Добірка наукової літератури з теми "Confocal chromatic microscope"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Confocal chromatic microscope".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Статті в журналах з теми "Confocal chromatic microscope":

1

Li, Shaobai, Bofan Song, Tyler Peterson, Jian Hsu, and Rongguang Liang. "MicroLED chromatic confocal microscope." Optics Letters 46, no. 11 (May 2021): 2722. http://dx.doi.org/10.1364/ol.427477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu Qian, 刘乾, 王洋 Wang Yang, 杨维川 Yang Weichuan, and 袁道成 Yuan Daocheng. "Chromatic confocal microscope with linear dispersive objective." High Power Laser and Particle Beams 26, no. 5 (2014): 51010. http://dx.doi.org/10.3788/hplpb20142605.51010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

LIU Qian, 刘乾, 杨维川 YANG Wei-chuan, 袁道成 YUAN Dao-cheng, and 王洋 WANG Yang. "Design of linear dispersive objective for chromatic confocal microscope." Optics and Precision Engineering 21, no. 10 (2013): 2473–79. http://dx.doi.org/10.3788/ope.20132110.2473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Luo, Ding, Cuifang Kuang, and Xu Liu. "Fiber-based chromatic confocal microscope with Gaussian fitting method." Optics & Laser Technology 44, no. 4 (June 2012): 788–93. http://dx.doi.org/10.1016/j.optlastec.2011.10.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gu, Min. "Image Formation in Femtosecond Confocal Interference Microscopy." Microscopy and Microanalysis 4, no. 1 (February 1998): 63–71. http://dx.doi.org/10.1017/s1431927698980060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Three-dimensional image formation in an interference confocal scanning microscope under ultra-short pulsed beam illumination is investigated in this study. The novelty of this new image system is that it keeps advantages in femtosecond interferometry but also provides a femtosecond-resolved three-dimensional image without necessarily using an ultrafast detector. For a 5-fs pulsed beam illumination, spatial resolution in the axial and transverse directions in this system is improved by approximately 45% and 15%, respectively, compared with that in the case of continuous wave illumination. However, strong chromatic aberration caused by an ultrashort pulsed beam can result in a degradation of spatial and temporal resolution, whereas weak chromatic aberration may lead to an improvement in transverse resolution.
6

Vaishakh, Manu. "Optical sectioning in reciprocal fiber-optic based chromatic confocal microscope." Optik 123, no. 16 (August 2012): 1450–52. http://dx.doi.org/10.1016/j.ijleo.2011.07.066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yu, Qing, Kun Zhang, Ruilan Zhou, Changcai Cui, Fang Cheng, Shiwei Fu, and Ruifang Ye. "Calibration of a Chromatic Confocal Microscope for Measuring a Colored Specimen." IEEE Photonics Journal 10, no. 6 (December 2018): 1–9. http://dx.doi.org/10.1109/jphot.2018.2875562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Russ, J. Christian, and John C. Russ. "3-D image analysis of serial focal sections from confocal scanning laser microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 1989): 152–53. http://dx.doi.org/10.1017/s0424820100152732.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Confocal Scanning Laser Microscope (CSLM) is used in two quite different imaging modes: reflection and transmission. Most instruments maintain their confocal optics only when operated in reflection mode, in which light reflected or emitted from points in the sample or on its surface, lying in the focal plane of the microscope, is detected to form an image. Point elevations can be measured by scanning through a range of focal distances. Recording in memory the maximum brightness at each pixel forms an image containing the “in-focus” information for the entire irregular surface or object (Figure 1). These are powerful capabilities and account for much of the current use of confocal microscopes for metrology of rough surfaces, and for use with fluorescent dyes.True transmission confocal imaging can be achieved by passing the light from the source through the specimen to a mirror, reflecting it back through the specimen again (maintaining the focus in the same plane), and thence to the detector. This is shown schematically in Figure 2. This is only possible with monochromatic light, because of sample-induced chromatic aberrations.
9

Chun, Byung Seon, Kwangsoo Kim, and Daegab Gweon. "Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope." Review of Scientific Instruments 80, no. 7 (July 2009): 073706. http://dx.doi.org/10.1063/1.3184023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Niggli, E., D. W. Piston, M. S. Kirby, H. Cheng, D. R. Sandison, W. W. Webb, and W. J. Lederer. "A confocal laser scanning microscope designed for indicators with ultraviolet excitation wavelengths." American Journal of Physiology-Cell Physiology 266, no. 1 (January 1994): C303—C310. http://dx.doi.org/10.1152/ajpcell.1994.266.1.c303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper we describe the modifications necessary to upgrade, at affordable cost, a commercially available confocal laser scanning microscope for use with ultraviolet (UV) excitation. The optical problems associated with these modifications are described in detail, and easy solutions to solve them are suggested. The optical resolution of the instrument was tested with fluorescent beads and was found to be close to diffraction limited. The light losses due to lateral chromatic aberration were assessed in a thick fluorescent specimen and were found to be comparable to those usually observed with visible light. For a more visual example of the resolution of this instrument, isolated ventricular heart muscle cells were loaded with the fluorescent Ca2+ indicator indo 1. This allowed us to visualize subcellular structural detail and to illustrate the optical sectioning capability of the UV confocal microscope when recording indo 1 emission. Dual-emission line scans were used to perform ratiometric time-resolved detection of Ca2+ transients in voltage-clamped heart muscle cells loaded with the salt form of indo 1. The system presented in this paper should significantly broaden the range of fluorescent indicators that can be used in confocal microscopy.

Дисертації з теми "Confocal chromatic microscope":

1

Chouhad, Hassan. "Towards online metrology for proactive quality control in smart manufacturing." Electronic Thesis or Diss., Paris, HESAM, 2022. http://www.theses.fr/2022HESAE021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans l’industrie de fabrication traditionnelle, la métrologie est un élément essentiel de sanction de la qualité en bout de la chaîne de production. L’innovant dans le concept de la fabrication intelligente conduit à un repositionnement de la métrologie qui devient proactive au cœur même de la production pour fabriquer dès le départ une première pièce conforme. L’objet de cette thèse est donc de proposer une approche méthodologique pour le développement d'un système proactif, augmenté par des modèles d’intelligence artificielle IA, de contrôle en usinage de la conformité d’un produit à un cahier des charges et de caractériser ses défauts. Pour cela, une première étude sur l’aspect de surface a été réalisée en recueillant des images à haute résolution de fils de cuivre revêtus et découpés pouvant présenter des défauts. Les images, prises par un système de vision par ordinateur basé sur l'imagerie confocale chromatique, ont été utilisées pour générer différents modèles d'intelligence artificielle. Ce traitement consiste à faire de la segmentation et de la classification des défauts observés. En comparant la précision et le temps de traitement des modèles d'IA, l'apprentissage par transfert utilisant le modèle de mobile-net a montré de meilleures performances. Afin d'élargir l'étude de l'évaluation de la qualité de surface, des mesures de profil de surface sur machine-outil ont été effectuées à l'aide de capteurs confocaux chromatiques sans contact. Deux approches ont été réalisées : i) le fraisage de l'aluminium sans signature d’usure d’outil de coupe et ii) le fraisage du titane en tenant compte de la signature de l'usure de l'outil de coupe. Dans les deux configurations de coupe, les paramètres d’usinage, les profils de rugosité de surface et les efforts d’enlèvement de matière ont été enregistrés pour construire une base de données pour l'entraînement des modèles de prédiction par apprentissage automatique. Les résultats ont montré que le modèle XGboost a présenté la meilleure performance de prédiction et ce pour les deux scénarios. En considérant le temps de coupe dans le fraisage du titane, le modèle de prévision de séries temporelles ARIMA a été appliqué pour suivre l'évolution de la rugosité en fonction de l'usure de l'outil. L’analyse moyenne mobile autorégressive intégrée a permis de suivre l’évolution de la rugosité en fonction de la signature d’usure
In the traditional manufacturing industry, metrology is an essential element in sanctioning quality at the end of the production line. The innovation brought by concept of smart manufacturing leads to a repositioning of metrology to be proactive at the heart of production by performing the so-called first-time-right manufacturing of parts. The goal of this thesis is therefore to propose a methodological approach for the development of a proactive system, enhanced by AI models, to control the conformity of a product to a specification during machining and to characterize its defects. For this purpose, a first study on the surface aspect was carried out by collecting high-resolution images of coated and cut copper wires that may present defects. The images, taken by a computer vision system based on chromatic confocal imaging, were used to generate different artificial intelligence models. These models can perform segmentation and classification of observed defects. When comparing the accuracy and processing time of the AI models, transfer learning using the mobile-net model showed better performance. To extend the study of surface quality assessment, surface profile measurements on machine tools were performed using non-contact chromatic confocal sensors. Two approaches were performed: i) milling aluminum without tool wear signature, and ii) milling titanium with tool wear signature. In both cutting configurations, machining parameters, surface roughness profiles, and cutting forces were measured to build a dataset for training the prediction models by machine learning. The results showed that the XGboost model presented the best prediction performance and for both scenarios i) and ii). By considering the cutting time in titanium milling, the autoregressive integrated moving average time series prediction model was applied to track the evolution of roughness with tool wear
2

Mongelard, Fabien. "Apport des approches in situ pour l'analyse du phénomène d'inactivation du chromosome X chez les mammifères." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'inactivation du chromosome x chez les mammiferes femelles est la mise sous silence transcriptionel d'un des deux chromosomes x. L'organisation de la chromatine du chromosome inactif (xi) est differente de celle de son homologue actif (xa) ; la nature de cette difference est inconnue. Une region contenant le gene xist (x inactive specific transcript) est indispensable au phenomene. Le travail presente ici vise a apporter de nouvelles informations a la fois sur l'organisation de la chromatine des chromosomes actifs et inactifs, et sur la fonction du gene xist. L'analyse de la structure chromatinienne des chromosome x a ete realisee en combinant l'hybridation in situ fluorescente (fish) a la microscopie confocale a balayage laser. Nous avons developpe des outils et des methodes pour evaluer la qualite des protocoles de fish, et pour ameliorer et analyser les images microscopiques numeriques. Des precautions particulieres doivent etre prises pour la quantification des resultats de fish. Dans des noyaux de fibroblastes humains feminins, les deux chromosomes x ont un volume identique mais different par la texture du marquage par fish. Des differences se retrouvent aussi au niveau du centromere. La detection in situ du transcrit xist permet la definition d'une region minimale comprenant xist, capable d'entrainer l'inactivation lors d'experiences de transgenese. L'integration en copie unique d'un transgene contenant xist, contrairement a une integration multiple, est incapable de declencher l'inactivation dans des cellules souches embryonnaires (es) differenciees murines, suggerant que des sequences essentielles a une fonction autonome de la region sont absentes, et indiquant l'existence de facettes insoupconnees du phenomene d'inactivation. Des cellules es de souris transgeniques porteuses de la region contenant le xist humain ont ete etudiees. Une courbure du chromosome cible, est induite au niveau du site d'integration ; la signification de cette courbure est incomprise.
3

Yu, Yun-Ting, and 余日云庭. "INVESTIGATION OF DIFFRACTIVE CHROMATIC CONFOCAL MICROSCOPE." 學位論文 ; thesis, 2018. http://ndltd.ncl.edu.tw/handle/r39rmp.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wu, Li-Chuan, and 吳立娟. "Symmetric wavelength-encoded chromatic confocal microscope." 學位論文 ; thesis, 2013. http://ndltd.ncl.edu.tw/handle/26165327939163492212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立交通大學
影像與生醫光電研究所
101
High resolution confocal microscopy is able to perform optical sectioning of the structure in vitro. This technique has been widely applied in the research of biomedical and semiconductor as a significant imaging tool. 2D or 3D confocal microscopy by mechanical scanners not only increases the size and cost of the entire system, but also reduces the imaging speed. To overcome these drawbacks, in this thesis a confocal microscopy system of non-mechanical scan is proposed and demonstrated, which uses broadband source and CCD real time imaging and the pinhole device was replaced by fibers. The resolution of image with a size of 0.28mm X 0.14mm scanned by the symmetric wavelength-encoded chromatic confocal microscope is 8.98 lp/mm or 55.68 μm. This preliminary result provides scanning not only on X-Y plane. Hopefully, 3D imaging systems could be achieved by combining different dispersive elements, such as grating, prism, and Fresnel lens or GRIN lens.
5

Huang, Shun-Yang, and 黃順洋. "New chromatic confocal microscope for full-field microsurface measurement." 學位論文 ; thesis, 2009. http://ndltd.ncl.edu.tw/handle/64329403763795663103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立臺灣大學
機械工程學研究所
97
A chromatic confocal microscopic profilometer for full-field three-dimensional micro surface measurement was developed using innovative multi-wavelength light correlation. Micro/nano structures patterned on the substrate and fabricated by the R2R (Roll-to-Roll) nanoimprint processes are usually having a smooth and low-reflective surface which is not easily measured by the existing optical or contacted methods. It was an extremely difficult task to achieve an effective 3-D profile reconstruction on this kind of micro component by using a traditional confocal microscope. In this paper, a multi-wavelength confocal measurement method employing the focusing cross correlation between three LED color (Red, Green and Blue) lights was introduced to measure micro structures. A compact chromatic confocal microscopic probe was developed by integrating a white light source obtained by mixing the LED light sources and a coaxial confocal optical configuration with a 3-chip CCD camera for individual light sensing. A curve-fitting function between the profile depth and the multi-color focusing correlation was established by a system calibration with a reference to an accurate laser interferometer. To attest the measurement performance, a calibrated reference target having micro-triangular structures was fabricated and measured by the developed methodology. From analysis of the measurement results, it was confirmed that a standard deviation of 30 nm on the height measurement can be achieved. The confocal profilometer can be effectively employed to the automatic optical inspection (AOI) task of the brightness e n h a n c eme n t f i lms ( BE F ) f a b r i c a t e d b y t h e R 2R p r o c e s s e s .
6

Lin, Tsung-Yi, and 林宗毅. "Research on lateral cross-talk problems of chromatic confocal microscopy." 學位論文 ; thesis, 2012. http://ndltd.ncl.edu.tw/handle/bvz3me.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立臺北科技大學
自動化科技研究所
100
In this research, novel deconvolution methodology is proposed to resolve the lateral and axial cross-talk problems encountered in line-scanning chromatic confocal surface profilometry. The strategy integrates chromatic confocal principle, infinitive microscopic optics and deconvolution theory to resolve the entangled cross-talk problem in microscopic confocal measurement, so the measuring resolution can be greatly enhanced from the level of the traditional line-scanning up to the one achieved by generally traditional point-type confocal measurement. To overcome the problem, this research analyzes the physical phenomenon of optical near field using photonic spectrum analyses for establishing relationship between the light expansion and propagation depth, as well as light wavelength. In the confocal image, acquired spectrum intensity can be regarded as the convolution between the ideal signal from objects and the point spread function (PSF) of incident light. By employing spectrum analyses, important calibrated characteristics of the PSF along both of the lateral and depth directions can be carefully established. By using the individual PSF for its corresponding wavelength detected at its matching focal depth, the proposed deconvolution method has been proved effective theoretically and experimentally in greatly minimizing the full width half maximum (FWHM) of the depth response curve by more than 25 times, thus significantly improving the accuracy and repeatability of microscopic surface profilometry.
7

Hsu, Chia-Huan, and 許嘉桓. "Advanced confocal microscopy utilizing the chromatic aberration and position sensitive detection." 學位論文 ; thesis, 2016. http://ndltd.ncl.edu.tw/handle/03140728844512462625.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shih, Cheng-Chieh, and 施政杰. "The design of diffractive optical element applied to chromatic confocal microscopy." 學位論文 ; thesis, 2010. http://ndltd.ncl.edu.tw/handle/00746908243522128039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立中央大學
光機電工程研究所
98
This paper focuses on the use of diffractive optics theory to design refraction / diffraction composite optical elements to realize the optical axis to generate the optical properties of linear dispersion, with coupling lens to compile with refraction / diffraction composite dispersion optical elements produced by light, and the use of microscopy to improve resolution, the chromatic confocal module to create three dimensional structure of a surface measurement technique. Diffractive optics theory to design two refractive / diffractive optical elements combined to achieve the optical axis to generate the optical properties of linear dispersion and dispersion are in 38000μm about the scope of the use of visible light wavelength "400 nm ~ 800 nm" to chromatic confocal module, as the work of the wavelength, so that with a refractive / diffractive optical elements for chromatic confocal module is about the dispersion range of up to 2000μm, the dispersion in a linear trend. Reduce the divergence angle in the light sensitivity of the test, in the same range of dispersion conditions, compare the positive dispersion trend and negative dispersion trend refraction / diffractive optical elements, found that the trend is negative dispersion allows all wavelengths components the error of back focal length dropped to -4.9% ~ -2.7%, while the spot radius is also reduced to 783μm ~ 584μm, while the trend with a negative dispersion of components of the chromatic confocal module the error of back focal length dropped to -9.2% ~ -11.5 %, and the spot radius can shrink to 176μm ~ 138μm, and the minimum line width of refractive / diffractive optical elements was 30.5μm, can be ultra-precision machining.
9

Hsing, Wei-Cheng, and 邢煒晟. "Chromatic confocal microscopy with a sub-micron depth resolution by position sensitive detection." 學位論文 ; thesis, 2015. http://ndltd.ncl.edu.tw/handle/g3mpzf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立交通大學
光電科技學程
104
Since confocal microscopy has powerful abilities of virtual optical biopsy and high spatial resolution, it has been widely applied to observe and measure in the field of medicine, biology and semiconducting etc. This study focuses on setting up an original confocal microscopy system with spatial resolution of less than 100 nm along the z direction. In this experiment , we take Mode-locked Mikan laser as a light source, and replaces the pinhole and Beam splitter of confocal microscopy with 50/50 Single Mode Fiber . Besides, it uses high-powered objective as focusing component in optical scanning, and splits the samples' reflecting light with Grating, at last , receives samples' reflecting light with Position Sensitive Detectors(PSD). Depending on the focus of different wavelength , the slight change of center of gravity caused by diffusing reflectance spectroscopy can be converted by PSD and Lock-In Amplifier to signal voltage, which can be input to computers by GPIB USB to process the data and obtain the depth images of the samples. This research tests on the system's longitudinal and transverse analytical ability with known samples (the measurement conclusion of 1951 USAF's resolution test chart and Integrated Circuit (IC) ) and demonstrates that this existing system can achieve micron-level measurement results in both of longitudinal (sub-micron) and transversal (micron) resolving power . The research and development of successful confocal microscopy system can facilitate observation and analysis of integrated circuits with micron structure, and be a tool to analyze the failed functions. Finally, we will discuss the limitation and possible future direction of development of this system.
10

Lin, Jiun-Da, and 林俊達. "Development of novel high-speed surface profilometry using double-slit chromatic differential confocal microscopy." 學位論文 ; thesis, 2013. http://ndltd.ncl.edu.tw/handle/put5a2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立臺北科技大學
自動化科技研究所
101
This study presents a broadband differential confocal surface profilometer using novel double-slit chromatic confocal measurement for in-situ high-speed microscopic surface inspection. In-situ automatic optical inspection (AOI) on microstructures has become extremely important to ensure manufacturing quality. The conventional laser differential confocal techniques employ two line detectors to be placed in the front and rear of the image focusing plane for producing differential confocal phenomenon. For broadband chromatic confocal measurement, the above optical layout could bring misalignment errors and reduce measuring field of view (FOV). Therefore, a multi-wavelength differential confocal surface profilometer is developed by employment of a novel concept of using double slits for generating the differential gradient in confocal measurement. In the optical configuration, two different sizes of slits with individual opening sizes are placed in front of their corresponding imaging unit and designed to conjugate with the tested object surface. A chromatic microscopic objective based on various glass refractivity and shape curvatures is designed to disperse the two incident lights having an orthogonal polarization relationship into a vertical measuring range. The differential gradient is generated by correlating two depth response curves (DRC) which are measured by the two imaging units with their corresponding slits. A depth-focus response curve can be further established by a system calibration using standard step-height targets. The developed system can be used to measure the profiles of microstructures by one shot inspection without any vertical scanning required by conventional confocal measurement. The vertical measurement range can be designed for a range of a few hundreds of micrometers while its vertical resolution is capable of reaching down to 0.1 micrometers. The repeatability of the developed method can reach to 0.1 ?m within one standard deviation. Especially, the differential confocal principle developed is capable of measuring various surfaces having highly different surface reflectivity. The measuring speed can significantly break the limit of the traditional chromatic confocal methods and reach to the maximum speed of a line imaging unit.

Частини книг з теми "Confocal chromatic microscope":

1

Blateyron, François. "Chromatic Confocal Microscopy." In Optical Measurement of Surface Topography, 71–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12012-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kruhlak, Michael J., Arkady Celeste, and André Nussenzweig. "Monitoring DNA Breaks in Optically Highlighted Chromatin in Living Cells by Laser Scanning Confocal Microscopy." In Methods in Molecular Biology, 125–40. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-190-1_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Krishnan, Kannan M. "Optics, Optical Methods, and Microscopy." In Principles of Materials Characterization and Metrology, 345–407. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198830252.003.0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Propagation of light is described as the simple harmonic motion of transverse waves. Combining waves that propagate on orthogonal planes give rise to linear, elliptical, or spherical polarization, depending on their amplitudes and phase differences. Classical experiments of Huygens and Young demonstrated the principle of optical interference and diffraction. Generalization of Fraunhofer diffraction to scattering by a three-dimensional arrangement of atoms in crystals forms the basis of diffraction methods. Fresnel diffraction finds application in the design of zone plates for X-ray microscopy. Optical microscopy, with resolution given by the Rayleigh criterion to be approximately half the wavelength, works best when tailored to the optimal characteristics of the human eye (λ = 550 nm). Lenses suffer from spherical and chromatic aberrations, and astigmatism. Optical microscopes operate in bright-field, oblique, and dark-field imaging conditions, produce interference contrast, and can image with polarized light. Variants include confocal scanning optical microscopy (CSOM). Metallography, widely used to characterize microstructures, requires polished or chemically etched surfaces to provide optimal contrast. Finally, the polarization state of light reflected from the surface of a specimen is utilized in ellipsometry to obtain details of the optical properties and thickness of thin film materials.

Тези доповідей конференцій з теми "Confocal chromatic microscope":

1

Rayer, Mathieu, and Daniel Mansfield. "Chromatic confocal microscope using hybrid aspheric diffractive lenses." In SPIE Photonics Europe, edited by Hugo Thienpont, Jürgen Mohr, Hans Zappe, and Hirochika Nakajima. SPIE, 2014. http://dx.doi.org/10.1117/12.2048691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hirth, Florian, Thorbjörn C. Buck, Natasha Steinhausen, and Alexander W. Koch. "Performance of a combined chromatic confocal microscope with thin film reflectometer." In Scanning Microscopy 2010, edited by Michael T. Postek, Dale E. Newbury, S. Frank Platek, and David C. Joy. SPIE, 2010. http://dx.doi.org/10.1117/12.853517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Taphanel, Miro, Ralf Zink, Thomas Längle, and Jürgen Beyerer. "Multiplex acquisition approach for high speed 3D measurements with a chromatic confocal microscope." In SPIE Optical Metrology, edited by Peter Lehmann, Wolfgang Osten, and Armando Albertazzi Gonçalves. SPIE, 2015. http://dx.doi.org/10.1117/12.2184560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shi, Kebin, Peng Li, Shizhuo Yin, and Zhiwen Liu. "Surface profile measurement using chromatic confocal microscopy." In Optics East, edited by Kevin G. Harding. SPIE, 2004. http://dx.doi.org/10.1117/12.571595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Olsovsky, Cory A., Ryan L. Shelton, Meagan A. Saldua, Oscar Carrasco-Zevallos, Brian E. Applegate, and Kristen C. Maitland. "Multidepth imaging by chromatic dispersion confocal microscopy." In SPIE BiOS, edited by Tuan Vo-Dinh, Anita Mahadevan-Jansen, and Warren Grundfest. SPIE, 2012. http://dx.doi.org/10.1117/12.909175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Garzon Reyes, Johnson, J. Meneses, Arturo Plata, Gilbert M. Tribillon, and Tijani Gharbi. "Axial resolution of a chromatic dispersion confocal microscopy." In SPIE Proceedings, edited by Aristides Marcano O. and Jose Luis Paz. SPIE, 2004. http://dx.doi.org/10.1117/12.592185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Park, Se Jin, Hansol Jang, and Chang-seok Kim. "Time encoded chromatic confocal microscopy for wide field 3 D surface profiling." In Advances in Microscopic Imaging, edited by Francesco S. Pavone, Emmanuel Beaurepaire, and Peter T. So. SPIE, 2019. http://dx.doi.org/10.1117/12.2527002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Cheng, WenJun Yang, Hong Zhu, Jian Fu, Chi Zhang, Jian Wang, XiaoJun Liu, Wenlong Lu, and Xiangqian(Jane) Jiang. "Corrected differential fitting for height extraction in chromatic confocal microscopy." In 10th International Symposium on Precision Engineering Measurements and Instrumentation (ISPEMI 2018), edited by Jiubin Tan and Jie Lin. SPIE, 2019. http://dx.doi.org/10.1117/12.2511734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Carrasco-Zevallos, Oscar, Ryan L. Shelton, Cory Olsovsky, Meagan Saldua, Brian E. Applegate, and Kristen C. Maitland. "Exploiting chromatic aberration to spectrally encode depth in reflectance confocal microscopy." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ecbo.2011.80861d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Claus, Daniel, Giancarlo Pedrini, Wolfgang Osten, Raimund Hibst, Tobias Boettcher, and Miro Taphanel. "Development of a realistic wave propagation-based chromatic confocal microscopy model." In Unconventional Optical Imaging, edited by Corinne Fournier, Marc P. Georges, and Gabriel Popescu. SPIE, 2018. http://dx.doi.org/10.1117/12.2314914.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії
Current page language: Ukrainian.
You might want to see the page in this language: English.
Change language