Статті в журналах з теми "Fiber optic displacement sensor"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Fiber optic displacement sensor.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Fiber optic displacement sensor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kleiza, V., and J. Verkelis. "Some Advanced Fiber-Optical Amplitude Modulated Reflection Displacement and Refractive Index Sensors." Nonlinear Analysis: Modelling and Control 12, no. 2 (April 25, 2007): 213–25. http://dx.doi.org/10.15388/na.2007.12.2.14712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Some advanced fiber-optic amplitude modulated reflection displacement sensors and refractive index sensors have been developed. An improved three-fiber displacement sensor has been investigated as a refractive index sensor by computer simulations in a large interval of displacement. Some new regularities have been revealed. A reflection fiber-optic displacement sensor of novel configuration, consisting of double optical-pair fibers with a definite angle between the measuring tips of fibers in the pairs has been proposed, designed, and experimentally investigated to indicate and measure the displacement and refractive index of gas and liquid water solutions. The proposed displacement sensor and refractive index sensor configuration improves the measuring sensitivity in comparison with the known measuring methods. The refractive index sensor sensitivity Snsub = 4 × 10−7 RIU/mV was achieved. The displacement sensor sensitivity is Ssub = 1702 mV/µm in air (n = 1.00027).
2

Murthy, S. A. N., and B. B. Padhy. "Fiber Optic Displacement Sensor." Journal of Optics 29, no. 4 (December 2000): 179–91. http://dx.doi.org/10.1007/bf03354684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Jinlei, Tengfei Bao, and Tribikram Kundu. "Wide Range Fiber Displacement Sensor Based on Bending Loss." Journal of Sensors 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/4201870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A wide range fiber optic sensor system for displacement and crack monitoring is developed. In the proposed fiber optic sensor system, a number of fiber loops are formed from a single fiber and each fiber loop is used as a crack or displacement sensor. The feasibility and the dynamic range of the fiber sensor developed in this manner are investigated experimentally. Both glass fibers and plastic fibers are used in the experiments. Experimental results show that the new fiber optic sensor has a wide range (maximum range is 88 mm) and this sensor also has a high sensitivity for displacement and crack monitoring when an appropriate diameter of the fiber loop is selected as the sensor. Moreover, the proposed method is very simple and has low cost, so in situ application potential of the proposed sensor is high.
4

Wu, Chi. "Fiber optic angular displacement sensor." Review of Scientific Instruments 66, no. 6 (June 1995): 3672–75. http://dx.doi.org/10.1063/1.1145486.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Potapov, V. T., D. A. Sedykh, and A. A. Sokolovskii. "Fiber-optic interferometric displacement sensor." Measurement Techniques 31, no. 6 (June 1988): 561–63. http://dx.doi.org/10.1007/bf00867531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Yujie, Ming Zhang, and Yu Zhu. "Research on the estimation method of the point-of-interest (POI) displacement for ultra-precision flexible motion system based on functional optical fiber sensor." Mechanics & Industry 22 (2021): 48. http://dx.doi.org/10.1051/meca/2021047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper proposes a POI displacement estimation method based on the functional optical fiber sensor and the phase modulation principle to improve the POI displacement estimation accuracy. First, the relation between the object deformation and the optic fiber lightwave phase is explained; the measurement principle of functional optical fiber sensor based on the heterodyne interference principle and its layout optimization method is proposed, and a POI displacement estimation model is presented based on the data approach. Secondly, a beam is taken as the simulation object, the optimal position and length of the optical fiber sensor are determined based on its simulation data. Finally, the experimental device is designed to verify the effectiveness of the POI displacement estimation method based on the optic fiber sensors. The frequency-domain plot of the signals shows that the optical fiber sensors can express the flexible deformation of the analyzed object well. The POI displacement estimation model with the fiber optic sensor signals as one of the inputs is constructed. Through estimating the test data, the error using the optical fiber sensor-based POI displacement estimation method proposed in this paper reduces by more than 61% compared to the rigid body-based assumption estimation method.
7

