Дисертації з теми "Fiber optic displacement sensor"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Fiber optic displacement sensor.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Fiber optic displacement sensor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Sakamoto, João Marcos Salvi. "Laser ultrasonics system with a fiber optic angular displacement sensor." Instituto Tecnológico de Aeronáutica, 2012. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Laser ultrasonics is an all-optical non-destructive testing technique which employs ultrasonic waves as a means of ascertaining the internal part of an opaque material (for light). The difference from a conventional ultrasonics testing technique relies on the generation and detection of these waves which, in the laser ultrasonics technique, is performed by a laser pulse and an optical detector of ultrasound, respectively. This technique is employed in the aerospace and aeronautics industry for flaw detection or material characterization, since it is couplant free, non-contact and remote from the inspected object. The high cost and complexity of a commercial laser ultrasonics system, however, led to the development in this work, of an intensity-modulated fiber optic sensor to be employed as the optical detector of a laser ultrasonics system. This fiber optic sensor is capable to detect angular displacement in the range of microradians and presents high sensitivity, optical fiber compatibility, wide bandwidth and, furthermore, is simple to assembly and low cost. The fiber optic sensor comprises two optical fibers, a positive lens, a reflective surface, a laser, and a photodetector. A mathematical model was developed to determine and simulate the static characteristic curve of the sensor and to analyze the influence of geometrical parameters in its performance. Different sensor configurations were assembled and experimental static characteristic curves were acquired to validate the mathematical model. The normalized sensitivity, for the configurations tested, ranges from (0.25×Vmax) to (2.40×Vmax) mV/?rad and the linear range, from 194 to 1840 ?rad. Regarding an specific sensor configuration (the sensor 4/4) with reflective surface of 100% of reflectivity, the sensor presented an unnormalized sensitivity of 7.7 mV/?rad, an estimated resolution of approximately 1 ?rad and signal-to-noise ratio of 32 dB. The sensor was tested on the dynamic operation for sound and ultrasound detection and, finally as the optical detector of the complete laser ultrasonics system developed in this work. The sensor also proved to be suitable for time-of-flight measurements and nondestructive testing, being an alternative to the piezoelectric or the interferometric detectors.
2

Zhang, Kuiwei. "Surface roughness and displacement measurements using a fibre optic sensor and neural networks." Thesis, Brunel University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jason, Johan. "Fibre-Optic Displacement and Temperature Sensing Using Coupling Based Intensity Modulation and Polarisation Modulation Techniques." Doctoral thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-18964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Optical fibre sensors are employed in the measurements of a number of different physical properties or for event detection in safety and security systems. In those environments which suffer from electromagnetic disturbance, in harsh environments where electronics cannot survive and in applications in favour of distributed detection, fibre-optic sensors have found natural areas of use. In some cases they have replaced conventional electronic sensors due to better performance and long-term reliability, but in others they have had less success mainly due to the higher costs which are often involved in fibre-optic sensor systems. Intensity modulated fibre-optic sensors normally require only low-cost monitoring systems principally based on light emitting diodes and photodiodes. The sensor principle itself is very elemental when based on coupling between fibres, and coupling based intensity modulated sensors have been utilised over a long period of time, mainly within displacement and vibration sensing. For distributed sensing based on intensity modulation, optical time domain reflectometer (OTDR) systems with customised sensor cables have been used in the detection of heat, water leakage and hydrocarbon fluid spills. In this thesis, new concepts for intensity modulated fibre-optic sensors based on coupling between fibres are presented, analysed, simulated and experimentally verified. From a low-cost and standard component perspective, alternative designs are proposed and analysed using modulation function simulations and measurements, in order to find an improved performance. Further, the development and installation of a temperature sensor system for industrial process monitoring is presented, involving aspects with regards to design, calibration, multiplexing and fibre network installation. The OTDR is applied as an efficient technique for multiplexing several coupling based sensors, and sensor network installation with blown fibre in microducts is proposed as a flexible and cost-efficient alternative to traditional cabling. As a solution to alignment issues in coupling based sensors, a new displacement sensor configuration based on a fibre to a multicore fibre coupling and an image sensor readout system is proposed. With this concept a high-performance sensor setup with relaxed alignment demands and a large measurement range is realised. The sensor system performance is analysed theoretically with complete system simulations, and an experimental setup is made based on standard fibre and image acquisition components. Simulations of possible error contributions show that the experimental performance limitation is mainly related to differences between the modelled and the real coupled power distribution. An improved power model is suggested and evaluated experimentally, showing that the experimental performance can be improved down towards the theoretical limit of 1 μm. The potential of using filled side-hole fibres and polarisation analysis for point and distributed detection of temperature limits is investigated as a complement to existing fibre-optic heat detection systems. The behaviour and change in birefringence at the liquid/solid phase transition temperature for the filler substance is shown and experimentally determined for side-hole fibres filled with water solutions and a metal alloy, and the results are supported by simulations. A point sensor for on/off temperature detection based on this principle is suggested. Further the principles of distributed detection by measurements of the change in beat length are demonstrated using polarisation OTDR (POTDR) techniques. It is shown that high-resolution techniques are required for the fibres studied, and side-hole fibres designed with lower birefringence are suggested for future studies in relation to the distributed application.
Fiberoptiska sensorer används för mätning av ett antal olika fysikaliska parametrar eller för händelsedetektering i larm- och säkerhetssystem. I miljöer med elektromagnetiska störningar, i andra besvärliga miljöer där elektronik inte fungerar samt i tillämpningar där distribuerade sensorer är att föredra, har fiberoptiska lösningar funnit naturliga applikationer. I vissa fall har de ersatt konventionella elektroniska sensorer på grund av bättre prestanda och tillförlitlighet, medan de i andra sammanhang har haft mindre framgång huvudsakligen på grund av den i många fall högre kostnaden för fiberoptiska sensorsystem. Intensitetsmodulerade fiberoptiska sensorer kräver normalt endast billiga utläsningssystem huvudsakligen baserade på lysdioder och fotodioder. Principen för sådana sensorer baserade på koppling mellan fibrer är mycket enkel, och denna typ av sensorer har haft tillämpningar under en lång tid, främst inom mätning av positionsförändring och vibrationer. För distribuerade intensitetsmodulerade sensorer har system baserade på optisk tidsdomän-reflektometer (OTDR) och skräddarsydda sensorkablar funnit tillämpningar i detektion av värme/brand, vattenläckage och kolvätebaserade vätskor. I denna avhandling presenteras, simuleras, testas och utvärderas praktiskt några nya koncept för kopplingsbaserade intensitetsmodulerade fiberoptiska sensorer. Från ett lågkostnads- och standardkomponentperspektiv föreslås och analyseras alternativa lösningar för förbättrad prestanda. Utveckling och installation av en temperatursensor för en industriell tillämpning, innehållande aspekter på sensormultiplexering och nätverksbyggande, behandlas. OTDR-teknik används som en effektiv metod för multiplexering av flera kopplingsbaserade sensorer, och installation av sensornätverk genom användning av blåsfiberteknik och mikrodukter föreslås som ett flexibelt och kostnadseffektivt alternativ till traditionell kabelinstallation. Som en lösning på förekommande upplinjeringsproblem för kopplingsbaserade sensorer, föreslås en ny sensorkonfiguration baserad på koppling mellan en fiber och en multikärnefiber/fiberarray och med ett bildsensorsystem för detektering. Med detta koncept kan ett högpresterande, upplinjeringsfritt sensorsystem med ett stort mätområde åstadkommas. Sensorsystemets prestanda har analyserats teoretiskt med kompletta systemsimuleringar, och en experimentell uppställning baserad på standardfiber och en kamera av standardtyp har gjorts. Simuleringar av möjliga felbidrag visar att systemets experimentella prestanda främst begränsas av skillnader mellan den modellerade och den verkliga optiska effektfördelningen. En förbättrad modell för effektfördelningen föreslås och utvärderas experimentellt. Det visas att prestanda är möjlig att förbättra ner mot den teoretiska gräns på 1 μm som erhållits vid systemsimuleringar. Möjligheterna att använda fyllda hålfibrer och polarisationskänslig mätning för detektering av temperaturgränser studeras i syfte att komplettera befintliga fiberoptiska värmedetektorsystem. Förändringen i fiberns dubbelbrytning vid övergångstemperaturen mellan vätske- och fast fas för ämnet i hålen visas och bestäms experimentellt för hålfibrer fyllda med vattenlösningar respektive en metallegering, och resultaten understöds också av simuleringar. En punktsensor för temperaturdetektering baserad på denna princip föreslås. Vidare visas principerna för distribuerad detektering genom registrering av förändringen i dubbelbrytning med polarisations-OTDR (POTDR). Det visas att OTDR-teknik med hög spatial upplösning behövs för övervakning av de studerade fibrerna, och hålfibrer utformade med lägre dubbelbrytning föreslås för framtida studier av tillämpningen.
4

