Добірка наукової літератури з теми "Bioenergetics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Bioenergetics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Пов'язані теми наукових робіт:

Статті в журналах з теми "Bioenergetics":

1
Baum, Emanuel, and Sandra M. Sterner. "Bioenergetics." Psychotherapy Patient 4, no. 2 (December 1988): 123–33. http://dx.doi.org/10.1300/j358v04n02_12.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Kovác, Ladislav. "Bioenergetics." Communicative & Integrative Biology 1, no. 1 (July 2008): 114–22. http://dx.doi.org/10.4161/cib.1.1.6670.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Wootton, R. J. "Fish bioenergetics." Reviews in Fish Biology and Fisheries 5, no. 3 (September 1995): 389–90. http://dx.doi.org/10.1007/bf00043016.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Nicholls, David. "Membrane bioenergetics." FEBS Letters 244, no. 2 (February 1989): 494. http://dx.doi.org/10.1016/0014-5793(89)80591-5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Takeuchi, Toshio. "Fish bioenergetics." Aquaculture 133, no. 2 (June 1995): 173–74. http://dx.doi.org/10.1016/0044-8486(95)90056-x.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Berg, Hermann. "Bioenergetics 2." Bioelectrochemistry and Bioenergetics 34, no. 1 (June 1994): 89. http://dx.doi.org/10.1016/0302-4598(94)80015-4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Brand, Martin. "Bioenergetics 2." Trends in Biochemical Sciences 18, no. 5 (May 1993): 189. http://dx.doi.org/10.1016/0968-0004(93)90113-2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
de Grey, Aubrey D. N. J. "Bioenergetics 3." Mitochondrion 2, no. 3 (December 2002): 211–13. http://dx.doi.org/10.1016/s1567-7249(02)00071-5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
BROWN, BERNARD S. "Brighter bioenergetics!" Biochemical Society Transactions 19, no. 4 (November 1991): 400S. http://dx.doi.org/10.1042/bst019400s.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Rossignol, Rodrigue. "Bioenergetics of cancer." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1807, no. 6 (June 2011): 533. http://dx.doi.org/10.1016/j.bbabio.2011.03.005.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Bioenergetics":

1
Spickett, Corinne Michelle. "NMR studies of cellular bioenergetics." Electronic Thesis or Dissertation, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257961.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Trudel, Marc. "Bioenergetics and mercury dynamics in fish." Electronic Thesis or Dissertation, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36723.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This research focuses on the development, evaluation, and application of a mercury (Hg) mass balance model for predicting the accumulation of Hg in fish. This model requires accurate estimates of Hg elimination rate by fish and feeding rates to adequately predict Hg concentration in fish. An empirical model was developed to estimate Hg elimination by fish using data obtained from published experiments. This analysis showed that Hg elimination rate was overestimated in short-term experiments, positively correlated to water temperature, negatively correlated to body size, and that the elimination rate of inorganic Hg was faster than that of methylmercury. This empirical model was then incorporated in a Hg mass balance model to predict the concentration of Hg in fish. The Hg mass balance model accurately predicted Hg concentration in fish when it was combined with food consumption rates that were determined using a radioisotopic method. This analysis suggested that the parameters of the Hg mass balance model were adequate for predicting Hg concentration in fish. I also showed that Hg concentration tended to be underestimated by the Hg mass balance model when it was combined with feeding rates determined with a laboratory-derived bioenergetic model, probably because activity costs derived in the laboratory do not reflect activity costs of fish in the field. Beside predicting Hg concentration in fish, I showed that this mass balance model could also be used to estimate feeding rates of fish in the field by measuring the concentration of Hg in fish. This approach was validated using data obtained from a published experiment. It was also successfully tested using independent estimates of feeding rates obtained with a radioisotopic method. I applied this Hg mass balance model to compare the energy budget of sympatric populations of dwarf and normal whitefish (Coregonus clupeaformis). This analysis showed that dwarf whitefish consumed 40--50% more food than normal whitefi
3
Hinsley, Shelley Ann. "Bioenergetics of desert birds (Sandgrouse : Peteroclididae)." Electronic Thesis or Dissertation, Cardiff University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316237.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Trudel, Marc. "Bioenergetics and mercury dynamics in fish." Electronic thesis or dissertation, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0035/NQ64684.pdf.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Smolkova, Katarina. "Non-canonical bioenergetics of the cell." Electronic Thesis or Dissertation, Bordeaux 2, 2009. http://www.theses.fr/2009BOR21700.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Non-canonical bioenergetics concerns with those physiological and pathophysiological situations under which ATP synthesis is suppressed. This thesis brings an outcome of three types of studies within the field of the non-canonical bioenergetics, investigating specific bioenergetic phenotypes of cancer cells, on one hand; and a role of mitochondrial uncoupling proteins as deduced from their transcript distribution in various tissues and organs; plus a role of a novel and likely pro-apoptotic factor CIDEa in mitochondria. Cancer cells generally present abnormal bioenergetic properties including an elevated glucose uptake, a high glycolysis and a poorly efficient oxidative phosphorylation system. However, the determinants of cancer cells metabolic reprogramming remain unknown. The main question in this project was how environmental conditions in vivo can influence functioning of mitochondrial OXPHOS, because details of mitochondrial bioenergetics of cancer cells is poorly documented. We have combined two conditions, namely glucose and oxygen deprivation, to measure their potential interaction. We examined the impact of glucose deprivation and oxygen deprivation on cell survival, overall bioenergetics and OXPHOS protein expression. As a model, we have chosen a human breast carcinoma (HTB-126) and appropriate control (HTB-125) cultured cells, as large fraction of breast malignancies exhibit hypoxic tumor regions with low oxygen concentrations and poor glucose delivery. The results demonstrate that glucose presence or absence largely influence functioning of mitochochondrial oxidative phosphorylation. The level of mitochondrial respiration capacity is regulated by glucose; by Crabtree effect, by energy substrate channeling towards anabolic pathways that support cell growth and by mitochondrial biogenesis pathways. Both oxygen deprivation and glucose deprivation can remodel the OXPHOS system, albeit in opposite directions. As an adaptative response to hypoxia, glucose inhibits mitochondrial oxidative phosphorylation to the larger extent than in normoxia. We concluded that the energy profile of cancer cells can be determined by specific balance between two main environmental stresses, glucose and oxygen deprivation. Thus, variability of intratumoral environment might explain the variability of cancer cells´ bioenergetic profile. Mitochondrial uncoupling proteins are proteins of inner mitochondrial membrane that uncouple respiration from ATP synthesis by their protonophoric activity. Originally determined tissue distribution seems to be invalid, since novel findings show that UCP1 is not restricted exclusively to brown fat and that originally considered brain-specific isoforms UCP4 and UCP5 might have wider tissue distribution. Hence, in second part of this thesis, I discuss consequences of findings of UCPn transcripts in the studied mouse and rat tissues. We have shown that mRNA of UCPn varies up to four orders of magnitude in rat and mouse tissues with highest expression in rat spleen, rat and mouse lung, and rat heart. Levels of the same order of magnitude were found for UCP3 mRNA in rat 100 and mouse skeletal muscle, for UCP4 and UCP5 mRNA in mouse brain, and for UCP2 and UCP5 mRNA in mouse white adipose tissue. Further, we have shown that expression pattern of UCPn varies between animal species, rat versus mouse, such as the dominance of UCP3/UCP5 vs. UCP2 transcript in mouse heart and vice versa in rat heart; or UCP2 (UCP5) dominance in rat brain contrary to 10-fold higher UCP4 and UCP5 dominance in mouse brain. spontaneous apoptosis due to CIDEa overexpression in HeLa cells, adapted for a tetracycline-inducible CIDEa expression, a portion of mitochondria-localized CIDEa molecules migrates to cytosol or nucleus
Résumé non disponible
6
Ferng, Alice Shirong. "Cardiac Organogenesis: 3D Bioscaffolds, Bioenergetics and Regeneration." Electronic Dissertation, The University of Arizona, 2015. http://hdl.handle.net/10150/596090.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Each year the Organ Procurement and Transplantation Network (OPTN) reports an increase in patients requiring an organ transplant without an increase in available donor organs, leading to a transplant gap that continues to widen. Over 70% of donor hearts are deemed unsuitable for transplantation each year, and a large number of these organs (~50%) are discarded due to poor organ function, decreased ejection fraction, disease, or cardiac arrest (Scientific Registry of Transplant Recipients (SRTR) Annual Data Report 2011).We therefore set out to improve knowledge in the field of cardiac transplantation in terms of organogenesis, bioenergetics, and regeneration. The main goal through tissue bioengineering is to regenerate and salvage discarded hearts through organogenesis, or to lengthen the total organ preservation time such that organs would not be thrown away while a recipient was waiting to be found. Our first hypothesis was that an optimized acellular extracellular matrix scaffold would allow for cell adherence, growth and proliferation, and could potentially be grown into a clinically transplantable organ. To achieve these goals, an optimized protocol was developed for the total acellularization of a whole porcine heart, leaving behind a 3D bioscaffold. We showed that acellularized matrices could be successfully seeded using endothelial cells for acellular vasculature and stem cells for other acellular tissues, both as a 2D matrix and within a constantly perfused 3D Langendorff setup bioreactor. In order to best understand cell-cell and cell-matrix interactions, cellular bioenergetics were evaluated. We hypothesized that the bioenergetic demand of the type and anatomical origin of stem cells would affect the regeneration potential dependent on intrinsic metabolic demand. We therefore showed a differential of the bioenergetic profiles of human adipose-derived stem cells isolated from various adipose depots, concluding that the physiological microenvironment that supports stem cells in specific anatomic locations can regulate how stem cells participate in tissue regeneration, maintenance and repair, and also will vary based on donor-differences. During organ transplantation, organ preservation solutions are created for use at specific conditions, such as on ice or at room temperature. We hypothesized that hypothermia would slow down cellular metabolism, and that solutions containing a higher content of antioxidants and other protective substrates against ischemic reperfusion injury would create the best organ storage conditions. We tested three organ preservation solutions against control media and normal saline at 4 and 21 degrees C, for 4 to 8 hours, investigating the bioenergetics of organ preservation solution effects on cardiac cells. By simulating clinical conditions, we were able to determine that one of our solutions was ideal and had protective effects for cells for up to 8 hours at 4 degrees C. Finally, we believed that studying existing cardiac patches and optimizing cardiac matrix design would lead to improved cardiac physiological function and would aid in healing and repair during cardiac surgery. Following a clinical case report showing new cardiac tissue growth after implantation of an acellular porcine extracellular matrix, we devised a proof-of-concept study to show that clinical matrices could be easily cultured in vitro. We successfully seeded these clinical matrices using human amniotic stem cells, a commonly used cell type for regeneration and repair after surgery. Our preliminary studies suggest that preconditioned matrices can be potentially used clinically for greater efficacy and tissue regeneration.
7
Roach, Ty Noble Frederick. "Nonequilibrium Thermodynamics, Microbial Bioenergetics, and Community Ecology." Thesis, University of California, San Diego, 2005. http://pqdtopen.proquest.com/#viewpdf?dispub=10827422.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

While it is clear that thermodynamics plays a nontrivial role in biological processes, exactly how this affects the macroscopic structuring of living systems is not fully understood. Thus, the objective of this dissertation was to investigate how thermodynamic variables such as exergy, entropy, and information are involved in biological processes such as cellular metabolism, ecological succession, and evolution. To this end, I have used a combination of mathematical modelling, in silico simulation, and both laboratory- and field-based experimentation.

To begin the dissertation, I review the basic tenets of biological thermodynamics and synthesize them with modern fluctuation theory, information theory, and finite time thermodynamics. In this review, I develop hypotheses concerning how entropy production rate changes across various time scales and exergy inputs. To begin testing these hypotheses I utilized a stochastic, agent-based, mathematical model of ecological evolution, The Tangled Nature Model. This model allows one to observe the dynamics of entropy production over time scales that would not be possible in real biological systems (i.e., 106 generations). The results of the model’s simulations demonstrate that the ecological communities generated by the model’s dynamics have increasing entropies, and that this leads to emergent order, organization, and complexity over time. To continue to examine the role of thermodynamics in biological processes I investigated the bioenergetics of marine microbes associated with benthic substrates on coral reefs. By utilizing both mesocosm and in situ experiments I have shown that these microbes change their power output, oxygen uptake, and community structure depending upon their available exergy.

Overall, the data presented herein demonstrates that ecological structuring and evolutionary change are, at least in part, determined by underlying thermodynamic mechanisms. Recognizing how physical processes affect biological dynamics allows for a more holistic understanding of biology at all scales from biochemistry, to ecological succession, and even long-term evolutionary change.

8
Li, Zhaoqi Ph D. Massachusetts Institute of Technology. "Bioenergetics and metabolism of eukaryotic cell proliferation." Thesis, Massachusetts Institute of Technology, 2005. https://hdl.handle.net/1721.1/130658.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph. D. in Biochemistry, Massachusetts Institute of Technology, Department of Biology, February, 2021
Cataloged from the official PDF of thesis. "February 2021." Vita. Page 179 blank.
Includes bibliographical references.
Cellular growth and proliferation necessitates the transformation of cell-external nutrients into biomass. Strategies of biomass accumulation across the kingdoms of life are diverse and range from carbon fixation by autotrophic organisms to direct biomass incorporation of consumed nutrients by heterotrophic organisms. The goal of this dissertation is to better understand the divergent and convergent modes of metabolism that support biomass accumulation and proliferation in eukaryotic cells. We first determined that the underlying mechanism behind why rapidly proliferating cells preferentially ferment the terminal glycolytic product pyruvate is due to an intrinsic deficiency of respiration to regenerate electron acceptors. We tested this model across an assorted array of proliferating cells and organisms ranging from human cancer cells to the baker's yeast Saccharomyces cerevesiae. We next determined that a major metabolic pathway of avid electron acceptor consumption in the context of biomass accumulation is the synthesis of lipids. Insights from this work has led to the realization that net-reductive pathways such as lipid synthesis may be rate-limited by oxidative reactions. Lastly, we established the green algae Chlorella vulgaris as a model system to study the comparative metabolism of photoautotrophic and heterotrophic growth. We determined that heterotrophic growth of plant cells is associated with aerobic glycolysis in a mechanism that may be suppressed by light. Collectively, these studies contribute to a more holistic understanding of the bioenergetics and metabolic pathways employed by eukaryotic cells to accumulate biomass and lay the foundation for future studies to understand proliferative metabolism.
by Zhaoqi Li.
Ph. D. in Biochemistry
Ph.D.inBiochemistry Massachusetts Institute of Technology, Department of Biology
9
Hislop, Michael Stuart. "The effect of anabolic-androgenic hormones on postprandial triglyceridaemia and lipoprotein profiles in man." Master Thesis, University of Cape Town, 1997. http://hdl.handle.net/11427/26978.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
It has been hypothesised that endogenous testosterone and AAS may predispose humans to premature CHD. However, there is no direct evidence to link these hormones with a greater prevalence of premature CHD. The aim of this thesis was to better describe atherosclerotic risk associated with these hormones by clarifying their effect on additional risk factors for premature atherosclerosis. Little is known about the effect of testosterone and AAS on 'atherogenic dyslipidaemia', a phenotype characterised by elevated postprandial triglyceridaemia, small dense LDL and a low HDLC concentration, which confers a high risk of CHD. Accordingly, the magnitude of postprandial triglyceridaemia, LDL and HDL particle size, and LDLC, HDLC and Lp(a) concentration were compared in male (n=9) and female (n=3) bodybuilders after self administration of AAS for 5-6 weeks (ON cycle) and again after a 4-6 week 'washout' period (OFF cycle), and in normal males (T) (n=10) before and during a reversible suppression of endogenous testosterone, induced using a GnRH agonist (triptorelin), and in a control group (C) (n=8). Lipoprotein size was assessed by gradient gel electrophoresis (GGE), lipoprotein concentrations by immuno and enzymatic assay, and postprandial triglyceridaemia by a standardised oral fat tolerance test (65g/m² ). HDLC decreased in male bodybuilders (0.94±0.30 vs 0.70±0.27 mmol/L, p=0.004; x ± SD) and female bodybuilders (1.3±0.5 vs 0.8±0.2 mmol/L) ON cycle. GGE studies suggested that mostly HDL₂ was reduced. There were no significant reductions in LDL particle size ON cycle. Two males had larger LDL species ON cycle. Lp(a) decreased in male bodybuilders (124.7±128.0 to 69.3±73.3 U/L, p=0.008). ON cycle postprandial triglyceride excursion was unchanged in female bodybuilders and reduced (11.6±10.0 vs 7.5±5.4 mmol/L.hr; p=0.027) in male bodybuilders. In the triptorelin study, HDLC was increased in T (1.07±0.18 vs 1.41±0.28 mmol/L, p=0.002) and not in C. GGE studies indicated an increase of HDL₂ in five T subjects and no increase in C. Total cholesterol increased in T (4.77±0.80 vs 5.24±1.04 mmol/L, p=0.039) but not in C. LDL size increased in four T subjects, and not in C. Lp(a) increased in T (277.9±149.l vs 376.5±222.2 U/L, p=0.004), but not in C. Postprandial triglyceridaemia was unchanged in both T and C. The results of these studies did not show any additional atherogenic effects of endogenous testosterone or AAS in humans. Rather, a suppression of Lp(a) may be an antiatherogenic effect of these hormones. A reduced postprandial triglyceridaemia and increased LDL size in individuals who are predisposed to 'atherogenic dyslipidaemia', may be further antiatherogenic effects of AAS use.
10
Del, Sole Marianna <1981&gt. "Effect of hypoxia and hyperglycemia on cell bioenergetics." Doctoral Thesis, Alma Mater Studiorum - Università di Bologna, 2006. http://amsdottorato.unibo.it/4732/.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mitochondria have a central role in energy supply in cells, ROS production and apoptosis and have been implicated in several human disease and mitochondrial dysfunctions in hypoxia have been related with disorders like Type II Diabetes, Alzheimer Disease, inflammation, cancer and ischemia/reperfusion in heart. When oxygen availability becomes limiting in cells, mitochondrial functions are modulated to allow biologic adaptation. Cells exposed to a reduced oxygen concentration readily respond by adaptive mechanisms to maintain the physiological ATP/ADP ratio, essential for their functions and survival. In the beginning, the AMP-activated protein kinase (AMPK) pathway is activated, but the responsiveness to prolonged hypoxia requires the stimulation of hypoxia-inducible factors (HIFs). In this work we report a study of the mitochondrial bioenergetics of primary cells exposed to a prolonged hypoxic period . To shine light on this issue we examined the bioenergetics of fibroblast mitochondria cultured in hypoxic atmospheres (1% O2) for 72 hours. Here we report on the mitochondrial organization in cells and on their contribution to the cellular energy state. Our results indicate that prolonged hypoxia cause a significant reduction of mitochondrial mass and of the quantity of the oxidative phosphorylation complexes. Hypoxia is also responsible to damage mitochondrial complexes as shown after normalization versus citrate synthase activity. HIF-1α plays a pivotal role in wound healing, and its expression in the multistage process of normal wound healing has been well characterized, it is necessary for cell motility, expression of angiogenic growth factor and recruitment of endothelial progenitor cells. We studied hypoxia in the pathological status of diabetes and complications of diabetes and we evaluated the combined effect of hyperglycemia and hypoxia on human dermal fibroblasts (HDFs) and human dermal micro-vascular endothelial cells (HDMECs) that were grown in high glucose, low glucose concentrations and mannitol as control for the osmotic challenge.
I mitocondri hanno un ruolo fondamentale nella produzione di energia nella cellula, ma sono coinvolti anche in altri processi tra cui la produzione di ROS e l’apoptosi. Disfunzioni del metabolismo mitocondriale sono state associate a diversi disordini, tra cui: diabete di tipo II, malattia si Alzheimer, infiammazione, cancro ed ischemia cardiaca. Quando i livelli di ossigeno nella cellula diventano limitanti, la funzione mitocondriale viene modulata per consentire l’adattamento biologico. La via dell’AMP- activated protein kinase (AMPK) ha il compito di monitorare lo stato energetico della cellula mantenendo i livelli fisioligici di ATP/ADP. In seguito all’esposizione prolungata in ambiente ipossico, l’attivazione di HIF-1 e’ in grado di upregolare diversi geni coinvolti nella sopravvivenza cellulare a basse concentrazioni di ossigeno. In questo lavoro, e’ stata valutata la bioenergetica mitocondriale in fibroblasti primari coltivati a basse concentrazioni di ossigeno (1 % O2) per 72 ore; in particolare, abbiamo preso in considerazione l’organizzazione mitocondriale nella cellula e il loro contributo nel mantenere lo stato energetico cellulare. I nostri risultati indicano che l’esposizione prolungata all’ipossia causa una significativa riduzione della massa mitocondriale e della quantita’ dei complessi della fosforilazione ossidativa, nonostante le cellule siano in grado di mantenere i livelli intracellulari di ATP. Inoltre abbiamo studiato l’ipossia nel contesto patologico del diabete ed in particolare delle complicanze del diabete. E’ noto che l’iperglicemia e l’ipossia, dovuta ad ischemia a danni vascolari, hanno un ruolo importante nell’insorgenza delle complicanze del diabete. HIF-1α rappresenta uno stimolo nella rigenerazione delle ferite, in quanto stimola la vascolarizzazione e la migrazione dei cheranociti ed e’ stato ipotizzato che le cellule perdano la capacita’ di adattarsi e rispondere all’ipossia quando sono coltivate in presenza di elevate concentrazioni di glucosio (>25 mM). Abbiamo valutato il ruolo della destabilizzazione di HIF-1α nella produzione di ROS, considerati i principali responsabili della progressione del diabete.

Книги з теми "Bioenergetics":

1
Berkin, Jeffrey W. Bioenergetics. Hauppauge, N.Y: Nova Science Publishers, 2010.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Lowen, Alexander. Bioenergetics. New York: Penguin/Arkana, 1994.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Clark, Kevin B. Bioenergetics. Rijeka, Croatia: InTech, 2012.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Schäfer, Günter, and Harvey S. Penefsky, eds. Bioenergetics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78622-1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Gräber, Peter, Giulio Milazzo, and Dieter Walz, eds. Bioenergetics. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8994-0.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Kim, Chong H., and Takayuki Ozawa, eds. Bioenergetics. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5835-0.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Skulachev, V. P. Membrane bioenergetics. Berlin: Springer-Verlag, 1988.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Nicholls, David G. Bioenergetics 2. London: Academic Press, 1992.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Jobling, Malcolm. Fish bioenergetics. London: Chapman and Hall, 1994.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Skulachev, Vladimir P. Membrane Bioenergetics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72978-2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Bioenergetics":

1
Petty, Howard R. "Bioenergetics." In Molecular Biology of Membranes, 123–88. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1146-9_5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Stenesh, J. "Bioenergetics." In Biochemistry, 221–35. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9427-4_9.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Amils, Ricardo. "Bioenergetics." In Encyclopedia of Astrobiology, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_746-2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Parke, William C. "Bioenergetics." In Biophysics, 325–420. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44146-3_9.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Mehlhorn, Heinz. "Bioenergetics." In Encyclopedia of Parasitology, 327. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-43978-4_404.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Mehlhorn, Heinz. "Bioenergetics." In Encyclopedia of Parasitology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-27769-6_404-2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Amils, Ricardo. "Bioenergetics." In Encyclopedia of Astrobiology, 166–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_746.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Esteban, Genoveva F., and Tom M. Fenchel. "Bioenergetics." In Ecology of Protozoa, 55–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59979-9_5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Nederkoorn, Paul H. J., Henk Timmerman, and Gabriëlle M. Donné-Op den Kelder. "Bioenergetics." In Signal Transduction by G Protein-Coupled Receptors, 3–16. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4684-1407-3_1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Wootton, Robert J. "Bioenergetics." In Ecology of Teleost Fishes, 73–96. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0829-1_4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Bioenergetics":

1
Xu, Weiling, Suzy A. Comhair, Allison J. Janocha, Lori A. Mavrakis, and Serpil C. Erzurum. "Cellular Bioenergetics In Asthma." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a2807.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Simion, Gabriela. "BIOENERGETICS METHOD FOR BIOSYSTEMS TESTING." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/5.1/s20.019.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Filiou, M. "Stress and bioenergetics: what about mitochondria?" In Abstracts of the 30th Symposium of the AGNP. Georg Thieme Verlag KG, 2017. http://dx.doi.org/10.1055/s-0037-1606411.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Escalona, Emilia, Marcelo Muñoz, Roxana Pincheira, Alvaro A. Elorza, and Ariel F. Castro. "Abstract B083: NUAK1 regulates breast cancer cell bioenergetics." In Abstracts: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1535-7163.targ-19-b083.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Biniecka, Monika, Emese Balogh, Aisling Kennedy, Chin T. Ng, Douglas J. Veale, and Ursula Fearon. "04.20 Oxidative stress alters cellular bioenergetics in inflammatory arthritis." In 37th European Workshop for Rheumatology Research 2–4 March 2017 Athens, Greece. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2016-211051.20.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Morgan Davis Hayes, Hongwei Xin, Hong Li, Timothy Shepherd, Yang Zhao, and John Paul Stinn. "Bioenergetics of Hy-Line Brown Hens in Aviary Houses." In 2012 IX International Livestock Environment Symposium (ILES IX). St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2012. http://dx.doi.org/10.13031/2013.41576.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Hauser, Gary E., John Stark, George Robbins, and Bethel Herrold. "Thermal and Bioenergetics Modeling for Balancing Energy and Environment." In Waterpower Conference 1999. Reston, VA: American Society of Civil Engineers, 1999. http://dx.doi.org/10.1061/40440(1999)49.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
"Solving bioenergetics’ problems with the transmission-line modeling (TLM) method." In 2016 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2016. http://dx.doi.org/10.13031/aim.20162420443.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Heikal, Ahmed. "BIOENERGETICS AND DIFFUSION IN THE CROWDED MILIEU OF LIVING CELLS." In 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.th15.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Drochioiu, Gabi. "BACTERIORHODOPSIN FROM HALOBACTERIUM SALINARIUM IS A KEY COMPOUND IN BIOENERGETICS." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/6.1/s25.074.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Bioenergetics":

1
Lanyi, Janos K., and Sergei Balashov. Bioenergetics of halophiles. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1239563.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Packer, L. The bioenergetics of salt tolerance. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5141950.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Spotila, J. R. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/6658267.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Trappe, Scott A. Scientific/Technical Report Bioenergetics Research Initiative Award number-DE-FG02-05ER64092. Office of Scientific and Technical Information (OSTI), December 2009. http://dx.doi.org/10.2172/968497.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Rondorf, Dennis W. Bioenergetics of Juvenile Salmon During the Spring Outmigration, 1983 Annual Report. Office of Scientific and Technical Information (OSTI), July 1985. http://dx.doi.org/10.2172/5421371.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Ludden, Paul W. The Biochemistry, Bioenergetics, and Physiology of CO-Dependent Growth of Rhodospirillum rubrum. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/850014.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Ludden, P. W., and G. P. Roberts. [The biochemistry, bioenergetics, and physiology of the CO-dependent growth of Rhodospirillum rubrum]. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7096789.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Eggleton, Michael A., Steve Miranda, and James P. Kirk. Potential for Predation by Fishes to Impact Zebra Mussels Dreissena polymorpha: Insight from Bioenergetics Models. Fort Belvoir, VA: Defense Technical Information Center, December 2003. http://dx.doi.org/10.21236/ada422134.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Wells, Vanessa. CE-QUAL-W2 Water Quality and Fish-bioenergetics Model of Chester Morse Lake and the Cedar River. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.324.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Spotila, J. R. Constraints of bioenergetics on the ecology and distribution of vertebrate ectotherms. Final report, 1 September 1988--30 June 1990. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10140266.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії

Будь ласка, вимкніть ваш блокувальник реклами

Adblock logo Adblock logo Adblock logo

"Grafiati" – це незалежний сервіс, що забезпечує унікальну якість оформлення бібліографічних посилань. Ви можете користуватися нашим сайтом безоплатно, дозволивши показ реклами, або оформити передплату.

Передплатити