Wylie, Michael T. V., Bruce G. Colpitts, and Anthony W. Brown. "Fiber Optic Distributed Differential Displacement Sensor." Journal of Lightwave Technology 29, no. 18 (September 2011): 2847–52. http://dx.doi.org/10.1109/jlt.2011.2165527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhu, Hong Hu, Jian Hua Yin, Hua Fu Pei, Lin Zhang, and Wei Shen Zhu. "Fiber Optic Displacement Monitoring in Laboratory Physical Model Testing." Advanced Materials Research 143-144 (October 2010): 1081–85. http://dx.doi.org/10.4028/www.scientific.net/amr.143-144.1081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
For physical models, conventional techniques have difficulties in monitoring internal displacements during laboratory testing. In this paper, based on fiber Bragg grating (FBG) sensing technology, a bar-type fiber optic displacement sensor is developed for small-scale models. When the model deforms due to loading or unloading, the embedded displacement sensor can capture the displacement profile along the bar length using the strain data from quasi-distributed FBGs. Laboratory calibration tests have showed that the displacements measured by the FBG sensing bar are in good agreement with those from conventional displacement transducers. For the physical models of a gravity dam and a cavern group, the FBG sensing bars were successfully installed in predefined holes, together with conventional gauges. During testing, the FBG sensing bars measured the displacement distributions within the models. The fiber optic monitoring results demonstrate the deformation characteristics of surrounding rock masses induced by overloading and underground excavation and indicate the overall stability conditions of these two geo-structures.
9

Yugay, V. V., P. Sh Madi, S. B. Ozhigina, D. A. Gorokhov, and A. D. Alkina. "Questions of application of fiber-optic sensors for monitoring crack growth during rock deformations." Journal of Physics: Conference Series 2140, no. 1 (December 1, 2021): 012037. http://dx.doi.org/10.1088/1742-6596/2140/1/012037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The paper considers ways to solve the problem of developing a system for monitoring displacement in quarries, which are the main main cause of the collapse of boards and berms in quarries. To ensure safety and constant monitoring during work at the quarry, there are chiseled fiber-optic sensors. The fiber-optic sensor is made on the basis of a single-mode optical fiber, which makes it possible to measure the displacements of the mountain range at distances of about 30 km with high accuracy. Laboratory sample a fiber-optic sensor in its work uses a method for monitoring additional losses that occur during mechanical action on an optical fiber. The fiber-optic sensor was made to show a fairly high linearity and accuracy during measurements and can be used to control the deformation of the array after appropriate refinement of its design. This article is aimed at creating means of controlling the process of deformation and displacement of a mountain massif. Ultimately, the results of the study will help prevent accidents associated with the collapse of the sides. Since the growth of cracks in the rocks of the bort mountain massif leads to its sudden collapse and creates a significant danger for personnel, it also causes the failure of mining equipment.
10

Меkhtiyev, А. D., E. G. Neshina, P. Sh Madi, and D. A. Gorokhov. "Automated Fiber-Optic System for Monitoring the Stability of the Pit Quarry Mass and Dumps." Occupational Safety in Industry, no. 4 (April 2021): 19–26. http://dx.doi.org/10.24000/0409-2961-2021-4-19-26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article ls with the issues related to the development of a system for monitoring the deformation and displacement of the rock mass leading to the collapse of the quarry sides. Monitoring system uses point-to-point fiber-optic sensors. Fiber-optic sensors and control cables of the communication line are made based on the single mode optical fibers, which allows to measure with high accuracy the deformations and displacements of the rock mass at a distance of 30-50 km. To create fiber-optic pressure sensors, an optical fiber of the ITU-T G. 652.D standard is used. Laboratory sample is developed concerning the point fiber-optic sensor made based on the two-arm Mach-Zender interferometer using a single mode optical fiber for monitoring strain (displacements) with a change in the sensitivity and a reduced influence of temperature interference leading to zero drift. The article presents a mathematical apparatus for calculating the intensity of radiation of a light wave passing through an optical fiber with and without mechanical stress. A laboratory sample of single mode optical fibers based on the Mach-Zender interferometer showed a fairly high linearity and accuracy in the measurement and can be used to control the strain of the mass after appropriate refinement of its design. Mathematical expressions are also given for determining the intensity of the light wave when the distance between the fixing points of a single mode optical fiber changes depending on the change in the external temperature. A diagram for measuring strain using a point fiber-optic strain sensor is developed. Hardware and software package is developed, which can be used to perform a number of settings of measuring channels. The work is aimed at solving the production problems of the Kenzhem quarry of AK Altynalmas JSC.
11

Golnabi, Hossein. "Fiber optic displacement sensor using a coated lens optic." Review of Scientific Instruments 71, no. 11 (2000): 4314. http://dx.doi.org/10.1063/1.1290498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Li, Feng, Wen Tao Zhang, Fang Li, and Yan Liang Du. "Fiber Optic Inclinometer for Landslide Monitoring." Applied Mechanics and Materials 166-169 (May 2012): 2623–26. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.2623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As a main parameter reflecting the security status of slope, internal displacement monitoring has been an important issue to geotechnical engineering. An optical inclinometer is demonstrated, which utilizes FBG sensors attached to the casing of a conventional inclinometer. Three arrays of sensors at an interval of 90 degrees are glued to the outside of inclinometer. The authors carried out model experiment, in which characterization of the sensor revealed good agreement with theory and conventional displacement measurements. Meanwhile, angle monitoring result was rewarding, monitoring value of 44.3 and 29.5 degrees corresponding to the actual value of 45 and 30 degrees respectively.
13

Shan, Mingguang, Rui Min, Zhi Zhong, Ying Wang, and Yabin Zhang. "Differential reflective fiber-optic angular displacement sensor." Optics & Laser Technology 68 (May 2015): 124–28. http://dx.doi.org/10.1016/j.optlastec.2014.10.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Sagrario, Daniel, and Patricia Mead. "Axial and angular displacement fiber-optic sensor." Applied Optics 37, no. 28 (October 1, 1998): 6748. http://dx.doi.org/10.1364/ao.37.006748.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Wobschall, Darold, and Shahram Hejazi. "Aperture intensity ratio fiber‐optic displacement sensor." Review of Scientific Instruments 58, no. 8 (August 1987): 1543–44. http://dx.doi.org/10.1063/1.1139399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Rahman, Husna Abdul, Sulaiman Wadi Harun, Norazlina Saidin, Moh Yasin, and Harith Ahmad. "Fiber Optic Displacement Sensor for Temperature Measurement." IEEE Sensors Journal 12, no. 5 (May 2012): 1361–64. http://dx.doi.org/10.1109/jsen.2011.2172409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Breen, S., B. E. Paton, B. L. Blackford, and M. H. Jericho. "Fiber optic displacement sensor with subangstrom resolution." Applied Optics 29, no. 1 (January 1, 1990): 16. http://dx.doi.org/10.1364/ao.29.000016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Munap, Daing Hanum Abdul, Noriah Bidin, Shumaila Islam, Mundzir Abdullah, Faridah Mohd Marsin, and Moh Yasin. "Fiber Optic Displacement Sensor for Industrial Applications." IEEE Sensors Journal 15, no. 9 (September 2015): 4882–87. http://dx.doi.org/10.1109/jsen.2015.2430326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Mehta, A., W. Mohammed, and E. G. Johnson. "Multimode interference-based fiber-optic displacement sensor." IEEE Photonics Technology Letters 15, no. 8 (August 2003): 1129–31. http://dx.doi.org/10.1109/lpt.2003.815338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Yurin, A. I., A. V. Dmitriev, M. I. Krasivskaya, and G. Yu Zlodeev. "Adaptive Contactless Fiber-Optic Vibration Displacement Sensor." Measurement Techniques 59, no. 11 (February 2017): 1146–50. http://dx.doi.org/10.1007/s11018-017-1106-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Li, Xiao Long, Jian Gan Wang, and Ya Ming Wu. "Design of Optical Fiber MEMS Displacement Sensor." Applied Mechanics and Materials 312 (February 2013): 766–70. http://dx.doi.org/10.4028/www.scientific.net/amm.312.766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introducing a new intensity modulated optic microphone theory model, it can be used in infrasound sensor field. Single-mode optical fiber to transmit and receive light and optical lens to collimate is used to realize light intensity modulation, the system also contains MEMS membrane to be compatible with vibration displacement. Through the analysis of membrane size and the change of pressure, the related parameters about the sensitivity of fiber optic displacement sensor could be acquired. Simulation results show that the proper choice of parameters can make the sensitivity of sensor improve in orders of magnitude than traditional light intensity modulated methods.
22

Yasin, Moh, S. W. Harun, Kusminarto Karyono, and H. Ahmad. "Fiber-optic displacement sensor using a multimode bundle fiber." Microwave and Optical Technology Letters 50, no. 3 (2008): 661–63. http://dx.doi.org/10.1002/mop.23147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Zhao, Yong, He Huang, and Ting-Ting Zhao. "Novel Reflex Fiber Optic Angular Displacement Sensor Based on Fiber Optic Arrays." Sensor Letters 7, no. 4 (August 1, 2009): 513–16. http://dx.doi.org/10.1166/sl.2009.1101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Arif, Noor Azie Azura Mohd, Dilla Duryha Berhanuddin, and Abang Annuar Ehsan. "2D Propagation Simulation of Variation Parameters of U-shape Fiber Optic." International Journal of Engineering and Advanced Technology 10, no. 2 (December 30, 2020): 153–58. http://dx.doi.org/10.35940/ijeat.b2082.1210220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fiber optic has extraordinary properties and is suitable in sensor applications due to its special potential. Currently, macro bending characteristics of newly developed hetero core fiber optic element are designed and evaluated. This paper presents the preliminary results obtained from the numerical simulation analysis of the bending sensitivity of U-shape fiber optics toward the 2D electromagnetic wave in terms of mesh, curvature radius, core fiber size, and turn number. Fiber optics with core sizes of 4, 9, 50, and 62.5 μm were designed. In addition, the combination of core diameters 50-4-50, 50-9-50, 62.5-4-62.5, and 62.5-9-62.5 μm is evaluated to compare the outcome of transmission power in terms of hetero core structure of fiber optic. Simulation is performed using COMSOL Multiphysics simulation tool. The developed U-shape fiber optic is designed to sense the distortion of reducing power transmission by comparing input and output power. Results show that the selected mesh depends on the size of geometry bending fiber optics, and fine and finer mesh is the best for U-shape fiber optic. Furthermore, the power flow on the fiber decreases with the decreasing curvature radius and increasing turn number. The fiber with a core size combination of 62.5–4–62.5 um has high sensitivity in terms of loss. The attained results possess higher potential in the field of sensor applications, such as displacement, strain, pressure, and monitoring respiration, on human body. This study serves as a basis for further investigation of nanomaterial coating on fiber optics, thereby enhancing its credibility for sensing.
25

Badeeva, Elena, Tatiana Murashkina, Andrey Motin, Saygid Uvaysov, Ainur Kozbakova, and Daniel Sawicki. "Measuring Setup for Experimental Research of Two-Coordinate Fiber-Optic Acceleration Sensors with Cylindrical Lenses." Sensors 22, no. 3 (February 1, 2022): 1125. http://dx.doi.org/10.3390/s22031125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The article presents the possibilities of using fiber-optic acceleration (FOC) sensors on products of rocket-space and aviation technology as part of information-measuring systems. A special measuring device has been developed for experimental confirmation of the main characteristics of the technical characteristics of the developed, two-coordinate fiber-optic acceleration sensors. The developed measuring setup for the experimental research of a two-coordinate fiber-optic acceleration sensor with two, cylindrical lenses fixed on two H-shaped elastic elements deflected under the influence of acceleration in two mutually perpendicular directions X and Y, intended for operation in harsh conditions of rocket and space technology. The experimental equipment consists of the developed setup for setting micromovements and an information conversion unit, including modules for signal conversion, transmission, power supply, signal amplification, and indication. Experimental dependences of the output voltage from the information conversion unit’s output on the micro-displacement in the range corresponding to the micro-displacements of the inertial mass with a cylindrical lens under acceleration in the range of ±100 m/s2 were obtained on the micro-displacement setting unit. The maximum value of the linearity error of the prototype acceleration sensor together with the information conversion unit was 0.07%. The conversion sensitivity of a two-coordinate fiber-optic acceleration sensor per the experimental dependences obtained on the Data Physics LE-612 MST/DSA 10–40 k vibration stand when exposed to sinusoidal vibration with an acceleration amplitude from 2 to 10 g in the frequency range from 5 to 2560 Hz was, on average, 3 mV/m/s2. The conducted experimental research confirms the performance of experimental samples of fiber-optic acceleration sensors together with an information conversion unit, as well as the achievement of high metrological characteristics.
26