Arora, Neha. "Contribution to the concept of micro factory : design of a flexible electromagnetic conveyor system." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’objectif de la thèse est de réaliser un système de convoyage flexible permettant de déplacer des micro-objets. Ce système pourra être amené à être intégré dans une micro-usine ce qui nécessite une forte reconfigurabilité et une faible consommation d’énergie. Ces deux critères ont donc été considérés lors de la conception du système de convoyage. Ce dernier est basé sur un actionneur planaire électromagnétique, développé au sein du laboratoire Roberval, et sur une surface intelligente composée de 5 × 5 cellules élémentaires permettant chacune de déplacer la partie mobile dans les deux directions du plan et des rotations autour de l'axe perpendiculaire au plan. Un modèle analytique de l’actionneur a été développé afin de calculer les efforts électromagnétiques ainsi que le déplacement de la partie mobile. Ce modèle a été utilisé lors de la phase de conception du système de convoyage. Un prototype expérimental a ensuite été fabriqué et testé ce qui a permis de valider le principe de fonctionnement proposé. Des tests expérimentaux ont montré la possibilité de réaliser des déplacements de grande étendue dans les deux directions du plan. De multiples tests expérimentaux (pilotage en boucle ouverte, caractérisation des performances telles que rectitude de déplacement, répétabilité de positionnement, charge déplaçable, …) a été réalisée afin de qualifier les performances du système de convoyage. Les points sur la réalisation : - Une modélisation statique sous RADIA a été développée afin de concevoir la surface intelligente notamment la zone de transition entre deux cellules voisines. Une modélisation dynamique réalisée sous MATLAB a permis de simuler le comportement d’un moteur en boucle ouverte et en boucle fermée. - Un prototype de surface intelligente, composé d’un circuit imprimé multicouches (4 couches) de dimensions 130 mm x 130 mm, a été conçu sous EAGLE software. L’influence de la distance entre les deux premières couches a été étudiée à l’aide des modèles développés afin d'assurer un déplacement uniforme dans les deux directions. - Un test expérimental avec LABVIEW interface d'une cellule élémentaire de la surface intelligente avec une partie mobile composée de deux moteurs magnétiques orthogonaux a été réalisé et a permis de valider le fonctionnement du système de convoyage dans les deux directions du plan. - Une autre série de tests avec LABVIEW interface a été réalisée afin de valider expérimentalement le déplacement de la partie mobile avec la surface intelligente au niveau des zones de transition entre les cellules élémentaires. Ces tests expérimentaux ont montré des déplacements de grande étendue dans les deux directions du plan et de rotation autour de l'axe perpendiculaire au plan. Des déplacements de grande étendue et des rotations de la partie mobile ont été mesurés à l’aide d’une méthode de traitement d'image réalisée sous MATLAB. - Parallèlement, on a étudié un capteur à déplacement optique à haute résolution qui peut être intégré dans le convoyeur. Un algorithme robuste pour le traitement du signal de capteur à fibres optiques à haute résolution pour mesurer de déplacement est développé. Dans cet algorithme, la position optimale de la partie mobile est déterminée pour obtenir un basculement sans arrêt entre les sondes et l'algorithme est implémenté sous MATLAB et validée par la mise en œuvre des signaux expérimentaux. Ces travaux de thèse ont été publiés dans une revue internationale (Computers in Industry (COMIND)) et présentés dans des congrès internationaux (IEEE Sensors, REM Mechatronics, AIM, IWMF) pendant les années 2011 à 2016
The aim of the thesis is to provide a flexible conveyor system for moving micro-objects. The system may need to be integrated into a micro-factory which requires high reconfigurability and low power consumption. These two criteria have been considered in the design of the conveyor system. The conveyor is based on a planar electromagnetic actuator developed in the Laboratoire Roberval of the UTC, and on smart surface composed of 5 x 5 unit cells; each ceii moves th movable part in the two directions of the plane. An analytical model of the actuator has been developed in order to calculate the electromagnetic forces and the displacement of the mobile part. This modei has been used during the design phase of the conveying system. An experimental prototype is then manufactured and tested which has validated the proposed principle of operation. Experimental tests have shown the ability to perform wide area displacement in both directions of the plane. Numerous experimental tests (control in open loop and closed loop performance characterization as straightness of movement, position repeatability, coupled- decoupled analysis...) have been done to qualify the performance of the conveyor system. Experiments for rotations about the axis perpendicular to the olane have also been performed successfully. Work synthesis: - Static modeling under RADIA was developed in order to design the conveyor surface especially for the transitio zone between two neighboring cells. A dynamic modeling under MATLAB allowed to simulate the behavior of single axis motor in open loop and closed loop control. - A conveyor surface prototype, consisting of a multilayer printed circuit board (4 layers) of dimensions 130 mm x 130 mm, was designed under EAGLE software. The influence of the distance between the first two layers was studied using the developed models to ensure uniform displacement in both the directions. - The experimental tests (with LABVIEW interface) of an elementary cell of the intelligent surface with a moving part composed of two orthogonal magnetic motors has been carried out that allowed to validate the operation of the conveying system in both directions of the plane. - Another series of tests with LABVIEW interface were carried out in order to validate experimentally the displacement of the mobile part with the smart surface at the transition zones between the elementary cells. - These experimental tests showed displacements of great extent in the two directions of the plane and of rotation about the axis perpendicular to the plane. - Long displacements and rotations of the moving part were measured using image processing algorithm developed in MATLAB. - At the same time, a high resolution fiber optic displacement sensor was studied that can be integrated into the conveyor surface locally for the precise positioning. A robust signal processing algorithm for high resolution displacement measurement was developed. In this algorithm, - The optimum position of the movable part is determined in order to obtain a continuous switching betwee the two fiber optic probes ; - The usable parts of the signals obtained from two probes were then filtered to measure the displacement using interpolation method ; The algorithm is implemented under MATLAB and validated by the implementation of the experimental signals. The work have been published in an international journal (Computers in Industry (COMIND)) and presented at international congresses (IEEE Sensors, REM Mechatronics, AIM, IWMF) during the years 2011 to 2016
5

Beadle, Brad Michael. "Fiber optic sensor for ultrasound." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/17869.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Beadle, Brad Michael. "Fiber optic sensor for ultrasound." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/19173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maier, Eric William. "Buried fiber optic intrusion sensor." Thesis, Texas A&M University, 2004. http://hdl.handle.net/1969.1/425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A distributed fiber optic intrusion sensor capable of detecting intruders from the pressure of their weight on the earth's surface was investigated in the laboratory and in field tests. The presence of an intruder above or in proximity to the buried sensor induces a phase shift in light propagating along the fiber which allows for the detection and localization of intrusions. Through the use of an ultra-stable erbium-doped fiber laser and phase sensitive optical time domain reflectometry, disturbances were monitored in long (several km) lengths of optical fiber. Narrow linewidth and low frequency drift in the laser were achieved through a combination of optical feedback and insulation of the laser cavity against environmental effects. The frequency drift of the laser, characterized using an all-fiber Mach Zehnder interferometer, was found to be less than 1 MHz/min, as required for operation of the intrusion detection system. Intrusions were simulated in a laboratory setting using a piezoelectric transducer to produce a controllable optical phase shift at the 2 km point of a 12 km path length. Interrogation of the distributed sensor was accomplished by repetitively gating light pulses from the stable laser into the sensing fiber. By monitoring the Rayleigh backscattered light with a photodetector and comparing traces with and without an induced phase shift, the phase disturbances were detected and located. Once the feasibility of such a sensor was proven in the laboratory, the experimental set up was transferred to Texas A&M's Riverside Campus. At the test site, approximately 40 meters of fiber optic cable were buried in a triangle perimeter and then spliced into the 12 km path length which was housed inside the test facility. Field tests were conducted producing results comparable to those found in the laboratory. Intrusions over this buried fiber were detectable on the φ-OTDR trace and could be localized to the intrusion point. This type of sensor has the potential benefits of heightened sensitivity, covertness, and greatly reduced cost over the conventional seismic, acoustic, infrared, magnetic, and fiber optic sensors for monitoring long (multi-km) perimeters.
8

Goyal, Sandeep. "Fiber optic current sensor network." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq24716.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Qiao. "ESA based fiber optical humidity sensor." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/10134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Several techniques for measuring humidity are presented. The goal of the study is to use the electrostatic self-assembled monolayer synthesis process to fabricate a Fabry-Parot Cavity based optical fiber humidity sensor. The sensing scheme bases on the refractive index change with relative humidity of the film applied to the end of optical fiber. That is, the change in reflected optical power indicates certain humidity. To achieve this, some chemicals induce on specific coating materials were applied at the end of optical fiber. In this thesis, experimental results are given to prove that the humidity sensor has high sensitive and fast response time. Furthermore, we investigate the potential for the use of human breathing monitoring and air flow rate detection. Results from preliminary tests of each are given.
Master of Science
10

Bangert, Adam. "Fiber optic sensor prototype for breast cancer imaging." Connect to resource, 2006. http://hdl.handle.net/1811/6455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Honors)--Ohio State University, 2006.
Title from first page of PDF file. Document formatted into pages: contains 33 p.; also includes graphics. Includes bibliographical references (p. 20). Available online via Ohio State University's Knowledge Bank.
11

Canalizo, M. Andres E. "Fiber optic current sensor network, innovations and applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0019/MQ48057.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Tian, Zhipeng. "Sapphire Fiber Optic Sensor for High Temperature Measurement." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/91191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This dissertation focuses on developing new technologies for ultra-low-cost sapphire fiber-optic high-temperature sensors. The research is divided into three major parts, the souceless sensor, the simple Fabry-Perot (F-P) interrogator, and the sensor system. Chapter 1 briefly reviews the background of thermal radiation, fiber optic F-P sensors, and F-P signal demodulation. The research goal is highlighted. In Chapter 2, a temperature sensing system is introduced. The environmental thermal radiation was used as the broadband light source. A sapphire wafer F-P temperature sensor head was fabricated, with an alumina cap designed to generate a stable thermal radiation field. The radiation-induced optical interference pattern was observed. We demodulated the temperature sensor by white-light-interferometry (WLI). Temperature resolution better than 1°C was achieved. Chapter 3 discusses a novel approach to demodulate an optical F-P cavity at low-cost. A simple interrogator is demonstrated, which is based on the scanning-white-light-interferometry (S-WLI). The interrogator includes a piece of fused silica wafer, and a linear CCD array, to transform the F-P demodulation from the optical frequency domain to the spatial domain. By using the light divergence of an optical fiber, we projected a tunable reference F-P cavity onto an intensity distribution along a CCD array. A model for S-WLI demodulation was established. Performance of the new S-WLI interrogator was investigated. We got a good resolution similar to the well-known traditional WLI. At last, we were able to combine the above two technologies to a sapphire-wafer-based temperature sensor. The simple silica wafer F-P interrogator was optimized by focusing light to the image sensor. This approach improves the signal to noise ratio, hence allows the new integrator to work with the relatively weak thermal radiation field. We, therefore, proved in the experiment, the feasibility of the low-cost sourceless optical Fabry-Perot temperature sensor with a simple demodulation system.
PHD
13

Chen, Xiaopei. "Fiber Optic Pressure Sensor Fabrication Using MEMS Technology." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/32744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A technology for fabricating fiber optic pressure sensors is described. This technology is based on intermediate-layer bonding of a fused silica ferrule to a patterned, micro-machined fused silica diaphragm, providing low temperature fabrication of optical pressure sensor heads that can operate at high temperature. Fused silica ferrules and fused silica diaphragms are chosen to reduce the temperature dependence. The fused silica diaphragms have been micro-machined using wet chemical etching in order to form extrinsic Fabry-Perot (FP) interferometric cavities. Sol-gel is used as an intermediate-layer for both fiber-ferrule bonding and ferrule-diaphragm bonding at relatively low temperature (250 °C). The pressure sensors fabricated in the manner can operate at temperatures as high as 600 °C. The self-calibrated interferometric-intensity-based (SCIIB) technology, which combines fiber interferometry and intensity-based sensing method into a single sensor system, is used to test and monitor the pressure sensor signal. The light returned from the FP cavity is split into two channels. One channel with longer coherence length can test the effective interference generated by the FP cavity, while the other channel with shorter coherence length can get signal proportional only to the source power, fiber attenuation, and other optical losses. The ratio of the signals from the two channels can compensate for all unwanted factors, including source power variations and fiber bending losses. [11]
Master of Science
14

Wang, Yongxin. "High Speed Fiber Optic Spectrometer." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/30126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This dissertation presents the structure, operational principle and mathematical model of a novel high speed fiber optic spectrometer (HSFOS). In addition, the performance analysis is conducted and preliminary experimental results are listed and discussed. Such a spectrometer is highly desired by the ever-increasing applications of fiber optic sensors. In the recent decades, a variety of fiber optic sensors have been proposed, built and tested. Compared to their electronic counterparts, fiber optic sensors although still under development, are preferred more by certain industrial and medical applications which benefit from their unique properties such as immunity to electromagnetic interference, ability to withstand harsh environments and composition of purely dielectric materials. In recent years, new fiber optic sensors have been designed for applications where high response frequency up to a few hundred KHz is required while advantages of high accuracy and large dynamic range must be maintained. The bottle neck then emerged in the signal demodulation part of the sensor system. The quadrature phase detection could achieve high demodulation speed but with small dynamic range, medium accuracy and measurement ambiguity. The white light interferometry could provide a solution for high accuracy and large dynamic range measurement without ambiguity because of its absolute measurement nature. However the signal demodulation speed is limited due to the low spectrum acquisition rate of the existing spectrometers. The new HSFOS utilizes time domain dispersion of the sampled incoming light by dispersive fiber rather than the spatial dispersion employed by traditional spectrometers. In addition the signal that represents the spectrum of the light is naturally a serial signal which can be detected by a single detector and recorded by a high speed data acquisition device. Theoretical study of the operation principle is made and a mathematical model for the spectrometer is developed based on Marcuse's previous work. One major difference of the new derivation is that the propagation constant is expanded about the center circular frequency of each monochromatic light pulse instead of the center frequency of the chromatic light pulse which makes the physical picture of the chromatic light pulse evolution in a dispersive fiber clearer and facilitates both the analytical and numerical analysis. The profile of the dispersed chromatic light pulse could be treated as the superposition of all the dispersed monochromatic light pulses. Another major difference is the Taylor's series of the propagation constant is not truncated as it is in those previous work, which improves the accuracy of the model. Moreover, an approximate model is made which could further reduce the computation tasks in numerical simulations. Performance analysis for accuracy, resolution, speed and noise are conducted through numerical simulations based on the model and the experimental results. The sources of two different errors and their effects on accuracy are discussed respectively. The effects on spectral resolution by the properties of the modulation pulse and the fiber dispersion are studied. The results indicate that by using a rectangle modulation pulse under certain conditions, the resolution can be improved. The speed analysis gives that the spectrum acquisition rate can reach 1 million frames per second when the spectral width is less than 100 nm. In the noise analysis, the erbium-doped fiber amplifier (EDFA) is determined to be the dominant noise source. But by using two EDFAs, the overall signal to noise ratio is improved by 9.2 dB. The preliminary experimental results for FP sensor and FBG sensor signal demodulation are presented. The HSFOS for FP sensor signal demodulation achieves 15 nm resolution. By using the oversampling method, the HSFOS for FBG sensor signal demodulation achieves 0.05 nm spectral positioning resolution.
Ph. D.
15

Zhu, Yizheng. "Miniature Fiber-Optic Sensors for High-Temperature Harsh Environments." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/27762.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Measurement of physical parameters in harsh environments (high pressure, high temperature, highly corrosive, high electromagnetic interference) is often desired in a variety of areas, such as aerospace, automobile, energy, military systems, and industrial processes. Pressure and temperature are among the most important of these parameters. A typical example is pressure monitoring in jet engine compressors to help detect and control undesirable air flow instabilities, namely rotating stall and surge. However, the temperatures inside a compressor could reach beyond 600°C for today's large engines. Current fiber-optic sensor can operate up to about 300°C and even the most widely employed semiconductor sensors are limited below 500°C. The objective of this research is to push the limit of fiber-optic sensing technology in harsh environment applications for both pressure and temperature measurements by developing novel sensing structures, fabrication techniques, and signal processing algorithms. An all-fused-silica pressure sensor has been demonstrated which is fabricated on the tip of a fiber with a diameter no larger than 125μm. The sensor was able to function beyond the current limit and operate into the 600~700°C range. Also a temperature sensor has been developed using sapphire fibers and wafers for ultra-high temperature measurement as high as 1600°C. This effort will generate more understanding regarding sapphire fiber's high temperature properties and could possibly lead to novel designs of pressure sensor for beyond 1000°C. Both sensors have been field tested in real-world harsh environments and demonstrated to be reliably and robust. In this dissertation, the design, fabrication, and testing of the sensors are discussed in detail. The system and signal processing techniques are presented. The plan and direction for future work are also suggested with an aim of further pushing the operating limit of fiber-optic sensors.
Ph. D.
16

Liang, Yuanxin. "Respiration monitoring with a fibre optic sensor." Swinburne Research Bank, 2008. http://hdl.handle.net/1959.3/47121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (PhD) - Swinburne University of Technology, Faculty of Engineering and Industrial Sciences, Centre for Atom Physics an Ultra-fast Spectroscopy, 2008.
A thesis submitted for the degree of Master of Engineering, Centre for Atom Physics an Ultra-fast Spectroscopy, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2008. Typescript. Bibliography: p. 143-149.
17

Xu, Ying. "Detection of delamination in composites with fiber optic sensor /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202004%20XU.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2004.
Includes bibliographical references (leaves 194-209). Also available in electronic version. Access restricted to campus users.
18

Fan, Chenjun. "Fiber optic sensor based on dual ring resonator system /." Online version of thesis, 1992. http://hdl.handle.net/1850/11070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

FILHO, WAGNER MUNDY VALVERDE. "DEVELOPMENT OF FIBER OPTIC ACOUSTIC SENSOR FOR ULTRASONIC FLOWMETER." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2001. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19330@1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
AGÊNCIA NACIONAL DE PETRÓLEO
Nesta dissertação são relatadas as etapas que resultam na construção do protótipo de um receptor acústico a Fibra Óptica (RAFO). O trabalho faz parte de um projeto mais amplo visando o desenvolvimento de um medidor de vazão sônico baseado em fibras ópticas. Nesta fase inicial, os esforços foram voltados para a concepção, construção e testes do protótipo do transdutor, responsável pela deteção dos sinais sônicos emitidos por uma fonte, baseado em tecnologia de fibras ópticas. O uso de um sensor extrínseco foi a solução aqui empregada, que adota uma proposta de medição diferente da utilizada em medidores de vazão sônicos convencionais. O sistema de medição de vazão proposto na linha de pesquisa na qual este trabalho está inserido, baseia-se em medidas de tempo de transito para daí inferir a vazão volumétrica do fluido que escoa pelo duto. O sistema foi concebido para operar apenas numa banda estreita de frequências, casada com o sinal senoidal emitido pela fonte sonora. Neste trabalho um receptor acústico a fibra óptica foi projetado, montado e testado, tendo seu funcionamento sido demonstrado para freqüências de operação em torno de 3,2 kHz. A escolha desta faixa de frequências deveu-se basicamente a limitações do sistema de leitura optoeletronico utilizado nos testes de medição. Entretanto, uma vez que o princípio de funcionamento foi demonstrado com sucesso, não existem limitações para o re-dimensionamento do sensor de forma que este possa vir a operar em bandas de freqüência mais elevadas.
This thesis reports the steps that have led to the assemblage and testing of na optical fiber microphone. This is part of a greater effort directed towards the development a sonic flowmeter based on optical fiber technology. In this first phase of the project, focus has been placed on the conception, construction, and testing, of the acoustic receiver first prototype. This transducer will be responsible for capturing the acouustical signails sent by an emitter, also based on optical fiber technology, and which is yet to be developed. In constrast with conventional sonic flowmeters, in which time of flight of acoustical pulses is the measured quantity related to flow rate, we are proposing a system based on measurement of phase difference between emitted and received sinusoidal signals.Hence, the acoustic receiver has been conceived to operate in a narrow frequency band. In particular, the developed prototype has been designed to operate in a frequency band centered at 3.2 kHz. This choice has been dictated by the response of the optoeletronic circuit employed in tests performed with the receiver operating in air and water. Nevertheless, since the principle of operation has been measurement of acoustical signails in higher frequency bands.
20

May, Russell G. "Miniature Fiber Optic Viscoelasticity Sensor for Composite Cure Monitoring." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The most promising strategy for reducing the cost of manufacturing polymer matrix composites while improving their reliability is the use of sensors during processing to permit control of the cure cycle based on measurements of the material's internal state. While sensors have been demonstrated that infer the material state indirectly through measurements of acoustic impedance, electrical impedance, or refractive index, sensors that directly measure parameters critical to composite manufacturing, such as resin rheology and resin hydrostatic pressure, would improve characterization of thermoset resins during cure. Here we describe the development of a multifunctional fiber optic sensor that may be embedded in a composite part during lay-up to monitor the state of the polymer matrix during processing. This sensor will output quantitative data which will indicate the viscoelasticity of the thermoset matrix resin. The same sensor will additionally function as a strain sensor following fabrication, capable of monitoring residual strains due to manufacturing or in-service internal strains.
Ph. D.
21

Richardson, Douglas Harvey. "Fiber optic interferometric torque sensor with applications to milling." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/30056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To make unmanned machining viable it is necessary to monitor the machining process. The currently available sensor technology is not adequate to monitor all of the required aspects of the machining process. In this thesis a fiber optic milling machine torque sensor is proposed and experimentally analyzed. The initial tests, at low torque amplitudes, performed on the experimental prototype indicate that the proposed sensor may have performance characteristics which are superior to the characteristics of the currently used milling machine sensors. The proposed sensor has the advantages of small size, immunity to electromagnetic interference, micro-torque resolution, a dynamic range greater than 100000, and a useful minimum frequency bandwidth limited only by the first natural frequency of the spindle. Two sensors were constructed, one a bench top test sensor and the other a milling machine sensor. Two electrical signal processing schemes, which remove the inherent ambiguities of the sensor technology used, were investigated for each sensor. The milling machine sensing system had the fiber optic components mounted on the milling machine's drawbar. Before the drawbar sensor could be mounted on to the milling machine the laser diode source was damaged. Using the results of the tests performed on the bench top sensor and the drawbar sensor, the milling machine sensor was predicted to have a frequency bandwidth of 780 Hz, a resolution of 20 µNm, and a dynamic range greater than 100000.
Applied Science, Faculty of
Mechanical Engineering, Department of
Graduate
22

Xiao, Hai. "Self-Calibrated Interferometric/Intensity-Based Fiber Optic Pressure Sensors." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/28845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To fulfill the objective of providing robust and reliable fiber optic pressure sensors capable of operating in harsh environments, this dissertation presents the detailed research work on the design, modeling, implementation, analysis, and performance evaluation of the novel fiber optic self-calibrated interferometric/intensity-based (SCIIB) pressure sensor system. By self-referencing its two channels outputs, for the first time to our knowledge, the developed SCIIB technology can fully compensate for the fluctuation of source power and the variations of fiber losses. Based on the SCIIB principle, both multimode and single-mode fiber-based SCIIB sensor systems were designed and successfully implemented. To achieve all the potential advantages of the SCIIB technology, the novel controlled thermal bonding method was proposed, designed, and developed to fabricate high performance fiber optic Fabry-Perot sensor probes with excellent mechanical strength and temperature stability. Mathematical models of the sensor in response to the pressure and temperature are studied to provide a guideline for optimal design of the sensor probe. The solid and detailed noise analysis is also presented to provide a better understanding of the performance limitation of the SCIIB system. Based on the system noise analysis results, optimization measures are proposed to improve the system performance. Extensive experiments have also been conducted to systematically evaluate the performance of the instrumentation systems and the sensor probes. The major test results give us the confidence to believe that the development of the fiber optic SCIIB pressure sensor system provides a reliable pressure measurement tool capable of operating in high pressure, high temperature harsh environments.
Ph. D.
23

Juarez, Juan C. "Distributed fiber optic intrusion sensor system for monitoring long perimeters." Thesis, [College Station, Tex. : Texas A&M University, 2005. http://hdl.handle.net/1969.1/ETD-TAMU-1702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Wang, Zhiyong. "Self-Calibrated Interferometric/Intensity Based Fiber Optic Temperature Sensors." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/9690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To fulfill the objective of providing robust and reliable fiber optic temperature sensors capable of operating in harsh environments, a novel type of fiber optic sensor system titled self-calibrated interferometric/intensity-based (SCIIB) fiber optic temperature sensor system is presented in this thesis including the detailed research work on the principle analysis, design, modeling, implementation and performance evaluation of the system. The SCIIB fiber optic temperature sensor system shows us an innovative fiber optic sensor system compared with traditional fiber optic sensors. In addition to the general benefits of the traditional fiber optic sensors, the SCIIB fiber optic sensor system possesses several unique advantages. By taking advantage of the Split-Spectrum technique developed in Photonics Lab at Virginia Tech, the SCIIB sensor technology possesses the capability of Self-Calibration that can fully compensate for the fluctuation of optical source power and the variations of fiber losses. It combines the advantages of both the interferometric-based and the intensity-based fiber optic sensors in a single system. A multimode fiber-based SCIIB temperature sensor system is designed and successfully implemented. Comprehensive experiments are performed to evaluate the principle of SCIIB technology and the performance of the multimode fiber-based SCIIB temperature sensor system. The experiment results illustrate that the development of the SCIIB fiber optic temperature sensor system provides a reliable tool for the temperature measurement capable of operation in high temperature harsh environments.
Master of Science
25

Xu, Juncheng. "High Temperature High Bandwidth Fiber Optic Pressure Sensors." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/25988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pressure measurements are required in various industrial applications, including extremely harsh environments such as turbine engines, power plants and material-processing systems. Conventional sensors are often difficult to apply due to the high temperatures, highly corrosive agents or electromagnetic interference (EMI) noise that may be present in those environments. Fiber optic pressure sensors have been developed for years and proved themselves successfully in such harsh environments. Especially, diaphragm based fiber optic pressure sensors have been shown to possess advantages of high sensitivity, wide bandwidth, high operation temperature, immunity to EMI, lightweight and long life. Static and dynamic pressure measurements at various locations of a gas turbine engine are highly desirable to improve its operation and reliability. However, the operating environment, in which temperatures may exceed 600 °C and pressures may reach 100 psi (690 kPa) with about 1 psi (6.9kPa) variation, is a great challenge to currently available sensors. To meet these requirements, a novel type of fiber optic engine pressure sensor has been developed. This pressure sensor functions as a diaphragm based extrinsic Fabry-Pérot interferometric sensor. One of the unique features of this sensor is the all silica structure, allowing a much higher operating temperature to be achieved with an extremely low temperature dependence. In addition, the flexible nature of the sensor design such as wide sensitivity selection, and passive or adaptive temperature compensation, makes the sensor suitable for a variety of applications An automatically controlled CO2 laser-based sensor fabrication system was developed and implemented. Several novel bonding methods were proposed and investigated to improve the sensor mechanical ruggedness and reduce its temperature dependence. An engine sensor testing system was designed and instrumented. The system generates known static and dynamic pressures in a temperature-controlled environment, which was used to calibrate the sensor. Several sensor signal demodulation schemes were used for different testing purposes including a white-light interferometry system, a tunable laser based component test system (CTS), and a self-calibrated interferometric-intensity based (SCIIB) system. All of these sensor systems are immune to light source power fluctuations, which offer high reliability and stability. The fiber optic pressure sensor was tested in a F-109 turbofan engine. The testing results prove the sensor performance and the packaging ruggedization. Preliminary laboratory and field test results have shown great potential to meet not only the needs for reliable and precise pressure measurement of turbine engines but also for any other pressure measurements especially requiring high bandwidth and high temperature capability.
Ph. D.
26

Tiwari, Vidhu Shekhar. "DEVELOPMENT OF FIBER OPTIC SENSOR BASED ON LASER RAMAN SPECTROSCOPY." MSSTATE, 2008. http://sun.library.msstate.edu/ETD-db/theses/available/etd-07082008-143038/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Laser Raman Spectroscopy (LRS) has received worldwide acknowledgement as a powerful molecular finger print technique. The Raman spectrum of sample contains useful information such as molecular identity, composition, constituents concentration ratio etc. These information are manifested in the Raman spectrum in band heights, peak wavelength, band areas etc. The basis of quantitative analysis in Raman spectroscopy lies in the measurement of Raman band intensity, which is linearly dependent upon the sample concentration. On the other hand, Raman spectroscopy can also yield the qualitative information of samples by exhibiting bands corresponding to various chemical constituents in the sample mixture. The potentiality of Raman spectroscopy to perform quantitative as well as qualitative analysis of samples has been exploited in the development of Raman sensors in conjugation with the techniques of fiber optics. The main focus of the presented doctoral work is to realize a fiber optic Raman sensor to monitor the quality of liquid oxygen (LO2) in a rocket engine feed line. In this research investigation, I have shown how a bulk experimental configuration can be transformed to miniaturized prototype sensor, which is equally capable to determine the ratio of liquid oxygen and liquid nitrogen in their cryogenic mixture. This research was extended to monitor the concentration of oxygen and nitrogen in their gaseous mixture. Further, I have demonstrated that the Raman spectroscopy has the potentiality to measure the temperature of hydrogen in a laboratory environment by monitoring the variation in Raman rotation-vibrational line of hydrogen gas with temperature. Finally, I have experimentally studied the surface enhanced Raman spectroscopy (SERS) of silver colloidal solution, which is another interesting branch of Raman spectroscopy that has transcended the limitation of very low Raman cross-section to offer more insight to the chemical properties of samples.
27

Wrona, Dan. "A Dy:YAG coated fiber optic thermal sensor - proof of concept." Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-03302010-020709/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kunzler, Wesley Mont. "Fiber Optic Sensor Interrogation Advancements for Research and Industrial Use." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Spectrally-based fiber optic sensors are a rapidly maturing technology capable of sensing several environmental parameters in environments that are unfitting to electrical sensors. However, the sensor interrogation systems for this type of sensors are not yet fit to replace conventional sensor systems. They lack the speed, compact size, and usability necessary to move into mainstream test and measurement. The Fiber Sensor Integrated Monitor (FSIM) technology leverages rapid optical components and parallel hardware architecture to move these sensors across the research threshold into greater mainstream use. By dramatically increasing speed, shrinking size, and targeting an interface that can be used in large-scale industrial interrogation systems, spectrally-based fiber optic sensors can now find more widespread use in both research labs and industrial applications. The technology developed in this thesis was demonstrated by producing two advanced interrogators: one that was one half the size of commercially available systems, and one that accelerated live spectral capture by one thousand times – both of which were operated by non-developers with little training.
29

Al-Mamun, Mohammad Shah. "Development of a Miniature, Fiber-optic Temperature Compensated Pressure Sensor." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/71308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Since the invention of Laser (in 1960) and low loss optical fiber (in 1966) [1], extensive research in fiber-optic sensing technology has made it a well-defined and matured field [1]. The measurement of physical parameters (such as temperature and pressure) in extremely harsh environment is one of the most intriguing challenges of this field, and is highly valued in the automobile industry, aerospace research, industrial process monitoring, etc. [2]. Although the semiconductor based sensors can operate at around 500oC, sapphire fiber sensors were demonstrated at even higher temperatures [3]. In this research, a novel sensor structure is proposed that can measure both pressure and temperature simultaneously. This work effort consists of design, fabrication, calibration, and laboratory testing of a novel structured temperature compensated pressure sensor. The aim of this research is to demonstrate an accurate temperature measurement, and pressure measurement using a composite Fabry-Perot interferometer. One interferometer measures the temperature and the other accurately measures pressure after temperature compensation using the temperature data from the first sensor.
Master of Science
30

Cassino, Christopher Daniel. "Detection of fiber fracture in Unidirectional Fiber Reinforced Composites using an In-Plane Fiber Optic Sensor." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/32419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fiber reinforced polymers (FRP) are an efficient and inexpensive method of repairing deteriorating infrastructure. FRP sheets can be applied to spalling bridge sections and columns to prevent further deterioration and increase stiffness. However, the effect of the environment on the long-term durability of FRP and how the various damage mechanisms initiate and develop are not known. Systems for structural health monitoring are being sought as a means of managing important components in transportation systems as assets in light of modern life cycle cost concepts. This study characterizes a fiber optic sensor for use in detecting acoustic emissions (AE) in FRP. The results of AE analysis (signal amplitude, frequency spectra, MARSE, and in-plane displacement) caused by simulated fiber fracture experiments and other types of mechanical loading in FRP test coupons are reported. The applications to the development of FRP structural health monitoring systems are also discussed.
Master of Science
31

Baldwin, Christopher S. "Distributed sensing for flexible structures using a fiber optic sensor system." College Park, Md. : University of Maryland, 2003. http://hdl.handle.net/1903/288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.) -- University of Maryland, College Park, 2003.
Thesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
32

Krämer, Sebastian Gerhard Maxim. "Ferrimagnetic fiber optic sensor system for lightning detection on wind turbines." Aachen Shaker, 2008. http://d-nb.info/991820983/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

JUNIOR, MANOEL FELICIANO DA SILVA. "FIBER OPTIC PH SENSOR FOR PIPELINES AND OIL WELL PERMANENT MONITORING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=4746@1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
PETRÓLEO BRASILEIRO S. A.
A detecção da corrosão metálica em estruturas complexas e de difícil acesso apresenta dificuldades que até o presente não foram satisfatoriamente contornadas nos diversos setores industriais. Os sensores para avaliação da corrosão metálica baseiamse normalmente em corpos de sacrifício ou na monitoração da reação catódica que ocorre junto com o processo de oxidação e redução da corrosão. Condições ambientais, como temperatura, pressão, vazão, composição química e pH, têm influência direta sobre a agressividade do meio e seu conhecimento é fundamental para a previsão das taxas de corrosão. Na indústria do petróleo a corrosão metálica pode significar a falha prematura de equipamentos e vazamentos, causando onerosas operações de manutenção e pondo em risco a segurança e o meio ambiente. O presente trabalho mostra a concepção e desenvolvimento de um sensor de pH a fibra ótica para monitoração permanente de poços de petróleo. Dois princípios de medição foram avaliados. O primeiro, baseia-se na medida da variação do índice de refração efetivo em uma rede de Bragg, especialmente preparada para este fim, imersa em um meio contendo indicadores comerciais de pH. A segunda concepção utiliza a variação de volume proporcionada por um polímero sensível ao pH para deformar uma rede de Bragg. Os resultados experimentais obtidos demonstraram que a segunda técnica possibilita uma maior sensibilidade para as condições de operação do sensor. Esta segunda solução viabiliza também a utilização de múltiplos sensores, em uma única fibra óptica, monitorando ao mesmo tempo outras grandezas físicas que influenciam diretamente as taxas de corrosão, como pressão, temperatura e vazão. O sensor foi avaliado em meio ácido, sob diferentes condições de temperatura, produzindo resultados se sensibilidade melhor 0,01 unidades de pH. Novas investigações ainda precisam ser conduzidas para se chegar a um protótipo que possa ser testado em condições reais de operação de um poço de petróleo.
Evaluation of corrosion rates in hard-to-access equipments, such as those found in petroleum production, is still a difficult task. Sensors for corrosion rate evaluation are normally based on sacrifice bodies or in the cathodic reaction that occurs with the oxidation and reduction reactions of the corrosion process. Environmental conditions like temperature, pressure, chemical composition, and pH, are fundamental factors of environment severity and have a direct influence on corrosion rate predictions. In the Petroleum Industry, metallic corrosion may cause premature failure of equipments and fluid leaks, often resulting in expensive maintenance operations and posing safety and environmental risks. This work presents new concepts for fiber optic pH sensors that may be applied for permanent monitoring of petroleum wells. Two measurements principles were evaluated. The first one is based on measurements of refractive index changes in commercial pH indicators. The second solution explores a pH sensitive polymer, whose changes in volume strains a fiber Bragg grating. Experiments reported here show that the second technique has a better sensitivity, particularly under the operation conditions found in oil wells. It also allows the use of multiple fiber optic sensors simultaneously monitoring other physical quantities, such as temperature, pressure, and flow rate, which directly affect corrosion rates. The sensor was tested in acid environment, with special attention paid to temperature, solubility and response time. The sensitivity achieved was better than 0.01 pH units. More experiments still need to be performed in order to produce a prototype that will be testes in real operation conditions in producing petroleum well.
34

Zeng, Xiaodong. "Characterization and application of Brillouin scattering-based distributed fiber optic sensor." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Brillouin scattering based distributed fiber optic sensing as a novel technique has attracted much attention in both research and application for the past ten years. The fiber optic group at the University of Ottawa has developed an advanced automatic Brillouin sensing system and improved it continuously. This thesis presents the characterization and optimization of this sensing system and a series of successful applications both in the laboratory and in the field. Several parameters have been studied around the pulse generation subsystem: such as, bias, leakage, PW voltage, pulsewidth, and repetition frequency. Bias is found to be the most important parameter. We also discuss the relationships between the system repeatability and control parameters such as bias, polarization states, averages and frequency lock methods. Four successful applications of the distributed Brillouin sensing system are reported in the thesis. They are strain measurement in a reinforced concrete beam, simultaneous strain and temperature monitoring of composite curing process, strain and temperature monitoring of a concrete structure, and temperature compensated strain measurement of the load test on the Rollinsford Bridge.
35

White, Julia. "OPTIC FIBER SENSOR FOR STRAIN MEASUREMENTS IN HIGH TEMPERATURE SENSING APPLICATIONS." International Foundation for Telemetering, 2017. http://hdl.handle.net/10150/626969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Optic fiber sensors are employed in a variety of applications for the remote measurement of various parameters such as strain, pressure, or temperature. These sensors offer an array of benefits as well including light weight, compactness, and high resolution. In particular, Fabry-Perot interferometers (FPIs) maintain these benefits and can also be made to withstand extremely high temperatures. This advantage of the FPI allows it to be used in harsh environments where many other tools for parameter measurement could not survive. An FPI strain sensor is constructed and tested which has the capabilities to be used at high temperatures of over 1000°C for applications in gas turbine engine testing. This paper discusses the need for high temperature strain sensors in engine testing and this sensor’s capabilities in this application.
36

Hope, Julian Charles. "A multi-sensor global navigation system for autonomous mobile robots." Thesis, University of Salford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Jacobson, Carl P. "Code Division Multiplexing of Fiber Optic and Microelectromechanical Systems (MEMS) Sensors." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/27486.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multiplexing has evolved over the years from Emile Baudot's method of transmitting six simultaneous telegraph signals over one wire to the high-speed mixed-signal communications systems that are now commonplace. The evolution started with multiplexing identical information sources, such as plain old telephone service (POTS) devices. Recently, however, methods to combine signals from different information sources, such as telephone and video signals for example, have required new approaches to the development of software and hardware, and fundamental changes in the way we envision the basic block diagrams of communication systems. The importance of multiplexing cannot be overstated. To say that much of the current economic and technological progress worldwide is due in part to mixed-signal communications systems would not be incorrect. Along the vein of advancing the state-of-the-art, this dissertation research addresses a new area of multiplexing by taking a novel approach to network different-type sensors using software and signal processing. Two different sensor types were selected, fiber optics and MEMS, and were networked using code division multiplexing. The experimentation showed that the interconnection of these sensors using code division multiplexing was feasible and that the mixed signal demultiplexing software unique to this research allowed the disparate signals to be discerned. An analysis of an expanded system was performed with the results showing that the ultimate number of sensors that could be multiplexed with this technique ranges from the hundreds into the millions, depending on the specific design parameters used. Predictions about next-next generation systems using the techniques developed in the research are presented.
Ph. D.
38

Fang, Xiaojun. "Nonreciprocal effects and their applications in fiber optic networks." Diss., Virginia Tech, 1996. http://hdl.handle.net/10919/40337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nonreciprocity is a fundamental property of networks. Unlike electronic networks theory, optical network theory is still a field to be investigated. Lightwave systems, including fiber optic and integrated optic, are becoming more and more complex, new function blocks ( or components) and networking strategies are very important for future highly integrated lightwave circuits. Several common nonreciprocal optical effects studied in this disseration and several basic applications to fiber components and fiber optic metrology systems analyzed. The common optical nonreciprocal phenomena include the Faraday effect, Sagnac effect, Fresnel drag effect, nonlinearity or asymmetric geometric structure-induced nonreciprocity, and some pseudo nonreciprocity. The best-known application of nonreciprocity to optical components is the isolator, and the known nonreciprocity-based fiber optic sensors are the fiber optic gyroscope and the fiber optic current sensor. The major difficulty in forming a general optical network theory is the complexity of optical signals compared to the electrical signal, because each light signal consists of four independent parameters, all of which changing during transmission. Fortunately, most optical signals can be classified into intensity-based and phase-based systems, and the Jones matrix technique is the ideal tool for describing the intensity-based system. Several reciprocity-insensitive structures designed and analyzed in chapter 3. The performance of the intensity-based reciprocity-insensitive structure (IRIS) was employed successfully in a fiber optic current sensor for stabilizing the signal from birefringence influences in chapter 5. A variable-loop Sagnac interferometer was designed and applied to distributed sensing in chapter 6, and the reciprocity-insensitive property of the Sagnac interferometer was preserved. Polarization independent isolators and wavelength division multiplexers were also realized by employing suitable nonreciprocal effects and were discussed in chapter 2 and chapter 4, and their feasibilities were verified by experiment. The primary contributions of this dissertation are the study of common nonreciprocal optical effects and demonstration of several basic applications to fiber components and fiber metrology systems.
Ph. D.
39

Yu, Guo. "Sapphire Based Fiber-Optic Sensing for Extreme High Temperatures." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/76982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Temperature sensing is one of the most common and needed sensing technique, especially in harsh environment like a coal gasifier or an airplane engine. Single crystal sapphire has been studied in the last two decades as a candidate for harsh environment sensing task, due to its excellent mechanical and optical properties under extreme high temperature (over 1000°C). In this research, a sapphire wafer based Fabry-Perot (FP) interferometer sensor has been proposed, whose functional temperature measurement can go beyond 1600°C. The size of the sensors can be limited to a 2cm-length tube, with 2mm outer diameter, which is suitable for a wide range of harsh environment applications. The sensors have shown linear sensing response during 20~1200°C temperature calibration, with high sensitivity and resolution, and strong robustness, which are ready for the field test in real-world harsh environment.
Master of Science
40

Pedrazzani, Janet Renee. "High-Temperature Displacement Sensor Using a White-Light Scanning Fiber Michelson Interferometer." Thesis, Virginia Tech, 1996. http://hdl.handle.net/10919/30795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As specialized materials are developed for various applications, it becomes desirable to test them under adverse conditions, such as at elevated temperatures and in harsh environments. It is increasingly important that sensors be developed to meet the growing needs of research and industry. The ability of sapphire to withstand elevated temperatures and many chemically harsh environments has long been recognized. However, currently available sapphire fiber possesses poor optical quality and is not available with a cladding. It has found use in a variety of temperature sensors, but the investigation of sapphire-based strain and displacement sensors has been limited.

The primary development of a white-light Michelson interferometer that utilizes a sapphire fiber sensing head is presented in this thesis. Development includes efforts to combat the poor optical quality of the sapphire fiber, minimize polarization mode fading, and preferentially excite the fundamental mode of the sapphire fiber. This thesis demonstrates the feasibility of fabricating a Michelson white-light interferometer capable of measuring displacements in environments ranging from room temperature to 800 degrees Celsius. The sensor developed in this work is capable of measuring displacements exceeding 6.4 millimeters at room temperature, and exceeding 1 millimeter at 800 degrees Celsius.

This thesis also presents the application of this sensor to the alignment of a sapphire-fiber based Fabry-Perot sensor. This technique allows the Fabry-Perot sensor to be aligned so that usable fringes are always obtained. Alignment of the sapphire-fiber based Fabry-Perot sensors has been considered prohibitively difficult.
Master of Science

41

Dong, Bo. "Fiber Optic Sensors for On-Line, Real Time Power Transformer Health Monitoring." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
High voltage power transformer is one of the most important and expensive components in today's power transmission and distribution systems. Any overlooked critical fault generated inside a power transformer may lead to a transformer catastrophic failure which could not only cause a disruption to the power system but also significant equipment damage. Accurate and prompt information on the health state of a transformer is thus the critical prerequisite for an asset manager to make a vital decision on a transformer with suspicious conditions. Partial discharge (PD) is not only a precursor of insulation degradation, but also a primary factor to accelerate the deterioration of the insulation system in a transformer. Monitoring of PD activities and the concentration of PD generated combustible gases dissolved in the transformer oil has been proven to be an effective procedure for transformer health state estimation. However current commercially available sensors can only be installed outside of transformers and offer indirect or delayed information. This research is aimed to investigate and develop several sensor techniques for transformer health monitoring. The first work is an optical fiber extrinsic Fabry-Perot interferometric sensor for PD detection. By filling SF6 into the sensor air cavity of the extrinsic Fabry-Perot interferometer sensor, the last potential obstacle that prevents this kind of sensors from being installed inside transformers has been removed. The proposed acoustic sensor multiplexing system is stable and more economical than the other sensor multiplexing methods that usually require the use of a tunable laser or filters. Two dissolved gas analysis (DGA) methods for dissolved hydrogen or acetylene measurement are also proposed and demonstrated. The dissolved hydrogen detection is based on hydrogen induced fiber loss and the dissolved acetylene detection is by direct oil transmission measurement.
Ph. D.
42

Bansal, Lalitkumar El-Sherif Mahmoud Abd-El-Rahman. "Development of a fiber optic chemical sensor for detection of toxic vapors /." Philadelphia, Pa. : Drexel University, 2004. http://dspace.library.drexel.edu/handle/1860/372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Sjölander, Ola. "Optimization and Miniaturization of a Fiber-Optic ф-OTDR Distributed Vibration Sensor". Thesis, KTH, Tillämpad fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zhao, Xin. "Study of Multimode Extrinsic Fabry-Perot Interferometric Fiber Optic Sensor on Biosensing." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/34534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The electrostatic self-assembly (ESA) method presents an effective application in the field of biosensing due to the uniform nanoscale structure. In previous research, a single mode fiber (SMF) sensor system had been investigated for the thin-film measurement due to the high fringe visibility. However, compared with a SMF sensor system, a multimode fiber (MMF) sensor system is lower-cost and has larger sensing area (the fiber core), providing the potential for higher sensing efficiency.

In this thesis, a multimode fiber-optic sensor has been developed based on extrinsic Fabry-Perot interferometry (EFPI) for the measurement of optical thickness in self-assembled thin film layers as well as for the immunosensing test. The sensor was fabricated by connecting a multimode fiber (MMF) and a silica wafer. A Fabry-Perot cavity was formed by the reflections from the two interfaces of the wafer. The negatively charged silica wafer could be used as the substrate for the thin film immobilization scheme. The sensor is incorporated into the white-light interferometric system. By monitoring the optical cavity length increment, the self-assembled thin film thickness was measured; the immunoreaction between immunoglobulin G (IgG) and anti-IgG was investigated.
Master of Science

45

Newman, Jason. "A FIBER SENSOR INTEGRATED MONITOR FOR EMBEDDED INSTRUMENTATION SYSTEMS." International Foundation for Telemetering, 2006. http://hdl.handle.net/10150/604111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California
In this paper we will present a new fiber sensor integrated monitor (FSIM) to be used in an embedded instrumentation system (EIS). The proposed system consists of a super luminescent diode (SLD) as a broadband source, a novel high speed tunable MEMS filter with built in photodetector, and an integrated microprocessor for data aggregation, processing, and transmission. As an example, the system has been calibrated with an array of surface relief fiber Bragg gratings (SR-FBG) for high speed, high temperature monitoring. The entire system was built on a single breadboard less than 50 cm² in area.
46

Tipparaju, Venkata Satya Sai Sarma. "An active core fiber optic gas sensor using a photonic crystal hollow core fiber as a transducer." Master's thesis, Mississippi State : Mississippi State University, 2007. http://sun.library.msstate.edu/ETD-db/theses/available/etd-06262007-164352/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Kuppuswamy, Harini. "An experimental investigation of the sensitivity of a buried fiber optic intrusion sensor." Texas A&M University, 2005. http://hdl.handle.net/1969.1/3087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A distributed fiber optic sensor with the ability of detecting and locating intruders on foot and vehicles over long perimeters (>10 km) was studied. The response of the sensor to people walking over or near it and to vehicles driving nearby was observed and analyzed. The sensor works on the principle of phase sensitive optical time domain re ectometry, making use of interferometric effects of Rayleigh backscattered light along a single mode fiber. Light pulses from a highly stable Er:doped fiber laser emitting single longitudinal mode light and exhibiting low frequency drift are passed through one end of the buried fiber. The backscattered light emerging from the same fiber end was monitored using a photodetector. The phase changes produced in the light pulse due to the pressure of the intruder walking directly above or near the sensor or from the seismic disturbances created by vehicles moving in the vicinity of the sensor are detected using the phase sensitive Optical Time Domain Re ectometer (OTDR). Field tests were conducted with the sensing element as a single mode fiber in a 3-mm diameter cable buried at depths ranging from 8 to 18 inches in clay soil. It was observed that the sensor could detect intruders walking transverse to the cable line at a distance of 40 ft from it. A car moving at a speed of 30 mph on a rough road could be consistently detected up to a distance of 480 ft from the sensor, while a car driven on a smooth road 200 ft from the sensor could be detected only when passing through rough patches on the road. Tests were also performed with an intruder walking near the sensor while a car was driven at a speed of 30 mph on a rough road. The effect on the signal due to the intruder on foot could be distinguished clearly only when the car was at least 200 ft away from the sensor. The results in this thesis represent the first quantitative study of the sensitivity of the sensor under varied test conditions. It is expected that these findings will be helpful in the practical implementation of the long perimeter intrusion sensor along high security domains like national borders, military bases and government buildings.
48

Su, Xu. "Design and Evaluation of Off-centered Core Fiber for Gas Sensing." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gas Sensing Has Become a Very Important and Attractive Technique Because of Its Various Applications, Such as in the Increasingly Concerning Case of Environmental Issues, Automobile Emission Detection, Natural Gas Leakage Detection, Etc. It Also Has Significant Applications in Industries, Such as Safety and Health Monitoring in Underground Mines. Among Those Sensing Areas, Fiber-optic Sensors Have Drawn Considerable Attention Because of Its Small Size, Light Weight, High Sensitivity, and Remote Sensing Capability. However, Current Fiber-optic Gas Sensing Techniques Have Several Limitations on Their Potential for Multiplexed or Distributed Sensing Due to Difficulties Such as High Complexity or Large Loss. To Accomplish the Goal for Multiplexed Gas Sensing, an Off-centered Core Fiber Design Is Investigated. The Eccentric Core Can Reduce Attenuation, Keep Mechanical Strength, and Lower Fabrication Cost. To Verify the Feasibility of the Design, Fiber Field Distribution Is First Studied in Simulation, Which Will Be Discussed in Detail in Chapter 2. Then Two Fiber Samples with a Length of 10 Cm and 40 Cm Are Prepared and Placed in a Custom Methane Sensing System for Gas Absorption Testing, Which Is Detailed in Chapter 3. From Etching Analysis, Localized Surface Defects Are Found as the Main Reason for Power Loss. Performance Such as Detection Resolution and Sensitivity Are Investigated. In Chapter 4, Theoretical Evaluations Have Been Conducted for Multiplexed Sensors Performances Using the Off-centered Core Fiber to Study the Impact Fiber Parameters on Sensing System Design. The Conclusion and Summary Are Presented in Chapter 5.
Master of Science
Gas Sensing Has Become a Very Important and Attractive Technique Because of Its Various Applications, Such as in the Increasingly Concerning Case of Environmental Issues, Automobile Emission Detection, Natural Gas Leakage Detection, Etc. It Also Has Significant Applications in Industries, Such as Safety and Health Monitoring in Underground Mines. Among Those Sensing Areas, Fiber-optic Sensors Have Drawn Considerable Attention Because of Its Small Size, Light Weight, High Sensitivity, and Remote Sensing Capability. However, Current Fiber-optic Gas Sensing Techniques Have Several Limitations on Their Potential for Long Distance Distributed Sensing Due to Difficulties Such as High Fabrication Complexity. In This Work, a Fiber-optic Gas Sensor with Special Structure Was Designed. The Sensor Can Reduce Attenuation, Keep Mechanical Strength, and Lower Fabrication Cost. To Verify the Feasibility of the Design, Theory Analysis and Simulation Were Conducted, Which Will Be Discussed in Detail in Chapter 2. Then Two Samples with a Length of 10 Cm and 40 Cm Were Prepared and Placed in a Custom Methane Sensing System for Testing. And Their Performance Such as Sensitivity Is Investigated. In Chapter 4, Theoretical Evaluations Have Been Conducted for Multiplexed Sensors Performances Evaluation to Study the Impact Fiber Parameters on Sensing System Design. The Conclusion and Summary Are Presented in Chapter 5.
49

Liu, Bo. "Sapphire Fiber-based Distributed High-temperature Sensing System." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
From the monitoring of deep ocean conditions to the imaging and exploration of the vast universe, optical sensors are playing a unique, critical role in all areas of scientific research. Optical fiber sensors, in particular, are not only widely used in daily life such as for medical inspection, structural health monitoring, and environmental surveillance, but also in high-tech, high-security applications such as missile guidance or monitoring of aircraft engines and structures. Measurements of physical parameters are required in harsh environments including high pressure, high temperature, highly electromagnetically-active and corrosive conditions. A typical example is fossil fuel-based power plants. Unfortunately, current optical fiber sensors for high-temperature monitoring can work only for single point measurement, as traditional fully-distributed temperature sensing techniques are restricted for temperatures below 800°C due to the limitation of the fragile character of silica fiber under high temperature. In this research, a first-of-its-kind technology was developed which pushed the limits of fully distributed temperature sensing (DTS) in harsh environments by exploring the feasibility of DTS in optical sapphire waveguides. An all sapphire fiber-based Raman DTS system was demonstrated in a 3-meters long sapphire fiber up to a temperature of 1400°C with a spatial resolution of 16.4cm and a standard deviation of a few degrees Celsius. In this dissertation, the design, fabrication, and testing of the sapphire fiber-based Raman DTS system are discussed in detail. The plan and direction for future work are also suggested with an aim for commercialization.
Ph. D.
50

Krämer, Sebastian G. [Verfasser]. "Ferrimagnetic Fiber-Optic Sensor System for Lightning Detection on Wind Turbines / Sebastian G Krämer." Aachen : Shaker, 2008. http://d-nb.info/1161307117/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії