Дисертації з теми "Cellulose nano fibres"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Cellulose nano fibres.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-18 дисертацій для дослідження на тему "Cellulose nano fibres".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Hernandez, Zurine. "Conditions required for spinning continuous fibres from cellulose nano-fibrils." Thesis, Edinburgh Napier University, 2012. http://researchrepository.napier.ac.uk/Output/5286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The thesis describes a programme of work to develop a novel cellulose based fibre. The most important innovative step in this work lies in the manufacture of the fibre from a chiral nematic suspension of plant based cellulose nano-fibrils. In the course of the project a number of key steps have been addressed in the development process. These included: • Developing a method for extraction of nano-fibrils from wood and cotton based pulp and filter paper; • Development of concentrated chiral nematic suspensions of the nano-fibrils suitable for extrusion (spinning); • Spinning a continuous fibre or filament; • Fibre characterization. A key objective of the work was to understand the factors that could contribute to nematic order of the nano-fibrils in the fibre and produce a high strength fibre. The fibres developed showed reasonably good strength potential and good stiffness properties with the best fibres having a tenacity of between 40 and 100 cN/tex and an initial modulus of 5000-6000 cN/tex. These values fall midway between lyocell and Kevlar. Two patents have to date been published based upon the developments described in this work (Turner et al., 2010, 2011). However, the work highlighted a number of gaps in current knowledge that prevented development of the full potential strength properties of these fibres. These included: • Incomplete knowledge of the gel conditions required to achieve complete alignment of the fibrils in the spinning process; • Challenges in being able to draw the fibre sufficiently during spinning to produce target fibre diameters of 5-10μm; • The linear density of the spun fibres had a key impact on fibre strength. It was only when linear density values dropped below 1 tex (1g/km) that a significant increase in fibre strength occurred. Factors that had an important impact on linear density included solids content of the suspension, zeta potential, extrusion rate and fibre drying temperature. All these factors relate directly to the mobility of the cellulose nano-fibrils and their subsequent ability to align under flow during spinning. The thesis can be seen as a first phase in an ongoing process to develop a new approach to the manufacture of cellulose based industrial textile fibres.
2

Jimenez, Saelices Clara. "Développement de matériaux super-isolants thermiques à partir de nano-fibres de cellulose." Thesis, Lorient, 2016. http://www.theses.fr/2016LORIS417/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'objectif de cette thèse est la préparation d’aérogels biosourcés ayant des propriétés de super-isolation thermique. Pour cela, nous avons choisi de développer de nouveaux aérogels à base de nanofibres de cellulose (NFC). Les aérogels ont été préparés par lyophilisation. Dans un premier temps, une analyse des paramètres expérimentaux jouant un rôle sur la morphologie et les propriétés physico-chimiques des aérogels a été réalisée afin d’obtenir les meilleures propriétés d’isolation thermique. Avec une suspension de NFC à 2% en masse, sans ajout de sels et sans faire varier le pH, une lyophilisation réalisée dans des moules d’aluminium à une température de -80°C a permis d’obtenir des aérogels ayant une conductivité thermique de 0,024 W/m.K. Afin de diminuer cette conductivité thermique, nous avons choisi de réduire la taille des pores pour obtenir un effet Knudsen. Pour cela, une nouvelle technique de séchage a été proposée : la lyophilisation par pulvérisation. Les aérogels préparés dans les mêmes conditions expérimentales que précédemment avec cette technique ont des propriétés thermiques super-isolantes (0,018 W/m.K) grâce à la nano-structuration du réseau poreux. Finalement, un nouveau dispositif expérimental a été développé pour caractériser plus finement les propriétés thermiques des aérogels. C’est un dispositif transitoire impulsionnel qui permet d'estimer simultanément la contribution de la conduction solide et gazeuse, l'effet radiatif et la diffusivité thermique grâce à un modèle théorique simple. Ce dispositif permettra d’approfondir l’étude complexe du transfert thermique à travers des matériaux poreux semi-transparents tels que les aérogels
The objective of this thesis is the preparation of renewable aerogels having thermal super-insulating properties. To do it, we designed new aerogels from nanofibrillated cellulose (NFC) by freeze-drying. This technique is simple and has the advantage of not using organic solvents. First of all, the parameters playing a role on the aerogel morphology and physico-chemical properties of the aerogels were analyzed to get the best thermal insulating properties. Using 2 wt% NFC suspensions, without addition of salts, keeping the initial pH, the obtained freeze-dried aerogels in alumina molds at -80 °C have a thermal conductivity of 0.024 W/m.K. In order to reduce the pore size and to improve the thermal insulating properties by Knudsen effect, a new drying technique was proposed: the spray freeze-drying. Aerogels prepared in the same experimental conditions with this technique have thermal super-insulating properties (0.018 W/m.K) thanks to the nanostructuration of the porous network. Finally, a new device was designed to characterize more precisely the thermal properties of aerogels. This is an impulsive transient device, which can estimate simultaneously the contribution of solid and gas conduction, the radiative effect and thermal diffusivity using a simple theoretical model. This device will allow studying complex heat transfer through porous semi-transparent materials such as aerogels
3

Phillips, Justin. "Dextrin nanocomposites and deep eutectic solvents as matrices for solid dosage forms." Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/81724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Controlled-release formulations for pesticide applications act as depot systems that continuously release the active ingredients into the environment over a speci ed period, usually from months to years. However, some applications require fast-dissolving drug delivery. The interest of this research is in fast-release of water-insoluble pesticides into aquatic environments. This study considered the use of dextrin starch and urea eutectics as fast release, solid dosage carrier forms that contain an active ingredient. The chosen active for this study is an acaricide called amitraz (N-methylbis-(2,4-xylyliminomethyl)- methylamine). The focus is on matrix-based dosage forms such as tablets, granules or bres that either disintegrate or dissolve to release a water-insoluble active. These types of dosage forms can be fabricated using processes such as lyophilisation, spray drying, solvent casting, hot melt extrusion, compression moulding, wet granulation, compaction and electrospinning. A simple melt-casting procedure has been discussed in the present work. Dextrin is a water-soluble form of partially hydrolysed starch and is a promising candidate matrix material for dissolving solid dosage forms. The molecular weight of the dextrin was analysed with MALDI-TOF methods and rheological relations. Glycerolplasticized thermoplastic dextrin-based nanocomposites were prepared with a twin-screw extrusion-compounding process. The nano llers included a layered double hydroxide (LDH), cellulose nano bres (CNF) and stearic acid. The time-dependent retrogradation of the compounds was monitored by X-ray di raction (XRD) and dynamic mechanical thermal analysis (DMA). XRD showed that the inclusion of stearic acid in the formulations led to the formation of an amylose-lipid complex and a stable crystallinity during ageing. Dissolution rates in water for samples containing dextrin starch, were characterised using an iodine indicator and UV-visible spectroscopy. High pressure di erential scanning calorimetry (HPDSC) indicated that the addition of stearic acid led to the formation of amylose-lipid complexes (ALC's). An additive system containing stearic acid and CNF was deemed suitable for compounding with amitraz. Compounding at temperatures above the melting point of the latter led, on dissolution in water, to the release of much ner particles of the acaricide, which was con rmed with particle size analysis (PSA). The addition of the acaricide caused an apparent increase in the dissolution rate of the thermoplastic dextrin. Two eutectic urea systems were considered for casting with amitraz. A eutectic system of urea and acetamide was found to display a melting point of 44 C at a 37 wt.% urea composition. The other system consisting of urea and 1,3-dimethylurea displayed a eutectic point at 32 wt.% urea composition which melted at 59 C. Di erential scanning calorimetry (DSC), however, con rmed a melting point depression due to a high moisture content caused by the compounds high hygroscopicity. The endotherm of the sample containing no excess moisture showed a melting point of 70 C. The 1,3-dimethylurea system was deemed suitable for casting with amitraz. XRD of the eutectic composition indicated a small amount of co-crystallisation. The samples were cast as disks of various diameters while keeping the height of the disks constant. The creation of the cast disks showed automatic generation of a nely dispersed form of the active through the process of melting the deep eutectic solvent, the dissolution of the active and its phase separation on cooling and solidi cation of the eutectic. This implies that ne grinding of the actives might not be necessary. Eutectic casts containing 20 wt.% amitraz dissolved at a slower rate than casts not containing the hydrophobic active ingredient. The advantageous features of these casts were exempli ed using the acaricide incorporated into the urea & 1,3-dimethylurea eutectic. This work provides two safe, biodegradable and water soluble materials for use as a matrix to contain active ingredients. One material, the eutectic organic salt casts, can be produced at low temperatures (<100 C) and can be directly cast into storage containers. The complete dissolution of the cast compounded with a hydrophilic active is rapid (4-6 min). The second material, a thermoplastic dextrin, was melt compounded in an extruder at temperatures not exceeding 120 C. This compound containing 20 wt.% of the active dissolved over a 12 hour period. Dextrin, known to be widely used as an adhesive, will aid in the adhesion of the active ingredient to the surface where it must be used.
Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2019.
PAMSA
Department of Science and Innovation under Grant DST/CON 0004/2019
Chemical Engineering
MEng (Chemical Engineering)
Unrestricted
4

Foruzanmehr, Mohammadreza. "Greffage d’un film mince de nano-TiO2 sur les fibres naturelles cellulosiques pour le renforcement de biocomposites polymériques." Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract : Natural materials have received a full attention in many applications because they are degradable and derived directly from earth. In addition to these benefits, natural materials can be obtained from renewable resources such as plants (i.e. cellulosic fibers like flax, hemp, jute, and etc). Being cheap and light in weight, the cellulosic natural fiber is a good candidate for reinforcing bio-based polymer composites. However, the hydrophilic nature -resulted from the presence of hydroxyl groups in the structure of these fibers- restricts the application of these fibers in the polymeric matrices. This is because of weak interfacial adhesion, and difficulties in mixing due to poor wettability of the fibers within the matrices. Many attempts have been done to modify surface properties of natural fibers including physical, chemical, and physico-chemical treatments but on the one hand, these treatments are unable to cure the intrinsic defects of the surface of the fibers and on the other hand they cannot improve moisture, and alkali resistance of the fibers. However, the creation of a thin film on the fibers would achieve the mentioned objectives. This study aims firstly to functionalize the flax fibers by using selective oxidation of hydroxyl groups existed in cellulose structure to pave the way for better adhesion of subsequent amphiphilic TiO[subscript 2] thin films created by Sol-Gel technique. This method is capable of creating a very thin layer of metallic oxide on a substrate. In the next step, the effect of oxidation on the interfacial adhesion between the TiO[subscript 2] film and the fiber and thus on the physical and mechanical properties of the fiber was characterized. Eventually, the TiO[subscript 2] grafted fibers with and without oxidation were used to reinforce poly lactic acid (PLA). Tensile, impact, and short beam shear tests were performed to characterize the mechanical properties while Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic mechanical analysis (DMA), and moisture absorption were used to show the physical properties of the composites. Results showed a significant increase in physical and mechanical properties of flax fibers when the fibers were oxidized prior to TiO[subscript 2] grafting. Moreover, the TiO[subscript 2] grafted oxidized fiber caused significant changes when they were used as reinforcements in PLA. A higher interfacial strength and less amount of water absorption were obtained in comparison with the reference samples.
Résumé : Les matériaux naturels retiennent actuellement toute l’attention dans de nombreuses applications et ceci, car ils sont biodégradables et proviennent de ressources renouvelables telles que les plantes (le lin, le chanvre, le jute, etc.). De plus, du fait de leur faible coût et de leur faible densité, les fibres naturelles cellulosiques sont d’excellents candidats pour le renforcement des composites polymères bio-sourcés. Cependant, malgré leurs nombreux avantages, leur caractère hydrophile - résultant de la présence de fonctions hydroxyle dans leur structure - limite leur application dans les matrices polymères. Ceci est dû à la faible mouillabilité existant entre les fibres cellulosiques et les matrices polymériques (généralement hydrophobes) causant une faible adhésion et une mauvaise dispersion des fibres dans la matrice. De nombreuses tentatives de modification des propriétés de surface des fibres naturelles par des traitements physiques, chimiques, ainsi que physico-chimiques ont été effectuées. Cependant, ces traitements se sont révélés incapables de guérir les défauts intrinsèques présents à la surface des fibres et d’améliorer leur résistance à l'humidité et aux alcalis. Une solution permettant d’atteindre les objectifs mentionnés serait la création d’un film mince à la surface des fibres. Cette étude vise tout d'abord à fonctionnaliser les fibres de lin par une oxydation sélective des fonctions hydroxyle présentes sur la cellulose. Cette oxydation permet la création d’une meilleure adhésion entre la surface des fibres et les couches minces amphiphiles de TiO[indice inférieur 2] créées par la technique sol-gel. En effet, le procédé sol-gel est une méthode dite douce capable de créer une fine couche d'oxydes métalliques à la surface d’un substrat. Dans l'étape suivante, l'effet de l'oxydation sur l'adhésion interfaciale entre la couche de TiO[indice inférieur 2] et la fibre, et donc sur les propriétés physiques et mécaniques de la fibre, a été caractérisé. Enfin, les fibres recouvertes de TiO[indice inférieur 2] avec et sans oxydation préalable ont été utilisées pour renforcer l’acide polylactique (PLA). Des tests de traction, d’impact et de cisaillement ont été réalisés afin de caractériser les propriétés mécaniques des composites. De plus, de la calorimétrie différentielle à balayage (DSC), des mesures d'absorption d'humidité ainsi que des analyses thermogravimétrique (ATG) et mécanique dynamique (DMA) ont été effectuées dans le but de déterminer les propriétés physiques des composites. Les résultats ont montré une augmentation significative des propriétés physiques et mécaniques des fibres de lin recouvertes de TiO[indice inférieur 2], en particulier lorsque les fibres ont été préalablement oxydées. De plus, ces fibres à la fois oxydées et greffées de TiO[indice inférieur 2] ont causé de grands changements lorsque utilisées dans le renforcement du PLA. En effet, une meilleure résistance au cisaillement interlaminaire et une diminution de la quantité d’eau absorbée est obtenue en comparaison avec les échantillons de référence.
5

Privas, Edwige. "Matériaux ligno-cellulosiques : "Élaboration et caractérisation"." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2013. http://pastel.archives-ouvertes.fr/pastel-00933754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'objectif de ce travail est de développer l'utilisation de la biomasse ligno-cellulosique dans le domaine des matériaux. Ce travail explore trois voies différentes d'utilisation de la ligno-cellulose afin de balayer un large spectre de constituants et de matériaux finaux. La première voie concerne l'incorporation de fibres naturelles dans la fabrication de panneaux utilisant la lignine comme adhésif. Des améliorations dans la fabrication de ces panneaux de fibres ont été apportées, par traitement chimique ou ajout de nouveaux compatibilisants, permettant un renforcement des propriétés mécaniques. La seconde voie a consisté à développer un procédé original de mise en forme sous haute pression testé et mis en place sur du coton dans le but d'obtenir des objets tridimensionnels sans étape de dissolution/régénération de la cellulose. Une fois le protocole défini, les effets des paramètres de mise en forme et de la variété de coton sur la microstructure et les propriétés mécaniques des objets en coton compressé ont été étudiés. Enfin, une troisième voie à consisté à élaborer des matériaux nanocomposites à partir d'hydroxydes double lamellaire modifiés par la lignine (HDL/LS). L'utilisation de cette nanocharge dans l'amidon a montré une capacité de renforcement pour un faible taux de charge. Ce composite amidon-(HDL/LS) a ainsi été utilisé avec une matrice polyéthylène afin d'augmenter la part renouvelable de la matrice sans diminuer significativement ses propriétés mécanique. Ce travail permet d'envisager des développements futurs pour ces différents matériaux développés et offre ainsi de nouvelles possibilités d'utilisation de la biomasse ligno-cellulosique dans l'élaboration de matériaux techniques.
6

Sharma, Sudhir. "Green barrier materials from cellulose nano fibers." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54450.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Renewable, recyclable, and high performing barrier materials were made from cellulose nano fibers. Various strategies to enhance performance in dry, wet and humid conditions were proposed. These methods included thermal treatment to induce hornification, PAE resin based cross linking, and inclusion of high aspect ratio filler materials to form composites. Results indicated that hornification alone, even though effective in enhancing the barrier properties comes at the cost of severe degradation of mechanical properties. In the second case, where a cross linker was used, lower heating temperature limited the degradation of mechanical properties. Moreover, the new bonds included due to cross linking also modified the mechanical properties of the material and cause significant improvement. In the case of inclusion of filler materials, improvement of mechanical properties due to reinforcing effect was observed, and additionally the improvement in barrier properties was observed due to increased tortuosity of the materials. Furthermore, when the composites were made with cross linker, there was a significant improvement in barrier and mechanical properties as compared to the barrier material made from the pure cellulose nano fibers. In all cases the barrier materials were found to be resistant to degradation by water, as measured by water retention value, and surface contact angle. The resistance to water in the first case was as a result of severe hornification of the material. Whereas in the second and third case the cross linking and concomitant limited hornification played a significant role in water resistance. In addition to the three methods to improve barrier properties, the use of nano fibers made from cellulose II was also studied. Different stages of fibrillation of the starting cellulose pulps were studied and the fibers and films made from them were characterized in detail. Results from this study indicated that fibers made from cellulose II pulp are much harder to fibrillate as compared to cellulose I fibers. Moreover, due to fibril aggregation it is harder to form nano fibers from cellulose II. Even though from the perspective of better inter and intra fibril bonding cellulose II might be favorable over cellulose I, significant work in the formation of nano fibers from cellulose II is required before they can be used for making barrier materials.
7

Hussain, Arif. "Adsorption of Polyvinyl Alcohol on Nano-Cellulose Fibers." Thesis, Karlstads universitet, Fakulteten för teknik- och naturvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-6720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nano-cellulose fibers/suspension has very high viscosity, its viscosity has to be lower before it can be applied in the paper coating recipe. For this purpose the adsorption behaviour of polyvinyl alcohol on nano-cellulose fibers were investigated using method developed by Zwick in 1960, based on the formation of PVA-iodide blue complex in the presence of boric acid. The experiments showed that the maximum adsorbed amount i.e. 0.13 g PVA/g NFC was obtained in a dispersion with 0.2 % PVA concentration. It should be possible to further increase the PVA adsorption as the adsorbed amount didn’t reach a saturation point where the PVA adsorption attained a constant value. It was also found that adsorption of PVA on NFC is time dependent. The absorbance measurement after four days of mixing PVA/NFC suspension showed only partially adsorption of PVA on nano-cellulose surface.  An equilibrium time of 10-13 days was needed for PVA to fully adsorb on nano-cellulose fibers surface. Another important observation was that PVA adsorption also depends on the concentration of nano-cellulose fibers. A lower concentration of NFC easily allows PVA to adsorb on its surface, as compared to higher NFC concentration. An important finding during the methodology development was the method to get rid of formation of flocs in the blue iodide complex solution; by slowly addition of reactants, especially the KI/I2 solution under continuous stirring around 60oC the tendency to flocs formation was suppressed.
8

Deng, Xinying. "Toughening of natural-fibre composites using nano- and microcrystalline cellulose particles." Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/64794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Environmental concerns have prompted research into natural materials to improve sustainability. Cellulose has some of the highest mechanical properties among naturally-derived materials, and natural-fibre composites have better specific stiffness than glass-fibre composites, and are thus increasingly used in the transport and construction sectors. However, cellulose is hydrophilic and it is difficult to obtain a uniform dispersion of cellulose modifiers in epoxy polymers. This makes it challenging to achieve high performance natural-fibre composites with good delamination resistance, which is critical in composite applications. Therefore, in the present study, the toughening effect of cellulose modifiers in an anhydride-cured diglycidyl ether of bisphenol-A (DGEBA) epoxy polymer, and in regenerated cellulose-fibre (CeF) composites are investigated. The cellulose modifiers initially agglomerated and sedimented in the epoxy. However, the addition of a silane during the three-roll mill process resolved this issue, and a good dispersion of cellulose modifiers was achieved. The addition of 10 wt% of cellulose modifiers, i.e. microcrystalline cellulose (MCC) and cellulose nanocrystals (CNCs), increased the fracture energy (GC) of the epoxy by more than 100 %, compared with 57 % for nanosilica, which is a well-studied and effective epoxy toughener. Hybridisation of MCC and CNCs with nanosilica or rubber particles, i.e. carboxyl-terminated butadiene-acrylonitrile (CTBN) and core-shell rubber (CSR), generally yielded additive toughening effects since the toughening mechanisms associated with each modifier were largely still present in the hybrids. To assess the effectiveness of the transfer of the increased matrix toughness to fibre composites, plain-weave CeF composites were fabricated using the wet layup process. Their mode I interlaminar fracture energies were compared with the bulk fracture energies, and their properties were benchmarked with glass-fibre (GF) composites. Although GF composites have better tensile properties than CeF composites, the composite propagation fracture energies (GC,prop) of CeF composites (e.g. control-CeF: 1155 J/m2) were about twice those of GF composites (e.g. control-GF: 567 J/m2). This was due to more extensive fibre bridging and crack branching behaviours. Analytical models showed reasonably good agreement with the experimental GC for the epoxy polymers, GF composites and CeF composites. These models were able to predict the significance of various fibre and matrix toughening mechanisms identified through fractography, which also correlated well with experimental observations. The highest GC,prop values obtained for the GF and CeF composites were 901 ± 102 J/m2 and 1537 ± 56 J/m2, respectively, which are 59 % and 33 % higher than their respective control composites. It was found that the GC,prop values did not increase further when matrices with higher toughness were used. Hence, cellulose modifiers can be used to replace nanosilica in hybrid matrices to obtain GF or CeF composites with reasonably high fracture energy and increased renewable content.
9

Peters, Sarah June. "Fracture Toughness Investigations of Micro and Nano Cellulose Fiber Reinforced Ultra High Performance Concrete." Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/PetersSJ2009.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Falcoz-Vigne, Léa. "Caractérisation et modélisation des interactions cellulose - hémicelluloses au sein des microfibrilles de cellulose (MFC)." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV091/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le cadre de cette étude est le coût énergétique lié à la production des Microfibrilles de Cellulose (MFC) qui est aujourd’hui un facteur limitant à son développement à l’échelle industrielle. Le but de cette étude est de caractériser les interactions cellulose/hémicellulose au sein de ces systèmes.Des MFC provenant de différentes pâtes à papier chimiques ont été caractérisées par RMN du solide afin d’obtenir des informations à l’échelle moléculaire. Suite à l’optimisation d’un protocole expérimental, les hémicelluloses contenues dans les MFC issues de pâte kraft de bouleau ont ensuite été extraites avec un rendement de 60% et sont composés uniquement d’un homopolymère de xylan de DP 75.La turbidimétrie a été utilisée pour qualifier la qualité des suspensions, dont il a été montré qu’elle dépend fortement du procédé de mise en pâte et du séchage. Des corrélations positives ont été établies entre l’état de dispersion et les propriétés mécaniques de feuilles de papier additionnées de microfibrilles. L’analyse RMN de modèles biomimétiques reconstitués a confirmé le changement de conformation du xylan lorsqu’il est adsorbé sur la cellulose et les mesures de surface spécifique ont montré que seule la couche de xylan en contact avec la cellulose était concernée par ce changement.Les interactions cellulose/xylane ont été étudiées par RMN du solide et par dynamique moléculaire atomistique (MD). Les simulations MD ont montré que le xylan s’adsorbe parallèlement aux chaines de cellulose. Des mesures d'interaction sur ce système ont conduit à une mesure d'énergie de 9kJ/résidu de xylose.Des tests de mesure d’adhésion ont également été réalisés à partir d’un modèle trois couches constitué de xylan entre deux films de cellulose et une forte adhésion a pu être observée.L’utilisation de xylanase comme prétraitement est proposé pour améliorer la production des MFC
The study was motivated by the necessity to reduce the high energy costs of Micro-Fibrillated Cellulose (MFC) production, which is a limiting factor for its industrial development and aimed at understanding the cellulose/hemicelluloses interaction within this system. MFC resulting from different chemical pulps were characterized by solid-state NMR spectroscopy to get information on the hemicelluloses content and molecular conformation. By optimizing an extraction protocol, more than 60% of the residual hemicelluloses were extracted from birch kraft MFC and characterized as a high purity homopolymer of β-1,4 linked xylan of DP 75.Turbidimetry was used to qualify the quality of the suspensions, which strongly depended on the pulping and drying history. Positive correlations between the state of dispersion, specific surface and mechanical properties of MFC-reinforced handsheets were evidenced.Cellulose/xylan interactions were investigated using solid-state NMR and atomistic molecular dynamics (MD) simulation. NMR spectra confirmed that xylan in contact with cellulose altered its conformation, from the three-fold helix to a presumable cellulose-like two-fold one. In combination with specific surface area measurements, the conformational change was shown to happen only for the first layer of xylan adsorbed in direct interaction with the cellulose surface. MD simulations showed that adsorbed xylan tends to align parallel to the cellulose chain direction fully extended. Interaction energy between xylan chain and cellulose surface estimated with MD was 9kJ/xylose. Then a three-layers system made of xylan between two cellulose films were built to perform adhesion tests that showed strong adhesion between xylan and cellulose surfaces. Xylanase was proposed as a pulp pretreatment for MFC production
11

Gustafsson, Emil. "Tailoring adhesion and wetting properties of cellulose fibers and model surfaces." Licentiate thesis, KTH, Fiberteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-91296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The layer-by-layer (LbL) technique was used to modify the surface of cellulose fibers by consecutive adsorption of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) followed by a final adsorbed layer of anionic paraffin wax colloids. Paper hand sheets made from the modified fibers were found to be highly hydrophobic with a contact angle of 150°. In addition to the significantly increased hydrophobicity, the sheets showed improved mechanical properties, such as a higher tensile strength. Heat treatment of the prepared sheets further enhanced both the mechanical properties and the hydrophobicity. These results demonstrate the flexibility and robustness of the LbL technique, which allows us to combine the known adhesive effect of PAH/PAA LbL films with the functionality of wax nanoparticles, creating a stronger and highly hydrophobic paper. It was further observed that LbL modified sheets without wax also displayed increased hydrophobicity when heat treated. The mechanism was studied through model experiments where LbL films of PAH/PAA were assembled on flat non-porous model cellulose surfaces. Contact angle measurements showed the same trend due to heat treatment of the model films, although, the absolute value of the contact angles were smaller. Analysis using the highly interfacial sensitive vibrational sum frequency spectroscopy technique showed an enrichment of CH3 groups (from the polymer chain ends) at the solid/air interface. These results indicate that during the heat treatment, a reorientation of polymer chains occurs to minimize the surface energy of the LbL film. In the second part of this work, the adhesive interactions between the main constituents of wood fibers were studied using high-resolution measuring techniques and well-defined model films of cellulose, hemicellulose and lignin. Successful surface modification of polydimethylsiloxane (PDMS) caps, needed in the Johnson-Kendall-Roberts (JKR) measuring methodology, by LbL deposition of nanofibrillated cellulose (NFC) and poly(ethylene imine) (PEI) allowed for the first known all-wood biopolymer JKR measurements of the adhesion between cellulose/cellulose, cellulose/lignin and the cellulose/glucomannan surfaces. The work of adhesion on loading and the adhesion hysteresis were similar for all three systems, suggesting that adhesion between the different wood biopolymers does not differ greatly.

QC 20120314

12

Håkansson, Karl. "Orientation of elongated, macro and nano-sized particles in macroscopic flows." Doctoral thesis, KTH, Strömningsfysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-150493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Non-spherical particles are present all around us, in biological, industrial and environmental processes. Making predictions of their impact on us and systems in our vicinity can make life better for everyone here on earth. For example, the ash particles from a volcano eruption are non-spherical and their spreading in the atmosphere can hugely impact the air traffic, as was also proven in 2010. Furthermore, the orientation of the wood fibres in a paper sheet influences the final properties of the paper, and the cause of a specific fibre orientation can be traced back to the fluid flows during the manufacturing process of the paper. In this thesis, experimental and numerical work is presented with the goal to understand and utilize the behavior of elongated particles in fluid flows. Two different experimental setups are used. The first one, a turbulent half channel flow, aims at increasing the understanding of how particles with non-zero inertia behave in turbulence. The second setup is an attempt to design a flow field with the purpose to align nanofibrils and create high performance cellulose filaments. Experiments were performed in a turbulent half channel flow at different flow set- tings with dilute suspensions of cellulose acetate fibres having three different aspect ratios (length to width ratio). The two main results were firstly that the fibres agglom- erated in streamwise streaks, believed to be due to the turbulent velocity structures in the flow. Secondly, the orientation of the fibres was observed to be determined by the aspect ratio and the mean shear, not the turbulence. Short fibres were oriented in the spanwise direction while long fibres were oriented in the streamwise direction. In order to utilize the impressive properties (stiffness comparable to Kevlar) of the cellulose nanofibril in a macroscopic material, the alignment of the fibrils must be controlled. Here, a flow focusing device (resulting in an extensional flow), designed to align the fibrils, is used to create a cellulose filament with aligned fibrils. The principle is based on a separation of the alignment and the assembly of the fibrils, i.e. first align the fibrils and then lock the aligned structure. With this process, continuous filaments were created, with properties similar to that of the wood fibre at the same fibril alignment. However, the highest alignment (lowest angle) of the fibrils in a filament created was only 31o from the filament axis, and the next step is to increase the alignment. This thesis includes modeling of the alignment process with the Smoluchowski equation and a rotary diffusion. Finding a model that correctly describes the alignment process should in the end make it possible to create a filament with fully aligned fibrils.

QC 20140908

13

Kvick, Mathias. "Hydrodynamic stability and turbulence in fibre suspension flows." Licentiate thesis, KTH, Mekanik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-95279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Al-Maqdasi, Zainab. "Development of Constituents for Multi-functional Composites Reinforced with Cellulosic Fibers." Licentiate thesis, Luleå tekniska universitet, Materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-73736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bio-basedcomposites are being increasingly used in applications where weight saving,and environmental friendliness is as important as structural performance. Obviously, bio-based materials have their limitations regarding durability and stability of the properties,but their potential in use for advanced applications can be expanded if they were functionalized and considered beyond their structural performance. Multifunctionalityincomposites can be achieved by modifyingeither of the composite constituents at different levelsso that they can perform energy-associated roles besides their structural reinforcement in the system. For the fibers, this can be done at the microscale by altering theirmicrostructure during spinning process or by applying functional coatings. As for the matrix, it is usually done by incorporating additives that can impart the required characteristics to the matrix. The nano-sized additives that mightbe considered for this objective are graphene and carbon nano-tubes. A big challenge with such materials is the difficulty to reachthe dispersionstate necessary for formation ofstable network to overcome the percolation threshold for conductivity. However, once the network is formed, the composite can have improved mechanical performance together with one or more of the added functionalities such as barrier capabilities,thermal and/or electrical conductivities or electromagnetic interference ability. Enormous work has been done to achieve the functionality incomposites produced with special care in laboratories. However, when it comes to mass production, it is both cost and energy inefficient to use tedious,complex methods for the manufacturing. Hence there is a need to investigate the potential of using scalable and industrial-relevant techniques and materials with acceptable compromise between cost and properties. The work presented in this thesis is performedwithin two projects aiming to achieve functional composites based on natural and man-made cellulosic fibers suitable for industrial upscaling. Conductive Regenerated Cellulose Fibers (RCFs) were produced by coating them with copper by electroless coating process using commercial materials. On the other hand, commercial masterbatches based on Graphene Nano-Platelets (GNPs) were used to produce wood polymer composites (WPC) with added multifunctionality by melt extrusion process. The process is one of the conventional methods used inpolymerproductionand needsno modifications for processingfunctional composites. Both materials together can be used to produce hybrid functional composites. The incorporation of the GNP into HDPE has resulted in improvement in the mechanical propertiesof polymer as well as composite reinforced with wood fibers. Stiffness has increased to a large extent while effect on the strength was less pronounced(>100% and 18% for stiffness and strength at 15%GNP loading). The enhancement of thermal conductivityat higher graphene loadingswas also observed. Moreover, time-dependent response of the polymer has also been affected and the addition of GNP has resulted in reduced viscoplastic strains and improved creep behavior. The copper-coated cellulose fibers showed a significant increasein electrical conductivity(<1Ω/50mm of coated samples) and a potential in use as sensor materials. However, these results come with the cost of reduction in mechanical properties of fibers (10% and 70% for tensile stiffness and strength, respectively) due to theeffect ofchemicals involved in the process.
15

Ekstrand, Johan. "Enhancement of Phenol Formaldehyde Adhesive with Crystalline Nano Cellulose." Thesis, Linnéuniversitetet, Institutionen för skog och träteknik (SOT), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-85468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The wood industries to this day use almost exclusively petroleum derived adhesives that are based mainly on the reaction of formaldehyde with urea, melamine or phenol. These adhesives have low cost and good adjustable properties which makes it hard for bio-based alternatives to compete. Phenol formaldehyde (PF), as an example of a synthetic adhesive, has been in use for over 100 years. In some parts of the world, legislation around formaldehyde is changing, and there is an increasingly voluntary awareness about the toxicity and unsustainability of formaldehyde. Industries realize that raw materials from oil is unstainable. The latter is currently a driving factor behind research on alternatives to amino based adhesives. Also, consumer interest in healthy and sustainable products, such as emitting less formaldehyde indoors, increases the need for bio based adhesives. Cellulose contained in plant cell walls is a renewable, abundant and nontoxic resource. During the last decades, many innovations have been achieved around cellulose and this trend does not seem to be slowing down. Cellulose shows excellent mechanical properties, high strength, high elastic modulus as well as having a low density. Research about cellulose reinforced adhesives has been increased the last years. This thesis studied the enhancement of phenol formaldehyde adhesive with Crystalline Nano Cellulose (CNC) at 5wt% and 10wt% loading levels for producing plywood boards. Indecisive results when using CNC higher than 3wt%, especially with PF resin, have been reported by other authors. In this thesis, European standards were applied. EN 314 was applied to test the panels shear strength. Three (3) treatment classes were selected, indoor room condition as well as pre-treatments 5.1.1 and 5.1.3. Other properties measured were modulus of elasticity, thickness swelling, formaldehyde emissions. Results showed a shear strength increase for all pre-treatment classes. 10wt% CNC mixture with phenol formaldehyde in water bath, pre-treatment (5.1.1) for 24h showed the highest increase in shear strength (+73,9%). The 10 wt% CNC mixture panels also showed the highest wood fibre failure of all panel types produced. A decrease in MOE has been observed with 10 wt% CNC compared to the 5 wt% CNC panels. Formaldehyde emissions tests were inconclusive, but since less PF was used, there was a general reduction in emissions. The 5 wt% CNC panels were superior in terms of modulus of elasticity and swelling and also showed improved shear strength.
16

Berry, Seth David. "Experimental Characterization of Mode I Fracture Toughness of Reinforced Carbon Fiber Laminate with Nano-Cellulose and CNT Additives." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/72132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Effective treatment of carbon fiber components to improve delamination resistance is vital to the application of such materials since delamination is one of the biggest concerns regarding the use of composites in the aerospace sector. Due to the significant application benefit gained from increased stiffness to density ratio with composite materials, innovative developments resulting in improved through-thickness strength have been on the rise. The inherent anisotropy of composite materials results in an added difficulty in designing structural elements that make use of such materials. Proposed techniques to improve the through-thickness strength of laminar composites are many and varied; however all share the common goal of improving inter-laminar bond strength. This research makes use of novel materials in the field of wet flocking and Z-pinning. Cellulose nanofibers (CNFs) have already demonstrated excellent mechanical properties in terms of stiffness and strength, originating at the nano-scale. These materials were introduced into the laminate while in a sol-gel suspension in an effort to improve load transfer between laminate layers. The effect of CNFs as lightweight renewable reinforcement for CFRPs will be investigated. Carbon nanotube (CNT) additives were also considered for their beneficial structural properties.
Master of Science
17

永正, 邵., and Yongzheng Shao. "Study on the effects of matrix properties on the mechanical properties of carbon fiber reinforced plastic composites." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB12902982/?lang=0, 2015. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB12902982/?lang=0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
It was found that a significant improvement of mechanical properties of CFRPs can be achieved by the adjustment of the matrix properties such as toughness and CF/matrix adhesion via the chemical modification, as well as the physical modification by a small amount of cheap and environment-friendly nano fibers. Based on investigation of fracture mechanisms at macro/micro scale, the effects of matrix properties and nano fiber on the mechanical properties of CFRP have been discussed. Subsequently, the relationship has been characterized by a numerical model to show how to modulate the parameters of the matrix properties to achieve excellent fatigue properties of CFRP.
博士(工学)
Doctor of Philosophy in Engineering
同志社大学
Doshisha University
18

Oliveira, Alexandre Ernesto Grüninger de. "Cellulose micro/nano fibers conformational effects probed by nematic liquid crystal droplets." Master's thesis, 2014. http://hdl.handle.net/10362/13929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Probing micro-/nano-sized surface conformations, which are ubiquitous in biological systems, by using liquid crystal droplets, which change their ordering and optical appearance in response to the presence of more than ten times smaller cellulose based micro/nano fibers, might find new uses in a range of biological environments and sensors. Previous studies indicate that electrospun micro/nano cellulosic fibers produced from liquid crystalline solutions could present a twisted form [1]. In this work, we study the structures of nematic liquid crystal droplets threaded by cellulose fibers prepared from liquid crystalline and isotropic solutions as well as droplets pierced by spider-made fibers [2]. Planar anchoring at the fibers and planar and homeotropic at the drop surfaces allowed probing cellulose fibers different helical structures as well as aligned filaments.

До бібліографії