CUI Liuzhu, 崔留住, 江毅 JIANG Yi, and 刘有海 LIU Youhai. "A Fiber Optic Displacement Sensor with Temperature Compensation." ACTA PHOTONICA SINICA 40, no. 11 (2011): 1667–70. http://dx.doi.org/10.3788/gzxb20114011.1667.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Krishnan, Ganesan, Noriah Bidin, Mundzir Abdullah, Muhammad Fakaruddin Sidi Ahmad, Mohammad Aizat Abu Bakar, and Moh Yasin. "Liquid refractometer based mirrorless fiber optic displacement sensor." Sensors and Actuators A: Physical 247 (August 2016): 227–33. http://dx.doi.org/10.1016/j.sna.2016.05.040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Lee, Dong-Ryoung, Suin Jang, Min woo Lee, and Hongki Yoo. "Compact fiber optic dual-detection confocal displacement sensor." Applied Optics 55, no. 27 (September 20, 2016): 7631. http://dx.doi.org/10.1364/ao.55.007631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Spillman, W. B., and Peter L. Fuhr. "Fiber-optic rotary displacement sensor with wavelength encoding." Applied Optics 27, no. 15 (August 1, 1988): 3081. http://dx.doi.org/10.1364/ao.27.003081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Voss, Karl F., and Keith H. Wanser. "Fiber-optic strain-displacement sensor employing nonlinear buckling." Applied Optics 36, no. 13 (May 1, 1997): 2944. http://dx.doi.org/10.1364/ao.36.002944.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Rugar, D., H. J. Mamin, R. Erlandsson, J. E. Stern, and B. D. Terris. "Force microscope using a fiber‐optic displacement sensor." Review of Scientific Instruments 59, no. 11 (November 1988): 2337–40. http://dx.doi.org/10.1063/1.1139958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ahmad, H., M. Yasin, K. Thambiratnam, and S. W. Harun. "Fiber optic displacement sensor for micro‐thickness measurement." Sensor Review 32, no. 3 (June 22, 2012): 230–35. http://dx.doi.org/10.1108/02602281211233223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Grosch, Gerhard. "Hybrid fiber-optic/micromechanical frequency encoding displacement sensor." Sensors and Actuators A: Physical 23, no. 1-3 (April 1990): 1128–31. http://dx.doi.org/10.1016/0924-4247(90)87101-n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Shen, Wei, Xiaowei Wu, Hongyun Meng, Guanbin Zhang, and Xuguang Huang. "Long distance fiber-optic displacement sensor based on fiber collimator." Review of Scientific Instruments 81, no. 12 (December 2010): 123104. http://dx.doi.org/10.1063/1.3518971.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Li, Guoyu, Yan Li, Kang Yang, and Mingsheng Liu. "Fiber-optic displacement sensor based on the DBR fiber laser." Photonic Sensors 4, no. 1 (September 17, 2013): 43–47. http://dx.doi.org/10.1007/s13320-013-0118-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Alaruri, Sami D. "Study of Wavelength-Dependent Bend Loss in Step-Index Multimode Fiber-Optic Microbend Displacement Sensor." International Journal of Measurement Technologies and Instrumentation Engineering 6, no. 1 (January 2017): 13–21. http://dx.doi.org/10.4018/ijmtie.2017010102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this article, the wavelength dependence of bend loss in a step-index multimode optical fiber (100 µm core diameter; fused silica) was investigated for fiber bend radii ranging between 2.0 and 4.5 mm using six excitation wavelengths, namely, 337.1, 470, 590, 632.8, 750 and 810 nm. The results obtained from fitting the bend loss measurements to Kao's model and utilizing MATLAB indicate that bend loss is wavelength dependent and transmission loss in multimode optical fibers increases with the decrease in the fiber bend radius. Furthermore, the response of a microbend fiber optic displacement sensor was characterized at 337.1, 470, 632.8, 750 and 810 nm. Measurements obtained from the microbend sensor indicate that the sensor output power is linear with the applied displacement and the sensor output is wavelength dependent.
37

Büyükşahin, Utku, and Ahmet Kırlı. "A low-cost, human-like, high-resolution, tactile sensor based on optical fibers and an image sensor." International Journal of Advanced Robotic Systems 15, no. 4 (July 1, 2018): 172988141878363. http://dx.doi.org/10.1177/1729881418783631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Tactile sensors are commonly a coordinated group of receptors forming a matrix array meant to measure force or pressure similar to the human skin. Optic-based tactile sensors are flexible, sensitive, and fast; however, the human fingertip’s spatial resolution, which can be regarded as the desired spatial resolution, still could not be reached because of their bulky nature. This article proposes a novel and patented optic-based tactile sensor design, in which fiber optic cables are used to increase the number of sensory receptors per square centimeter. The proposed human-like high-resolution tactile sensor design is based on simple optics and image processing techniques, and it enables high spatial resolution and easy data acquisition at low cost. This design proposes using the change in the intesity of the light occured due to the deformation on contact/measurement surface. The main idea is using fiber optic cables as the afferents of the human physiology which can have 9 µm diameters for both delivering and receiving light beams. The variation of the light intensity enters sequent mathematical models as the input, then, the displacement, the force, and the pressure data are evaluated as the outputs. A prototype tactile sensor is manufactured with 1-mm spatial and 0.61-kPa pressure measurement resolution with 0–15.6 N/cm2 at 30 Hz sampling frequency. Experimental studies with different scenarios are conducted to demonstrate how this state-of-the-art design worked and to evaluate its performance. The overall accuracy of the first prototype, based on different scenarios, is calculated as 93%. This performance is regarded as promising for further developments and applications such as grasp control or haptics.
38

Rahman, H. A., S. W. Harun, M. Yasin, and H. Ahmad. "Fiber-Optic Salinity Sensor Using Fiber-Optic Displacement Measurement With Flat and Concave Mirror." IEEE Journal of Selected Topics in Quantum Electronics 18, no. 5 (September 2012): 1529–33. http://dx.doi.org/10.1109/jstqe.2011.2159705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Yasin, M., H. A. Rahman, N. Bidin, S. W. Harun, and H. Ahmad. "Fiber optic displacement sensor using fiber coupler probe and real objects." Sensor Review 32, no. 3 (June 22, 2012): 212–16. http://dx.doi.org/10.1108/02602281211233197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Martinez-Rios, Alejandro, David Monzon-Hernandez, Ismael Torres-Gomez, and Guillermo Salceda-Delgado. "An Intrinsic Fiber-Optic Single Loop Micro-Displacement Sensor." Sensors 12, no. 1 (January 4, 2012): 415–28. http://dx.doi.org/10.3390/s120100415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Wego, Ansgar, and Gundolf Geske. "Fiber Optic Displacement Sensor with New Reflectivity Compensation Method." Journal of Sensor Technology 03, no. 02 (2013): 21–24. http://dx.doi.org/10.4236/jst.2013.32004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lee, Insang, Yuan Libo, Farhad Ansari, and Hong Ding. "Fiber-optic crack-tip opening displacement sensor for concrete." Cement and Concrete Composites 19, no. 1 (January 1997): 59–68. http://dx.doi.org/10.1016/s0958-9465(96)00041-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Zheng, Jianli. "Self-referenced reflective intensity modulated fiber optic displacement sensor." Optical Engineering 38, no. 2 (February 1, 1999): 227. http://dx.doi.org/10.1117/1.602260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Bois, Emmanuel, Serge J. Huard, and Gilbert Boisde. "Loss compensated fiber-optic displacement sensor including a lens." Applied Optics 28, no. 3 (February 1, 1989): 419. http://dx.doi.org/10.1364/ao.28.000419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Mancier, Nathalie, Ayoub Chakari, Patrick Meyrueis, and Michel Clément. "Angular displacement fiber-optic sensor: theoretical and experimental study." Applied Optics 34, no. 28 (October 1, 1995): 6489. http://dx.doi.org/10.1364/ao.34.006489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Murphy, Patrick J., and Thomas P. Coursolle. "Fiber optic displacement sensor employing a graded index lens." Applied Optics 29, no. 4 (February 1, 1990): 544. http://dx.doi.org/10.1364/ao.29.000544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ricardo, Haiming Wang, and Valdivia-hernandez. "Shaft runout inspection by a fiber optic displacement sensor." Fiber and Integrated Optics 14, no. 2 (January 1995): 159–69. http://dx.doi.org/10.1080/01468039508241772.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Guzowski, Bartlomiej, and Mateusz Lakomski. "Realization of fiber optic displacement sensors." Optical Fiber Technology 41 (March 2018): 34–39. http://dx.doi.org/10.1016/j.yofte.2017.12.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zak, E. A., and A. L. Tub. "Designing reflectometric fiber-optic displacement sensors." Measurement Techniques 40, no. 1 (January 1997): 42–45. http://dx.doi.org/10.1007/bf02505162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Madi, P. Sh, D. A. Gorokhov, R. A. Mekhtiyev, and M. T. Nurmaganbetova. "Research of fiber-optic displacement sensors." Journal of Physics: Conference Series 1843, no. 1 (March 1, 2021): 012016. http://dx.doi.org/10.1088/1742-6596/1843/1/012016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії