochemical Analysis, 1–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470110232.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brinkman, Fiona S. L., and Detlef D. Leipe. "Phylogenetic Analysis." In Methods of Biochemical Analysis, 323–58. New York, USA: John Wiley & Sons, Inc., 2002. http://dx.doi.org/10.1002/0471223921.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Karube, I. "µTAS for Biochemical Analysis." In Micro Total Analysis Systems, 37–46. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0161-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

James, M., and C. Crabbe. "Computers in Biochemical Analysis." In Methods of Biochemical Analysis, 417–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470110522.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Galperin, Michael Y., and Eugene V. Koonin. "Comparative Genome Analysis." In Methods of Biochemical Analysis, 359–92. New York, USA: John Wiley & Sons, Inc., 2002. http://dx.doi.org/10.1002/0471223921.ch15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Plasson, Raphaël, and Yannick Rondelez. "Synthetic Biochemical Dynamic Circuits." In Multiscale Analysis and Nonlinear Dynamics, 113–45. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527671632.ch05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Biochemicol analysis":

1

Binns, Michael, and Constantinos Theodoropoulos. "Construction and analysis of biochemical networks." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bel'skaya, L. "CORRELATION INTERCONNECTIONS OF BIOCHEMICAL COMPOSITION OF SALIVA AND CHARACTERISTICS OF INFRARED ABSORPTION SPECTRA." In XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fe01d9c216c81.02726336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The comparison of the characteristics of the infrared spectra (height, area of absorption bands) with the biochemical composition was carried out using the example of human saliva. Correlations of both individual absorption bands and their combinations with a number of biochemical parameters of saliva have been established. The substantiation of the revealed regularities based on the metabolic characteristics of this biological fluid is proposed.
3

Malinovskaya, Svetlana A. "Enhanced contrast CARS for biochemical and environmental analysis." In Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/lacsea.2016.lm4g.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

AMANN, A., S. TELSER, L. HOFER, A. SCHMID, and H. HINTERHUBER. "EXHALED BREATH GAS AS A BIOCHEMICAL PROBE DURING SLEEP." In Conference Breath Gas Analysis for Medical Diagnostics. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701954_0020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yee, G. M., P. A. Hing, N. I. Maluf, and G. T. A. Kovacs. "Miniaturized Spectrometers for Biochemical Analysis." In 1996 Solid-State, Actuators, and Microsystems Workshop. San Diego, CA USA: Transducer Research Foundation, Inc., 1996. http://dx.doi.org/10.31438/trf.hh1996.15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yee, Gaylin M., Nadim I. Maluf, Paul A. Hing, Michael Albin, and Gregory T. A. Kovacs. "Miniature spectrometers for biochemical analysis." In BiOS '97, Part of Photonics West, edited by Paul L. Gourley. SPIE, 1997. http://dx.doi.org/10.1117/12.269957.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yee, G. M., P. A. Hing, N. I. Maluf, and G. T. A. Kovacs. "Miniaturized Spectrometers for Biochemical Analysis." In 1996 Solid-State, Actuators, and Microsystems Workshop. San Diego, CA USA: Transducer Research Foundation, Inc., 1996. http://dx.doi.org/10.31438/trf.hh1996.15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jacobson, S. C., and J. M. Ramsey. "Biochemical Analysis on a Microchip." In 1996 Solid-State, Actuators, and Microsystems Workshop. San Diego, CA USA: Transducer Research Foundation, Inc., 1996. http://dx.doi.org/10.31438/trf.hh1996a.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Szederkényi, Gábor, Z. A. Tuza, and Katalin M. Hangos. "Determining biochemical reaction network structures for kinetic polynomial models with uncertain coefficients." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756685.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Frey, A., M. Schienle, and H. Seidel. "CMOS based sensors for biochemical analysis." In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285752.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Biochemicol analysis":

1

Qin, Jun. Biochemical Analysis of the BRCA2 Protein Complex. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada425776.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Paquet, Peter. A Biochemical Analysis of Viscin from Arceuthobium Tsugense. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cook, Douglas R., and Brendan K. Riely. Molecular and biochemical analysis of symbiotic plant receptor kinase complexes. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/986585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bennett, G. N., and F. B. Rudolph. Genetic and biochemical analysis of solvent formation in Clostridium acetobutylicum. Office of Scientific and Technical Information (OSTI), May 1998. http://dx.doi.org/10.2172/595637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tien, Ming. Transcriptome and Biochemical Analyses of Fungal Degradation of Wood. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/1056641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kazi, F. K., J. Fortman, R. Anex, G. Kothandaraman, D. Hsu, A. Aden, and A. Dutta. Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/982937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bleecker, A. B. Biochemical and molecular analysis of a transmembrane protein kinase from Arabidopsis thaliana. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5176465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bleecker, A. B. Biochemical and molecular analysis of a transmembrane protein kinase from Arabidopsis thaliana. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6592071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nicholson, Ralph, Reuven Reuveni, and Moshe Shimoni. Biochemical Markers for Disease Resistance in Corn. United States Department of Agriculture, May 1996. http://dx.doi.org/10.32747/1996.7613037.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The objective was to screen maize lines for their ability to express resistance based on biochemical traits. Cultivars were screened for retention of the hydroxamic acid DIMBOA and the synthesis of phenols (based on anthocyanin production) as markers for resistance. Lines were selected and inoculated with fungal pathogens (Exserohilum turcicum, Puccinia sorghi, Cochliobolus heterostraphus, Colletotricum graminicola.), and the Maize Dwarf Mosaic and Johnson Grass Mosaic viruses. Lines were screened in the field and greenhouse. Results showed that lines selected for augmented phenol synthesis do exhibit heightened levels of resistance to fungal pathogens. Isolation of mRNA followed by northern analyses for expression of A1 (dihydroflavanol reductase) and peroxidase confirmed that genes for these enzymes were turned on in response to inoculation of lines predicted to exhibit resistance. Peroxidase and b-1,3-glucanase were assayed in breeding lines having or lacking the se gene. A specific ionically-bound peroxidase isozyme and a b-1,3-glucanase isozyme were revealed in lines having the se gene. Data suggest that peroxidase and b-1,3-glucanase isozymes, may be considered as markers to identify resistance to E. turcicum in maize genotypes with the se gene.
10

Udey, Ruth Norma. Statistical Data Analyses of Trace Chemical, Biochemical, and Physical Analytical Signatures. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1080408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії