Добірка наукової літератури з теми "Energy-Constrained"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Energy-Constrained".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Energy-Constrained":

1

Shuguang Cui, A. J. Goldsmith, and A. Bahai. "Energy-constrained modulation optimization." IEEE Transactions on Wireless Communications 4, no. 5 (September 2005): 2349–60. http://dx.doi.org/10.1109/twc.2005.853882.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chessa, Alessandro, Enzo Marinari, and Alessandro Vespignani. "Energy constrained sandpile models." Computer Physics Communications 121-122 (September 1999): 622. http://dx.doi.org/10.1016/s0010-4655(06)70029-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Koukkari, Pertti, Risto Pajarre, and Klaus Hack. "Constrained Gibbs energy minimisation." International Journal of Materials Research 98, no. 10 (October 2007): 926–34. http://dx.doi.org/10.3139/146.101550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chessa, Alessandro, Enzo Marinari, and Alessandro Vespignani. "Energy Constrained Sandpile Models." Physical Review Letters 80, no. 19 (May 11, 1998): 4217–20. http://dx.doi.org/10.1103/physrevlett.80.4217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

CHEN, Juan. "Energy-Constrained Software Prefetching Optimization." Journal of Software 17, no. 7 (2006): 1650. http://dx.doi.org/10.1360/jos171650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wojtowytsch, Stephan. "Helfrich’s energy and constrained minimisation." Communications in Mathematical Sciences 15, no. 8 (2017): 2373–86. http://dx.doi.org/10.4310/cms.2017.v15.n8.a10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Johnson, Steven. "Constrained energy minimization and the target-constrained interference-minimized filter." Optical Engineering 42, no. 6 (June 1, 2003): 1850. http://dx.doi.org/10.1117/1.1571062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Christen, Markus, Clara D. Christ, and Wilfred F. van Gunsteren. "Free Energy Calculations Using Flexible-Constrained, Hard-Constrained and Non-Constrained Molecular Dynamics Simulations." ChemPhysChem 8, no. 10 (July 16, 2007): 1557–64. http://dx.doi.org/10.1002/cphc.200700176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Qian, Kriti Sen Sharma, and Hengyong Yu. "Geometry and energy constrained projection extension." Journal of X-Ray Science and Technology 26, no. 5 (September 20, 2018): 757–75. http://dx.doi.org/10.3233/xst-18383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Washburn, Alan. "Energy‐constrained pursuit in a fluid." Naval Research Logistics (NRL) 41, no. 7 (December 1994): 935–43. http://dx.doi.org/10.1002/1520-6750(199412)41:7<935::aid-nav3220410706>3.0.co;2-#.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Energy-Constrained":

1

Wang, Xun. "On constrained contour energy minimization." Cincinnati, Ohio : University of Cincinnati, 2004. http://www.ohiolink.edu/etd/view.cgi?acc%5Fnum=ucin1106795223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsimbalo, Evgeny. "Energy-constrained wireless communications for IoT." Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Karousatou, Christina. "Distributed algorithms for energy constrained mobile agents." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0373/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans cette thèse, nous étudions et concevons des algorithmes pour des agents mobiles se déplaçant dans un graphe avec une énergie limité, restreignant leurs mouvements. Chaque agent mobile est une entité, équipée d’une batterie, qui peut parcourir les arêtes du graphe et visiter les noeuds du graphe. A chaque mouvement, l’agent consomme une partie de son énergie. Contrairement à divers modèles bien étudiés pour les agents mobiles, très peu de recherches ont été menées pour le modèle compte tenu des limites d’énergie. Nous étudions les problèmes fondamentaux de l’exploration d’un graphe, du gathering et du collaborative delivery dans ce modèle
In this thesis we study and design algorithms for solving various well-known problems for mobile agents moving on a graph, with the additional constraint of limited energy which restricts the movement of the agents. Each mobile agent is an entity, equipped with a battery, that can traverse the edges of the graph and visit the nodes of the graph, consuming a part of its energy for movement. In contrast to various well-studied models for mobile agents, very little research has been conducted for the model considering the energy limitations. We study the fundamental problems of graph exploration, gathering and collaborative delivery in this model
4

Van, Ackooij Wim. "Chance Constrained Programming : with applications in Energy Management." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2013. http://www.theses.fr/2013ECAP0071/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les contraintes en probabilité constituent un modèle pertinent pour gérer les incertitudes dans les problèmes de décision. En management d’énergie de nombreux problèmes d’optimisation ont des incertitudes sous-jacentes. En particulier c’est le cas des problèmes de gestion de la production au court-terme. Dans cette Thèse, nous investiguons les contraintes probabilistes sous l’angle théorique, algorithmique et applicative. Nous donnons quelques nouveaux résultats de différentiabilité des contraintes en probabilité et de convexité des ensembles admissibles. Des nouvelles variantes des méthodes de faisceaux « proximales » et « de niveaux » sont spécialement mises au point pour traiter des problèmes d’optimisation convexe sous contrainte en probabilité. Ces algorithmes gèrent en particulier, les erreurs d’évaluation de la contrainte en probabilité, ainsi que son gradient. La convergence vers une solution du problème est montrée. Enfin, nous examinons deux applications : l’optimisation d’une vallée hydraulique sous incertitude sur les apports et l’optimisation d’un planning de production sous incertitude sur la demande. Dans les deux cas nous utilisons une contrainte en probabilité pour gérer les incertitudes. Les résultats numériques présentés semblent montrer la faisabilité de résoudre des problèmes d’optimisation avec une contrainte en probabilité jointe portant sur un système de environ 200 contraintes. Il s’agit de l’ordre de grandeur nécessaire pour les applications. Les nouveaux résultats de différentiabilité concernent à la fois des contraintes en probabilité portant sur des systèmes linéaires et non-linéaires. Dans le deuxième cas, la convexité dans l’argument représentant le vecteur incertain est requise. Ce vecteur est supposé suivre une loi Gaussienne ou Student multi-variée. Les formules de gradient permettent l’application directe d’un schéma d’évaluation numérique efficient. Pour les contraintes en probabilité qui peuvent se réécrire à l’aide d’une Copule, nous donnons de nouveau résultats de convexité pour l’ensemble admissibles. Ces résultats requirent la concavité généralisée de la Copule, les distributions marginales sous-jacents et du système d’incertitude. Il est suffisant que ces propriétés de concavité généralisée tiennent sur un ensemble spécifique
In optimization problems involving uncertainty, probabilistic constraints are an important tool for defining safety of decisions. In Energy management, many optimization problems have some underlying uncertainty. In particular this is the case of unit commitment problems. In this Thesis, we will investigate probabilistic constraints from a theoretical, algorithmic and applicative point of view. We provide new insights on differentiability of probabilistic constraints and on convexity results of feasible sets. New variants of bundle methods, both of proximal and level type, specially tailored for convex optimization under probabilistic constraints, are given and convergence shown. Both methods explicitly deal with evaluation errors in both the gradient and value of the probabilistic constraint. We also look at two applications from energy management: cascaded reservoir management with uncertainty on inflows and unit commitment with uncertainty on customer load. In both applications uncertainty is dealt with through the use of probabilistic constraints. The presented numerical results seem to indicate the feasibility of solving an optimization problem with a joint probabilistic constraint on a system having up to 200 constraints. This is roughly the order of magnitude needed in the applications. The differentiability results involve probabilistic constraints on uncertain linear and nonlinear inequality systems. In the latter case a convexity structure in the underlying uncertainty vector is required. The uncertainty vector is assumed to have a multivariate Gaussian or Student law. The provided gradient formulae allow for efficient numerical sampling schemes. For probabilistic constraints that can be rewritten through the use of Copulae, we provide new insights on convexity of the feasible set. These results require a generalized concavity structure of the Copulae, the marginal distribution functions of the underlying random vector and of the underlying inequality system. These generalized concavity properties may hold only on specific sets
5

Margi, Cíntia Borges. "Energy consumption trade-offs in power constrained networks /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2006. http://uclibs.org/PID/11984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Van, ackooij Wim Stefanus. "Chance Constrained Programming : with applications in Energy Management." Phd thesis, Ecole Centrale Paris, 2013. http://tel.archives-ouvertes.fr/tel-00978519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In optimization problems involving uncertainty, probabilistic constraints are an important tool for defining safety of decisions. In Energy management, many optimization problems have some underlying uncertainty. In particular this is the case of unit commitment problems. In this Thesis, we will investigate probabilistic constraints from a theoretical, algorithmic and applicative point of view. We provide new insights on differentiability of probabilistic constraints and on convexity results of feasible sets. New variants of bundle methods, both of proximal and level type, specially tailored for convex optimization under probabilistic constraints, are given and convergence shown. Both methods explicitly deal with evaluation errors in both the gradient and value of the probabilistic constraint. We also look at two applications from energy management: cascaded reservoir management with uncertainty on inflows and unit commitment with uncertainty on customer load. In both applications uncertainty is dealt with through the use of probabilistic constraints. The presented numerical results seem to indicate the feasibility of solving an optimization problem with a joint probabilistic constraint on a system having up to 200 constraints. This is roughly the order of magnitude needed in the applications. The differentiability results involve probabilistic constraints on uncertain linear and nonlinear inequality systems. In the latter case a convexity structure in the underlying uncertainty vector is required. The uncertainty vector is assumed to have a multivariate Gaussian or Student law. The provided gradient formulae allow for efficient numerical sampling schemes. For probabilistic constraints that can be rewritten through the use of Copulae, we provide new insights on convexity of the feasible set. These results require a generalized concavity structure of the Copulae, the marginal distribution functions of the underlying random vector and of the underlying inequality system. These generalized concavity properties may hold only on specific sets.
7

Du, Hongtao. "Energy-constrained microsensor platform on-board image processing." Saarbrücken VDM Verlag Dr. Müller, 2007. http://d-nb.info/985423781/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ramachandran, Iyappan. "Joint PHY-MAC optimization for energy-constrained wireless networks /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5968.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hendijanizadeh, M. "Design and optimisation of constrained electromagnetic energy harvesting devices." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/364524/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis investigates the design and optimisation of constrained electromagnetic energy harvesters. It provides optimal design guidelines for constrained electromagnetic energy harvesters under harmonic and random vibrations. To find the characteristics of the vibration source, for instance vertical motion of a boat, the spectrum of the excitation amplitude should be obtained. Two Kalman filter based methods are proposed to overcome the difficulties of calculating displacement from measured acceleration. Analytical models describing the dynamics of linear and rotational electromagnetic energy harvesters are developed. These models are used to formulate a set of design rules for constrained linear and rotational energy harvesters subjected to a given sinusoidal excitation. For the sake of comparison and based on the electromechanical coupling coefficient of the systems, the maximum output power and the corresponding efficiency of linear and rotational harvesters are derived in a unified form. It is shown that under certain condition, rotational systems have greater capabilities in transferring energy to the load resistance and hence obtaining higher efficiency than linear systems. Also, the performance of a designed rotational harvester in response to broadband and band-limited random vibrations is evaluated and an optimum design process is presented for maximizing the output power under these conditions. It is furthermore shown that the profile of the spectral density of the measured acceleration signal of a typical boat can be approximated by a Cauchy distribution which is used to calculate the extracted power extracted by the proposed energy harvester in real conditions. In order to increase the operational bandwidth of rotational energy harvesters, subjected to time-varying frequency vibrations, a variable moment of inertia mechanism is proposed to adaptively tune the resonance frequency of harvester to match the excitation frequency. Also, the effects of combining the variable moment of inertia mechanism and adjusting the load resistance to increase the operational bandwidth of the system for constrained and unconstrained applications are studied. Finally, a ball screw based prototype is manufactured and the experimental results of its testing are presented which confirm the validity of the design and the derived dynamic equations of the system.
10

Nguyen, Tuan-Duc. "Cooperative MIMO strategies for energy constrained wireless sensor networks." Rennes 1, 2009. https://theses.hal.science/docs/00/44/58/14/PDF/nguyen09PhDthesis_Cooperative_MIMO_Strategies_for_Energy_constrained_Wireless_Sensor_Networks.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In wireless distributed networks, where multiple antennas can not be integrated in one node, cooperative Multi-Input Multi-Output (MIMO) techniques help to exploit the space time diversity gain in order to increase performances or to reduce the transmission energy consumption. In this thesis, strategies using cooperative MIMO techniques are proposed for Wireless Sensor Network (WSN) where the energy consumption is the most important design criterion. The performance and the energy consumption advantages of cooperative MIMO technique are investigated, in comparison with the SISO, multi-hop SISO and cooperative Relay techniques, and an optimal selection of transmit-receive antennas number in terms of energy consumption is also proposed as a function of transmission distances. Since the wireless nodes are physically separated in cooperative MIMO systems, the imperfect time synchronization between cooperative nodes clocks leads to an unsynchronized MIMO transmission. The performance degradation of this cooperative transmission synchronization error and the cooperative reception additional noise is evaluated by simulations. Two new cooperative reception techniques based on the relay principle and a new efficient space-time combination technique are proposed in order to increase the energy efficiency of cooperative MIMO systems. Finally, performance and energy consumption comparisons between cooperative MIMO and Relay techniques are performed and an association strategy is also proposed to exploit simultaneously the advantages of the two cooperative techniques
Dans les réseaux sans fil distribués où plusieurs antennes ne peuvent pas être intégrées dans un même nœud de communication, les techniques MIMO (Multiple Input Multiple Output) coopératives permettent d'exploiter le gain de la diversité spatio-temporelle pour augmenter les performances ou réduire l'énergie consommée pour les communications. Dans cette thèse, des stratégies MIMO coopératives sont proposées pour les réseaux de capteurs sans fil (RCS), où la consommation d'énergie est la contrainte la plus importante. Leur avantage en termes de taux d'erreur et de consommation d'énergie sur les techniques mono-antenne (SISO), même multi-étapes, et sur les techniques de relais, est clairement mis en évidence. Une sélection du nombre d'antennes d'émission et de réception, optimale en termes d'efficacité énergétique, est également proposée en fonction des distances de transmission. Les inconvénients du MIMO coopératif, comme les imperfections de synchronisation à l'émission ou les bruits additifs en réception, qui affectent leurs performances dans les réseaux sans fil distribués, sont abordés. Deux nouvelles techniques de réception coopérative basées sur le principe de relais, ainsi qu'une nouvelle technique de combinaison spatio-temporelle sont proposées afin d'augmenter l'efficacité énergique de ces systèmes MIMO coopératifs. Enfin, des comparaisons de performance et de consommation d'énergie entre les techniques MIMO coopératives et de relais montrent que leur utilisation dépend beaucoup de la topologie du réseau et de l'application. Une stratégie d'association est proposée pour exploiter simultanément les avantages des deux techniques de coopération

Книги з теми "Energy-Constrained":

1

Law, Tim. The Future of Thermal Comfort in an Energy- Constrained World. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00149-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

United States. Congress. House. Committee on Science. Subcommittee on Energy and Environment. Funding Department of Energy research and development in a constrained budget environment: Hearing before the Subcommittee on Energy and Environment of the Committee on Science, U.S. House of Representatives, One Hundred Fourth Congress, second session, August 1, 1996. Washington: U.S. G.P.O., 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Centre, African Climate Policy. Fossil fuels in Africa in the context of a carbon constrained future. Addis Ababa, Ethiopia: United Nations, Economic Commission for Africa, African Climate Policy Centre, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Du, Hongtao. Energy-constrained Microsensor Platform- Platform. VDM Verlag Dr. Mueller e.K., 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Law, Tim. Future of Thermal Comfort in an Energy- Constrained World. Springer London, Limited, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Law, Tim. The Future of Thermal Comfort in an Energy- Constrained World. Springer, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Flat, Victor Byers, Alfonso López De la Osa Escribano, and Aubin Nzaou-Kongo. Energy Law and Policy in a Climate-Constrained World. Westphalia Press, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Flat, Victor Byers, Alfonso López De la Osa Escribano, and Aubin Nzaou-Kongo. Energy Law and Policy in a Climate-Constrained World. Westphalia Press, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ahmed, Irfan. Cooperative communications for energy constrained wireless networks: Energy efficient communication in sensor networks. LAP Lambert Academic Publishing, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moriarty, Patrick, and Damon Honnery. Switching Off: Meeting Our Energy Needs in a Constrained Future. Springer Singapore Pte. Limited, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Energy-Constrained":

1

Papa, Rafael, Ionut Cardei, and Mihaela Cardei. "Energy-Constrained Drone Delivery Scheduling." In Combinatorial Optimization and Applications, 125–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64843-5_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Weixun, Prabhat Mishra, and Sanjay Ranka. "Temperature- and Energy-Constrained Scheduling." In Dynamic Reconfiguration in Real-Time Systems, 165–92. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0278-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lan, Huan. "Energy-Constrained Geometric Coverage Problem." In Algorithmic Aspects in Information and Management, 268–77. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16081-3_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Heeger, Derek, Maeve Garigan, Eirini Eleni Tsiropoulou, and Jim Plusquellic. "Secure Energy Constrained LoRa Mesh Network." In Ad-Hoc, Mobile, and Wireless Networks, 228–40. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61746-2_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bärtschi, Andreas, Jérémie Chalopin, Shantanu Das, Yann Disser, Barbara Geissmann, Daniel Graf, Arnaud Labourel, and Matúš Mihalák. "Collaborative Delivery with Energy-Constrained Mobile Robots." In Structural Information and Communication Complexity, 258–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48314-6_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chalopin, Jérémie, Shantanu Das, Matúš Mihal’ák, Paolo Penna, and Peter Widmayer. "Data Delivery by Energy-Constrained Mobile Agents." In Algorithms for Sensor Systems, 111–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45346-5_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Das, Shantanu, Dariusz Dereniowski, and Christina Karousatou. "Collaborative Exploration by Energy-Constrained Mobile Robots." In Structural Information and Communication Complexity, 357–69. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25258-2_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Juan, Yong Dong, Hui-zhan Yi, and Xue-jun Yang. "Energy-Constrained Prefetching Optimization in Embedded Applications." In Embedded and Ubiquitous Computing – EUC 2005, 267–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11596356_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bärtschi, Andreas, Evangelos Bampas, Jérémie Chalopin, Shantanu Das, Christina Karousatou, and Matúš Mihalák. "Near-Gathering of Energy-Constrained Mobile Agents." In Structural Information and Communication Complexity, 52–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24922-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hasler, Jennifer. "Embedded Classifiers for Energy-Constrained IoT Network Security." In Cyber-Physical Systems Security, 285–301. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98935-8_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Energy-Constrained":

1

Philips, Scott, Visar Berisha, and Andreas Spanias. "Energy-constrained discriminant analysis." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4960325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kerrache, Said, and Yasushi Nakauchi. "Computing constrained energy-minimizing flows." In 2011 3rd International Conference on Computer Research and Development (ICCRD). IEEE, 2011. http://dx.doi.org/10.1109/iccrd.2011.5764149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Daniel, Jeremie, Abderazik Birouche, Jean-Philippe Lauffenburger, and Michel Basset. "Energy constrained trajectory generation for ADAS." In 2010 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2010. http://dx.doi.org/10.1109/ivs.2010.5548110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tsiogkas, Nikolaos, Valerio De Carolis, and David M. Lane. "Energy-constrained informative routing for AUVs." In OCEANS 2016 - Shanghai. IEEE, 2016. http://dx.doi.org/10.1109/oceansap.2016.7485386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tchamkerten, Aslan, Venkat Chandar, and Giuseppe Caire. "Energy and sampling constrained asynchronous communication." In 2013 IEEE International Symposium on Information Theory (ISIT). IEEE, 2013. http://dx.doi.org/10.1109/isit.2013.6620680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Jianwei, Chein-I. Chang, and Mang Cao. "FPGA design for constrained energy minimization." In Optical Technologies for Industrial, Environmental, and Biological Sensing, edited by James O. Jensen and Jean-Marc Theriault. SPIE, 2004. http://dx.doi.org/10.1117/12.518559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Juan, Yong Dong, Xuejun Yang, and Panfeng Wang. "Energy-Constrained OpenMP Static Loop Scheduling." In 2008 10th IEEE International Conference on High Performance Computing and Communications (HPCC). IEEE, 2008. http://dx.doi.org/10.1109/hpcc.2008.132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Manolakis, Dimitris G., and Gary A. Shaw. "Directionally constrained or constrained energy minimization adaptive matched filter: theory and practice." In International Symposium on Optical Science and Technology, edited by Michael R. Descour and Sylvia S. Shen. SPIE, 2002. http://dx.doi.org/10.1117/12.453327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hongna Chang, Xinbo Gao, Ru Zong, Chen Chen, and Jie Cao. "Energy-efficient coding-aware routing in energy-constrained wireless networks." In 2010 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS 2010). IEEE, 2010. http://dx.doi.org/10.1109/ispacs.2010.5704606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tandon, Anshoo, Mehul Motani, and Lav R. Varshney. "Subblock energy-constrained codes for simultaneous energy and information transfer." In 2016 IEEE International Symposium on Information Theory (ISIT). IEEE, 2016. http://dx.doi.org/10.1109/isit.2016.7541643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Energy-Constrained":

1

Dayton, David C., Brian G. Southwell, and Vikram Rao. Diversifying Energy Options in a Carbon-Constrained World. RTI Press, October 2021. http://dx.doi.org/10.3768/rtipress.2021.rb.0029.2110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There is a critical need to reduce the static, calm the hype, and provide a realistic and complete presentation of facts to drive climate change mitigation decisions. Diversifying Energy Options in a Carbon-Constrained World is a new series to be published by RTI Press to provide a wide, cross-disciplinary discussion of carbon mitigation options and strategies to inform national and international research, scientific discussions, and policy debates.
2

Todd D. Plantenga. Fast Energy Minimization of large Polymers Using Constrained Optimization. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/5964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hale, Elaine, Brady Cowiestoll, Jennie Jorgenson, Trieu Mai, and Dylan Hettinger. Methods for Representing Flexible, Energy-Constrained Technologies in Utility Planning Tools. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1777393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Razavi, Alireza, and Zhi-Quan Luo. Distributed Optimization in an Energy-Constrained Network Using a Digital Communication Scheme. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada500118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Felmy, A. R. GMIN: A computerized chemical equilibrium model using a constrained minimization of the Gibbs free energy. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6950668.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dravid, Vinayak P. Statics and Dynamics of Dimensionally and Spatially Constrained Oxides. Summary Progress Report Submitted to Department of Energy Basic Energy Science Division. Division of Materials Science & Engineering. Office of Scientific and Technical Information (OSTI), July 2010. http://dx.doi.org/10.2172/1092761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chapman and Figge. PR-266-07206-R01 Field Test of a Turbocharger Booster System. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2009. http://dx.doi.org/10.55274/r0010769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The natural gas transmission industry has been subject to increasingly stringent emissions regulations over the years, with tougher regulations yet to come. One of the biggest challenges has been to reduce oxides of nitrogen (NOX) while maintaining existing engine reliability and power output. One method of lowering these emissions from reciprocating engines is to use technologies that increase air flow to the engine. Typically, the engine is turbocharged or, in the case where a turbocharger already exists on an engine, the turbocharger is �upgraded� to increase the air flow rate through the engine. However, the high engine air flow rates required for an engine upgrade project are constrained by the physics of the turbocharger. As air flow through an engine increases, the exhaust temperature decreases accordingly. While this lower exhaust gas temperature reduces NOX emissions, it also reduces the available energy needed to drive the turbocharger turbine. This report explores options to boost engine exhaust temperature to maintain adequate energy to the turbocharger to meet emission requirements.
8

Muelaner, Jody. Unsettled Issues Regarding Power Options for Decarbonized Commercial Vehicles. SAE International, September 2021. http://dx.doi.org/10.4271/epr2021021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
While direct electrification appears to provide the most cost-effective route to decarbonization of commercial vehicles, uptake may be constrained by critical metal supply. Additionally, it will be many years before hydrogen power becomes decarbonized or if it can ever compete economically with direct electrification. An electric road system (ERS) could offer a highly efficient and cost-effective route to direct electrification that would greatly reduce the volume of batteries required, but pilot schemes are urgently needed to provide concrete data on operating costs for different ERS technologies. Furthermore, if plug-in hybrid electric vehicles could obtain most of their power from an ERS, liquid biofuels and “electrofuels” may prove useful for occasional off-grid range extension. To achieve extremely long-range for operation in remote locations, liquid fuels remain the only viable option. Unsettled Issues Regarding Power Options for Decarbonized Commercial Vehicles discusses the analysis required to understand the lifecycle energy use for different power options for decarbonized commercial vehicles.
9

Ahairwe, Pamella Eunice. The EIB Group Climate Bank Roadmap 2021-2025: What does it mean for developing countries? European Centre for Development Policy Management, September 2021. http://dx.doi.org/10.55317/casc013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The decade ahead is a critical one for long-term global sustainability. It presents an indispensable opportunity for the world to stimulate a recovery from COVID-19 while addressing the climate crisis. For developing countries with limited fiscal space, which has been constrained further by the pandemic, addressing the climate catastrophe requires ample external financial support. Mandated by the European Commission, the European Investment Bank (EIB) provides finance to developing countries to help them address climate change, while fostering the EU’s external objectives. It has launched ambitious climate plans, establishing itself as the EU Climate Bank, to deliver on the climate objectives of the European Green Deal within and outside the European Union (EU). Building on its 2015 Climate Strategy and its 2019 Energy Lending Policy, the EIB has now developed the Climate Bank Roadmap 2021-2025 as a blueprint of all its climate action operations within and outside the EU. This paper discusses the external dimensions of the four work streams of this Climate Bank Roadmap and explores the extent to which these work streams tackle the concerns that stakeholders raised during the consultation process that preceded the development of the roadmap. Finally, the paper provides recommendations on how the EIB can ensure greater climate action impact. It suggests that the EIB should: 1. Set new ambitious climate action targets for its operations in developing countries; 2. Significantly increase its share of climate adaptation finance; 3. Strengthen its partnerships with and in developing countries; 4. Build up local country presence and expertise; 5. Improve policy coordination of its climate action projects through blended finance; 6. Support the development of bankable projects; and 7. Enhance its inclusive financing by supporting micro- and small businesses through inter alia microcredit institutions.
10

Ferguson, Thomas, and Servaas Storm. Myth and Reality in the Great Inflation Debate: Supply Shocks and Wealth Effects in a Multipolar World Economy. Institute for New Economic Thinking Working Paper Series, January 2023. http://dx.doi.org/10.36687/inetwp196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper critically evaluates debates over the causes of U.S. inflation. We first show that claims that the Biden stimulus was the major cause of inflation are mistaken: the key data series – stimulus spending and inflation – move dramatically out of phase. While the first ebbs quickly, the second persistently surges. We then look at alternative explanations of the price rises. We assess four supply side factors: imports, energy prices, rises in corporate profit margins, and COVID. We argue that discussions of COVID’s impact have thus far only tangentially acknowledged the pandemic’s far-reaching effects on labor markets. We conclude that while all four factors played roles in bringing on and sustaining inflation, they cannot explain all of it. There really is an aggregate demand problem. But the surprise surge in demand did not arise from government spending. It came from the unprecedented gains in household wealth, particularly for the richest 10% of households, which we show powered the recovery of aggregate US consumption expenditure especially from July 2021. The final cause of the inflationary surge in the U.S., therefore, was in large measure the unequal (wealth) effects of ultra-loose monetary policy during 2020-2021. This conclusion is important because inflationary pressures are unlikely to subside soon. Going forward, COVID, war, climate change, and the drift to a belligerently multipolar world system are all likely to strain global supply chains. Our conclusion outlines how policy has to change to deal with the reality of steady, but irregular supply shocks. This type of inflation responds only at enormous cost to monetary policies, because it arises mostly from supply-side difficulties that require targeted solutions. But when supply plummets or becomes more variable, fiscal policy also has to adapt: existing explorations of ways to steady demand over the business cycle have to embrace much bolder macroeconomic measures to control over-spending when supply is temporarily constrained.

До бібліографії