Добірка наукової літератури з теми "Formations multi-robots"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Formations multi-robots".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Formations multi-robots":

1

Barca, Jan Carlo, Eugene Eu-Juin Lee, and Ahmet Sekercioglu. "Flexible Morphogenesis based Formation Control for Multi-Robot Systems." IAES International Journal of Robotics and Automation (IJRA) 2, no. 1 (March 1, 2013): 26. http://dx.doi.org/10.11591/ijra.v2i1.pp26-34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Inspired by how biological cells communicate with each other at a cell-to-cell level; morphogenesis emerged to be an effective way for local communication between homogenous robots in multi-robot systems. In this paper, we present the first steps towards a scalable morphogenesis style formation control technique, which address the drawbacks associated with current morphogenesis type formation control techniques, including their inability to distribute robots evenly across target shapes. A series of experiments, which demonstrate that the proposed technique enables groups of non-holonomic ground moving robots to generate formations in less than 9 seconds with three robots and less than 22 seconds with five robots, is also presented. These experiments furthermore reveal that the proposed technique enables groups of robots to generate formations without significantly increasing the total travel distance when faced with obstacles. This work is an important contribution to multi-robot control theory as history has shown that the success of groups often depends on efficient and robust formation control.
2

Rashid, Abdulmuttalib, Abduladhem Ali, and Mattia Frasca. "Polygon Shape Formation for Multi-Mobile Robots in a Global Knowledge Environment." Iraqi Journal for Electrical and Electronic Engineering 15, no. 1 (June 1, 2019): 76–88. http://dx.doi.org/10.37917/ijeee.15.1.8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In coordination of a group of mobile robots in a real environment, the formation is an important task. Multimobile robot formations in global knowledge environments are achieved using small robots with small hardware capabilities. To perform formation, localization, orientation, path planning and obstacle and collision avoidance should be accomplished. Finally, several static and dynamic strategies for polygon shape formation are implemented. For these formations minimizing the energy spent by the robots or the time for achieving the task, have been investigated. These strategies have better efficiency in completing the formation, since they use the cluster matching algorithm instead of the triangulation algorithm.
3

Cao, Kai, Yangquan Chen, Song Gao, Hang Zhang, and Haixin Dang. "Multi-Robot Formation Control Based on CVT Algorithm and Health Optimization Management." Applied Sciences 12, no. 2 (January 12, 2022): 755. http://dx.doi.org/10.3390/app12020755.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In view of the low formation redundancy in the traditional rigid formation algorithm and its difficulty in dynamically adapting to the external environment, this study considers the use of the CVT (centroidal Voronoi tessellation) algorithm to control multiple robots to form the desired formation. This method significantly increases the complexity of the multi-robot system, its structural redundancy, and its internal carrying capacity. First, we used the CVT algorithm to complete the Voronoi division of the global map, and then changed the centroid position of the Voronoi cell by adjusting the density function. When the algorithm converged, it could ensure that the position of the generated point was the centroid of each Voronoi cell and control the robot to track the position of the generated point to form the desired formation. The use of traditional formations requires less consideration of the impact of the actual environment on the health of robots, the overall mission performance of the formation, and the future reliability. We propose a health optimization management algorithm based on minor changes to the original framework to minimize the health loss of robots and reduce the impact of environmental restrictions on formation sites, thereby improving the robustness of the formation system. Simulation and robot formation experiments proved that the CVT algorithm could control the robots to quickly generate formations, easily switch formations dynamically, and solve the formation maintenance problem in obstacle scenarios. Furthermore, the health optimization management algorithm could maximize the life of unhealthy robots, making the formation more robust when performing tasks in different scenarios.
4

Lin, Y. C., C. H. Chen, K. L. Su, and J. H. Guo. "Image Recognition Method Applying in Formation Control of Mobile Robots." Applied Mechanics and Materials 190-191 (July 2012): 693–98. http://dx.doi.org/10.4028/www.scientific.net/amm.190-191.693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The article develops multi-pattern formation exchange using A* searching algorithm, and programs the shortest motion paths for mobile robots. The system contains an image recognition system, a motion platform, some wireless RF modules and five mobile robots. We use Otsu algorithm to recognize the variety 2D bar code to classify variety pattern, and control five mobile robots to execute formation exchange, and present the movement scenario on the motion platform. We have been developed some pattern formations according to game applications, such as hook pattern formation, T pattern formation, L pattern formation, rectangle pattern formation, sward pattern formation and so on, and develop the user interface of the multi-robot system to program motion paths for variety pattern formation exchange on the supervised computer. The supervised computer programs pattern formation exchange according to the image recognition results, and controls mobile robots moving on the motion platform via wireless RF interface. In the experimental results, mobile robots can receive the pattern formation command from the supervised computer, and change the original pattern formation to the assigned pattern formation on the motion platform, and avoid other mobile robots on real-time.
5

Dasgupta, Prithviraj, Taylor Whipple, and Ke Cheng. "Effects of Multi-Robot Team Formations on Distributed Area Coverage." International Journal of Swarm Intelligence Research 2, no. 1 (January 2011): 44–69. http://dx.doi.org/10.4018/jsir.2011010103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper examines the problem of distributed coverage of an initially unknown environment using a multi-robot system. Specifically, focus is on a coverage technique for coordinating teams of multiple mobile robots that are deployed and maintained in a certain formation while covering the environment. The technique is analyzed theoretically and experimentally to verify its operation and performance within the Webots robot simulator, as well as on physical robots. Experimental results show that the described coverage technique with robot teams moving in formation can perform comparably with a technique where the robots move individually while covering the environment. The authors also quantify the effect of various parameters of the system, such as the size of the robot teams, the presence of localization, and wheel slip noise, as well as environment related features like the size of the environment and the presence of obstacles and walls on the performance of the area coverage operation.
6

Seng, Whye Leon, Jan Carlo Barca, and Y. Ahmet Şekercioğlu. "Distributed formation control of networked mobile robots in environments with obstacles." Robotica 34, no. 6 (October 15, 2014): 1403–15. http://dx.doi.org/10.1017/s0263574714002380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
SUMMARYA distributed control mechanism for ground moving nonholonomic robots is proposed. It enables a group of mobile robots to autonomously manage formation shapes while navigating through environments with obstacles. The mechanism consists of two stages, with the first being formation control that allows basic formation shapes to be maintained without the need of any inter-robot communication. It is followed by obstacle avoidance, which is designed with maintaining the formation in mind. Every robot is capable of performing basic obstacle avoidance by itself. However, to ensure that the formation shape is maintained, formation scaling is implemented. If the formation fails to hold its shape when navigating through environments with obstacles, formation morphing has been incorporated to preserve the interconnectivity of the robots, thus reducing the possibility of losing robots from the formation.The algorithm has been implemented on a nonholonomic multi-robot system for empirical analysis. Experimental results demonstrate formations completing an obstacle course within 12 s with zero collisions. Furthermore, the system is capable of withstanding up to 25% sensor noise.
7

Kuppan Chetty, R. M., M. Singaperumal, and T. Nagarajan. "Behavior Based Multi Robot Formations with Active Obstacle Avoidance Based on Switching Control Strategy." Advanced Materials Research 433-440 (January 2012): 6630–35. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.6630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper considers the problem of formation control and obstacle avoidance for a group of non-holonomic mobile robots in a leader referenced model based on reactive switching control strategy. Three important issues related to the multi robot formation namely distributed formation control framework, dynamic role switching algorithm and real time implementations are investigated. The switching control strategy combines together formation planning, navigation and active obstacle avoidance in a layered control framework composed of functional behaviors based on the relative motion states of the robots employed in the group. Dynamic role switching mechanism incorporated in this work to tackles the problem of obstacle avoidance in the follower path. The proposed approach is validated through laboratory experiments using commercially available robot research platforms and the results obtained are discussed.
8

Guo, J. Hung, Yung Chin Lin, Kuo Lan Su, and Bo Yi Li. "Motion Planning of Multiple Pattern Formation for Mobile Robots." Applied Mechanics and Materials 284-287 (January 2013): 1877–82. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.1877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The article designs the multiple pattern formation controls of the multi-robot system according to two arms’ gesture of the player, and uses flood fill searching algorithm and A* searching algorithm to program the motion paths. The inertia module detects two arms’ gesture of the player. We use the inertia module to be embedded in the two arms, and use mobile robots to present the movement scenario of pattern formation exchange on the grid based motion platform. We have been developed some pattern formations applying in the war game, such as rectangle pattern formation, long snake pattern formation, L pattern formation, sword pattern formation, cone pattern formation and so on. We develop the user interface for variety pattern formation exchange according to the minimum displacement on the supervised computer. The mobile robot receives the command from the supervised compute, and transmits the status of environment to the supervised computer via wireless RF interface. Players can use variety arms’ gesture to control the multiple mobile robots to executed pattern formation exchange. In the experimental results, the supervised computer can decides the arm gesture using fusion algorithms. Mobile robots can receive the pattern formation command from the supervised computer, and change the original pattern formation to the assigned pattern formation on the motion platform, and avoid other mobile robots.
9

De La Cruz, Celso, and Ricardo Carelli. "Dynamic model based formation control and obstacle avoidance of multi-robot systems." Robotica 26, no. 3 (May 2008): 345–56. http://dx.doi.org/10.1017/s0263574707004092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
SUMMARYThis work presents, first, a complete dynamic model of a unicycle-like mobile robot that takes part in a multi-robot formation. A linear parameterization of this model is performed in order to identify the model parameters. Then, the robot model is input-output feedback linearized. On a second stage, for the multi-robot system, a model is obtained by arranging into a single equation all the feedback linearized robot models. This multi-robot model is expressed in terms of formation states by applying a coordinate transformation. The inverse dynamics technique is then applied to design a formation control. The controller can be applied both to positioning and to tracking desired robot formations. The formation control can be centralized or decentralized and scalable to any number of robots. A strategy for rigid formation obstacle avoidance is also proposed. Experimental results validate the control system design.
10

Zhuang, Hongchao, Kailun Dong, Ning Wang, and Lei Dong. "Multi-Robot Leader Grouping Consistent Formation Control Method Research with Low Convergence Time Based on Nonholonomic Constraints." Applied Sciences 12, no. 5 (February 22, 2022): 2300. http://dx.doi.org/10.3390/app12052300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Aiming at the formation and maintenance of the multiple formations of nonholonomic constrained multi-robots, a leader-follower formation control method under the grouping consistency is proposed on the trajectory tracking of a nonholonomic constrained mobile robots with the low convergence time. The distributed control structure in the leader-follower formation is adopted. The multi-robot cooperative formation is realized by using the consistency algorithm of graph theory. According to the graph theory, the communication topology matrixes are designed by the consistency algorithm. The mathematical model of nonholonomic constrained robot is established with the wheeled structure as the mobile structure under the nonholonomic constraints. Then the navigation following model is transformed into the error model of a local coordinate system through the global coordinate transformation. The formation control law of multi-robot cooperative motion is put forward based on the leader-follower model. Its convergence is proved by the Lyapunov function. By setting the reasonable communication protocol parameters, the MATLAB software (Natick, MA, USA, R2016b) is employed on the simulation verification and result comparison. Through the comparison of the two leader formation control methods, the convergence time of the algorithm in this article can be 25% less than that of PFC. The effectiveness and feasibility of the formation control law are verified under the leader-follower method. The proposed control method lays a foundation for reducing the convergence time to improve the multi-robot cooperative motion under nonholonomic constraints.

Дисертації з теми "Formations multi-robots":

1

Erskine, Julian. "Dynamic Control and Singularities of Rigid Bearing-Based Formations of Quadrotors." Thesis, Ecole centrale de Nantes, 2021. http://www.theses.fr/2021ECDN0044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le contrôle des formations basées sur les bearings (direction relative à l’observateur) permettent aux flottes de quadrirotors de se déplacer vers une géométrie désirée, en utilisant des mesures extraites de caméras embarquées. Des travaux antérieurs ont traité les quadrirotors comme des intégrateurs, et donc la formation doit ralentir de manière à compenser les non-linéarités non modélisées. Cette thèse a pour objectif d’atteindre des formations rapides en tenant compte des dynamiques non-linéaires du quadrirotor et des mesures visuelles. Deux contrôleurs sont développés, à savoir un contrôleur basé sur un asservissement visuel dynamique et une commande prédictive, montrant des performances améliorées avec des contraintes réelles. Toutes les formations basées sur des bearings dépendent d’un degré suffisant de rigidité. Bien que celui-ci puisse être évalué numériquement, la rigidité est une fonction de la position de tous les robots dans la flotte. Ceci étant, les travaux précédents ne pouvaient pas garantir la rigidité pour des formations plus larges que quelques robots. La deuxième contribution de cette thèse est l’évaluation des géométries singulières où une certaine formation rigide devient flexible. Ceci mène à un système de classification basé sur des contractions d’ensembles de contraintes, qui permet d’identifier les géométries singulières pour des grandes formations afin de garantir la rigidité
Bearing formation control allows groups of quadrotors to manoeuver in a desired geometry, using only visual measurements extractable from embedded monocular cameras. Prior works have treated quadrotors as single or double integrators, and as a result must operate slowly to compensate for unmodelled non-linearities. This thesis allows for faster bearing formations by developping higher-order controllers, considering the non-linear quadrotor and visual feature dynamics. A dynamic feedback controller based on second-order visual servoing and a model predictive controller are developped and tested in simulation and experiments, showing improved dynamic manoeuvering performance. The later is augmented with constraints such as field of view limitations and obstacle avoidance. All bearing formation algorithms depend on a sufficient degree of bearing rigidity to guarantee performance. This may be evaluated numerically, but as the rigidity is a function of the formation embedding, previous work could not guarantee rigidity in formations larger than a few robots. The second main contribution of this thesis is the evaluation of bearing rigidity singularities (i.e. embeddings where an otherwise rigid formation becomes flexible) by applying existing geometric analysis methods on an kinematic mechanism which is analoguous to the kinematic constraints imposed by the formation controller and robot models. This is extended to a novel classification system based on a contraction of constraint sets that can determine singular geometries for large formations, allowing for a formulation of a set of guaranteed rigid configurations without an ad-hoc kinematic analysis of individual formations
2

Pruner, Elisha. "Control of Self-Organizing and Geometric Formations." Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/30491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multi-vehicle systems offer many advantages in engineering applications such as increased efficiency and robustness. However, the disadvantage of multi-vehicle systems is that they require a high level of organization and coordination in order to successfully complete a task. Formation control is a field of engineering that addresses this issue, and provides coordination schemes to successfully implement multi-vehicle systems. Two approaches to group coordination were proposed in this work: geometric and self-organizing formations. A geometric reconfiguring formation was developed using the leader-follower method, and the self-organizing formation was developed using the velocity potential equations from fluid flow theory. Both formation controllers were first tested in simulation in MATLAB, and then implemented on the X80 mobile robot units. Various experiments were conducted to test the formations under difficult obstacle scenarios. The robots successfully navigated through the obstacles as a coordinated as a team using the self-organizing and geometric formation control approaches.
3

Ögren, Petter. "Formations and Obstacle Avoidance in Mobile Robot Control." Doctoral thesis, KTH, Mathematics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

This thesis consists of four independent papers concerningthe control of mobile robots in the context of obstacleavoidance and formation keeping.

The first paper describes a new theoreticallyv erifiableapproach to obstacle avoidance. It merges the ideas of twoprevious methods, with complementaryprop erties, byusing acombined control Lyapunov function (CLF) and model predictivecontrol (MPC) framework.

The second paper investigates the problem of moving a fixedformation of vehicles through a partiallykno wn environmentwith obstacles. Using an input to state (ISS) formulation theconcept of configuration space obstacles is generalized toleader follower formations. This generalization then makes itpossible to convert the problem into a standard single vehicleobstacle avoidance problem, such as the one considered in thefirst paper. The properties of goal convergence and safetyth uscarries over to the formation obstacle avoidance case.

In the third paper, coordination along trajectories of anonhomogenuos set of vehicles is considered. Byusing a controlLyapunov function approach, properties such as boundedformation error and finite completion time is shown.

Finally, the fourth paper applies a generalized version ofthe control in the third paper to translate,rotate and expanda formation. It is furthermore shown how a partial decouplingof formation keeping and formation mission can be achieved. Theapproach is then applied to a scenario of underwater vehiclesclimbing gradients in search for specific thermal/biologicalregions of interest. The sensor data fusion problem fordifferent formation configurations is investigated and anoptimal formation geometryis proposed.

Keywords:Mobile Robots, Robot Control, ObstacleAvoidance, Multirobot System, Formation Control, NavigationFunction, Lyapunov Function, Model Predictive Control, RecedingHorizon Control, Gradient Climbing, Gradient Estimation.

4

Chen, Haoyao. "Towards multi-robot formations : study on vision-based localization system /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-meem-b3008295xf.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D.)--City University of Hong Kong, 2009.
"Submitted to Department of Manufacturing Engineering and Engineering Management in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves 87-100)
5

Benzerrouk, Ahmed. "Architecture de contrôle hybride pour systèmes multi-robots mobiles." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00669559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La complexité inhérente à la coordination des mouvements d'un groupe de robots mobiles est traitée en investiguant plus avant les potentialités des architectures de contrôle comportementales dont le but est de briser la complexité des tâches à exécuter. En effet, les robots mobiles peuvent évoluer dans des environnements très complexes et nécessite de surcroît une coopération précise et sécurisée des véhicules pouvant rapidement devenir inextricable. Ainsi, pour maîtriser cette complexité, le contrôleur dédié à la réalisation de la tâche est décomposé en un ensemble de comportements/contrôleurs élémentaires (évitement d'obstacles et de collision entre les robots, attraction vers une cible, etc.) qui lient les informations capteurs (provenant de caméras, des capteurs locaux du robot, etc.) aux actionneurs des différentes entités robotiques. La tâche considérée est la navigation en formation en présence d'obstacles (statiques et dynamiques). La spécificité de l'approche théorique consiste à allier les avantages des architectures de contrôle comportementales à la méthode de la structure virtuelle où le groupe de robots mobiles suit un corps virtuel avec une dynamique (vitesse, direction) donnée. Ainsi, l'activation d'un comportement élémentaire en faveur d'un autre se fait en respectant les contraintes structurelles des robots (e.g. vitesses et accélérations maximales, etc.) en vue d'assurer le maximum de précision et de sécurité des mouvements coordonnés entre les différentes entités mobiles. La coopération consiste à se partager les places dans la structure virtuelle de manière distribuée et de façon à atteindre plus rapidement la formation désirée. Pour garantir les critères de performances visés par l'architecture de contrôle, les systèmes hybrides qui permettent de commander des systèmes continus en présence d'évènements discrets sont exploités. En effet, ces contrôleurs (partie discrète) permettent de coordonner l'activité des différents comportements (partie continue) disponibles au niveau de l'architecture, tout en offrant une analyse automaticienne rigoureuse de la stabilité de celle-ci au sens de Lyapunov. Chaque contribution est illustrée par des résultats de simulation. Le dernier chapitre est dédié à l'implémentation de l'architecture de contrôle proposée sur un groupe de robots mobiles Khepera III.
6

Chu, Xing. "Commande distribuée, en poursuite, d'un système multi-robots non holonomes en formation." Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0035/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’objectif principal de cette thèse est d’étudier le problème du contrôle de suivi distribué pour les systèmes de formation de multi-robots à contrainte non holonomique. Ce contrôle vise à entrainer une équipe de robots mobile de type monocycle pour former une configuration de formation désirée avec son centroïde se déplaçant avec une autre trajectoire de référence dynamique et pouvant être spécifié par le leader virtuel ou humain. Le problème du contrôle de suivi a été résolu au cours de cette thèse en développant divers contrôleurs distribués pratiques avec la considération d’un taux de convergence plus rapide, une précision de contrôle plus élevée, une robustesse plus forte, une estimation du temps de convergence explicite et indépendante et moins de coût de communication et de consommation d’énergie. Dans la première partie de la thèse nous étudions d’abord au niveau du chapitre 2 la stabilité à temps fini pour les systèmes de formation de multi-robots. Une nouvelle classe de contrôleur à temps fini est proposée dans le chapitre 3, également appelé contrôleur à temps fixe. Nous étudions les systèmes dynamiques de suivi de formation de multi-robots non holonomiques dans le chapitre 4. Dans la deuxième partie, nous étudions d'abord le mécanisme de communication et de contrôle déclenché par l'événement sur les systèmes de suivi de la formation de multi-robots non-holonomes au chapitre 5. De plus, afin de développer un schéma d'implémentation numérique, nous proposons une autre classe de contrôleurs périodiques déclenchés par un événement basé sur un observateur à temps fixe dans le chapitre 6
The main aim of this thesis is to study the distributed tracking control problem for the multi-robot formation systems with nonholonomic constraint, of which the control objective it to drive a team of unicycle-type mobile robots to form one desired formation configuration with its centroid moving along with another dynamic reference trajectory, which can be specified by the virtual leader or human. We consider several problems in this point, ranging from finite-time stability andfixed-time stability, event-triggered communication and control mechanism, kinematics and dynamics, continuous-time systems and hybrid systems. The tracking control problem has been solved in this thesis via developing diverse practical distributed controller with the consideration of faster convergence rate, higher control accuracy, stronger robustness, explicit and independent convergence time estimate, less communication cost and energy consumption.In the first part of the thesis, we first study the finite-time stability for the multi-robot formation systems in Chapter 2. To improve the pior results, a novel class of finite-time controller is further proposed in Chapter 3, which is also called fixed-time controller. The dynamics of nonholonomic multi-robot formation systems is considered in Chapter 4. In the second part, we first investigate the event-triggered communication and control mechanism on the nonholonomic multi-robot formation tracking systems in Chapter 5. Moreover, in order to develop a digital implement scheme, we propose another class of periodic event-triggered controller based on fixed-time observer in Chapter 6
7

Macdonald, Edward A. "Multi-robot assignment and formation control." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Our research focuses on one of the more fundamental issues in multi-agent, mobile robotics: the formation control problem. The idea is to create controllers that cause robots to move into a predefined formation shape. This is a well studied problem for the scenario in which the robots know in advance to which point in the formation they are assigned. In our case, we assume this information is not given in advance, but must be determined dynamically. This thesis presents an algorithm that can be used by a network of mobile robots to simultaneously determine efficient robot assignments and formation pose for rotationally and translationally invariant formations. This allows simultaneous role assignment and formation sysnthesis without the need for additional control laws. The thesis begins by introducing some general concepts regarding multi-agent robotics. Next, previous work and background information specific to the formation control and assignment problems are reviewed. Then the proposed assignment al- gorithm for role assignment and formation control is introduced and its theoretical properties are examined. This is followed by a discussion of simulation results. Lastly, experimental results are presented based on the implementation of the assignment al- gorithm on actual robots.
8

Hattenberger, Gautier. "Vol en formation sans formation : contrôle et planification pour le vol en formation des avions sans pilote." Phd thesis, Université Paul Sabatier - Toulouse III, 2008. http://tel.archives-ouvertes.fr/tel-00353676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'objet de cette thèse est l'étude et la mise en oeuvre d'un système de gestion automatique de la configuration d'une formation d'avions sans pilote, ou drones. Les objectifs sont, d'une part, d'améliorer la sécurité et l'efficacité d'un groupe de drones de combat, et, d'autre part, de faire le lien entre les niveaux de planification de missions et les niveaux fonctionnels de contrôle de la formation. Le vol en formation est particulièrement bien adapté pour des applications militaires en milieux hostiles, qui requièrent des synchronisations pour l'arrivée sur les cibles ou du support mutuel pour le brouillage. L'une des difficultés soulevées est le choix autonome de la configuration. Notre approche est de mettre en oeuvre, entre les niveaux décisionnels et les niveaux fonctionnels, une couche intermédiaire dédiée à la formation et à la gestion autonome de sa configuration. La configuration ainsi déterminée doit être affectée aux avions de la formation en tenant compte des contraintes tactiques et des ressources de chacun. Enfin, la sécurité du vol est un élément primordial. Il faut donc pouvoir planifier des manoeuvres de reconfiguration pour passer d'une configuration à une autre, en respectant les distances minimales entres avions. Des solutions ont été développées à partir de l'algorithme Branch & Bound pour résoudre les problèmes d'allocations, et de l'algorithme A* pour la planification de trajectoires dans la formation. De plus, un contrôle de vol de la formation a été implémenté. Ceci a permis de valider notre approche par des simulations et des expérimentations réelles.
9

Jiang, Wei. "Contrôle de la formation et du confinement variable dans le temps et entièrement distribué pour les systèmes multi-agents/ multi-robots." Thesis, Ecole centrale de Lille, 2018. http://www.theses.fr/2018ECLI0016/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thése traite du contrôle de la formation et du confinement variant dans le temps pour les systèmes multi-agents linéaires invariants avec hétérogénéité en tenant compte des délais d’entrée / sortie constants / variables dans le temps et des perturbations adaptées / incompatibles sous topologie de communication dirigée et fixe. De nouveaux formats de formes de formation variables dans le temps pour des systèmes homogènes et hétérogènes sont proposés. Les contrôleurs, conçus sur la base de techniques prédictives et adaptatives avec une technique d’observation, sont entièrement distribués et peuvent être appliqués à des systèmes à grande échelle. L’application sur les systèmes robotisés multi hétérogènes linéarisés est vérifiée
This thesis deals with the time-varying formation and containment control for linear time-invariant multi-agent systems with heterogeneity considering constant / time-varying input / output delays and matched / mismatched disturbances under directed and fixed communication topology. New formats of time-varying formation shapes for homogeneous and heterogeneous systems are proposed. The controllers, which are designed based on predictive and adaptive techniques with observer technique, are fully distributed and can be applied to large-scale systems. The application on linearized heterogeneous multi mobile robot systems is verified
10

Pippin, Charles Everett. "Trust and reputation for formation and evolution of multi-robot teams." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Agents in most types of societies use information about potential partners to determine whether to form mutually beneficial partnerships. We can say that when this information is used to decide to form a partnership that one agent trusts another, and when agents work together for mutual benefit in a partnership, we refer to this as a form of cooperation. Current multi-robot teams typically have the team's goals either explicitly or implicitly encoded into each robot's utility function and are expected to cooperate and perform as designed. However, there are many situations in which robots may not be interested in full cooperation, or may not be capable of performing as expected. In addition, the control strategy for robots may be fixed with no mechanism for modifying the team structure if teammate performance deteriorates. This dissertation investigates the application of trust to multi-robot teams. This research also addresses the problem of how cooperation can be enabled through the use of incentive mechanisms. We posit a framework wherein robot teams may be formed dynamically, using models of trust. These models are used to improve performance on the team, through evolution of the team dynamics. In this context, robots learn online which of their peers are capable and trustworthy to dynamically adjust their teaming strategy. We apply this framework to multi-robot task allocation and patrolling domains and show that performance is improved when this approach is used on teams that may have poorly performing or untrustworthy members. The contributions of this dissertation include algorithms for applying performance characteristics of individual robots to task allocation, methods for monitoring performance of robot team members, and a framework for modeling trust of robot team members. This work also includes experimental results gathered using simulations and on a team of indoor mobile robots to show that the use of a trust model can improve performance on multi-robot teams in the patrolling task.

Частини книг з теми "Formations multi-robots":

1

Sanhoury, Ibrahim M. H., Shamsudin H. M. Amin, and Abdul Rashid Husain. "Synchronizing Multi-robots in Switching between Different Formations Tasks While Tracking a Line." In Communications in Computer and Information Science, 28–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35197-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Alouache, Ali, and Qinghe Wu. "Distributed Formation Tracking of Multi Robots with Trajectory Estimation." In Intelligent Distributed Computing XII, 237–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99626-4_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lei, Bin, and Wenfeng Li. "Formation Control for Multi-robots Based on Flocking Algorithm." In Intelligent Robotics and Applications, 1238–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88513-9_131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Keshmiri, Soheil, and Shahram Payandeh. "A Centralized Framework to Multi-robots Formation Control: Theory and Application." In Collaborative Agents - Research and Development, 85–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22427-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dai, Yanyan, Viet-Hong Tran, Zhiguang Xu, and Suk-Gyu Lee. "Leader-Follower Formation Control of Multi-robots by Using a Stable Tracking Control Method." In Lecture Notes in Computer Science, 291–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13498-2_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cortez, Adrian-Josue Guel, and Eun-jin Kim. "Model Reduction and Control Design of a Multi-agent Line Formation of Mobile Robots." In Lecture Notes in Networks and Systems, 197–207. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82064-0_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dasgupta, Prithviraj. "Coverage Path Planning Using Mobile Robot Team Formations." In Emerging Research on Swarm Intelligence and Algorithm Optimization, 214–47. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-6328-2.ch010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The multi-robot coverage path-planning problem involves finding collision-free paths for a set of robots so that they can completely cover the surface of an environment. This problem is non-trivial as the geometry and location of obstacles in the environment is usually not known a priori by the robots, and they have to adapt their coverage path as they discover obstacles while moving in the environment. Additionally, the robots have to avoid repeated coverage of the same region by each other to reduce the coverage time and energy expended. This chapter discusses the research results in developing multi-robot coverage path planning techniques using mini-robots that are coordinated to move in formation. The authors present theoretical and experimental results of the proposed approach using e-puck mini-robots. Finally, they discuss some preliminary results to lay the foundation of future research for improved coverage path planning using coalition game-based, structured, robot team reconfiguration techniques.
8

Dasgupta, Prithviraj, Taylor Whipple, and Ke Cheng. "Effects of Multi-Robot Team Formations on Distributed Area Coverage." In Rapid Automation, 1192–219. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8060-7.ch056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper examines the problem of distributed coverage of an initially unknown environment using a multi-robot system. Specifically, focus is on a coverage technique for coordinating teams of multiple mobile robots that are deployed and maintained in a certain formation while covering the environment. The technique is analyzed theoretically and experimentally to verify its operation and performance within the Webots robot simulator, as well as on physical robots. Experimental results show that the described coverage technique with robot teams moving in formation can perform comparably with a technique where the robots move individually while covering the environment. The authors also quantify the effect of various parameters of the system, such as the size of the robot teams, the presence of localization, and wheel slip noise, as well as environment related features like the size of the environment and the presence of obstacles and walls on the performance of the area coverage operation.
9

Dasgupta, Prithviraj, Taylor Whipple, and Ke Cheng. "Effects of Multi-Robot Team Formations on Distributed Area Coverage." In Recent Algorithms and Applications in Swarm Intelligence Research, 260–86. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2479-5.ch014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper examines the problem of distributed coverage of an initially unknown environment using a multi-robot system. Specifically, focus is on a coverage technique for coordinating teams of multiple mobile robots that are deployed and maintained in a certain formation while covering the environment. The technique is analyzed theoretically and experimentally to verify its operation and performance within the Webots robot simulator, as well as on physical robots. Experimental results show that the described coverage technique with robot teams moving in formation can perform comparably with a technique where the robots move individually while covering the environment. The authors also quantify the effect of various parameters of the system, such as the size of the robot teams, the presence of localization, and wheel slip noise, as well as environment related features like the size of the environment and the presence of obstacles and walls on the performance of the area coverage operation.
10

Jia, Yunyi. "Design and Implementation for Controlling Multiple Robotic Systems by a Single Operator Under Random Communication Delays." In Rapid Automation, 337–51. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8060-7.ch015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multiple robots can be tele-operated by a single operator to accomplish complicated tasks such as formation and co-transportation. Such systems are challenging because one operator needs to simultaneously tele-control multiple homogeneous and even heterogeneous robots. Besides, the communication between the operator and multi-robot system and the communication among the multiple robots are always subject to some communication constraints such as time delays. This chapter introduces a novel non-time based method to realize the single-operator-multi-robot (SOMR) teleoperation system with random communication delays. The problem is divided into a typical teleoperation problem and a multi-robot coordination problem. A non-time variable is taken as the system reference instead of the time to model and drive the system such that the random communication delays and some expected events could be automatically handled. Experiments implemented on a multi-robot system illustrate the effectiveness and advantages of the method.

Тези доповідей конференцій з теми "Formations multi-robots":

1

Sugawara, Ken. "Collective Motions and Formations of Multi-robots Based on Simple Dynamics." In 2007 IEEE/ICME International Conference on Complex Medical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/iccme.2007.4381705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sousa, Miguel, Sergio Monteiro, Toni Machado, Wolfram Erlhagen, and Estela Bicho. "Multi-robot cognitive formations." In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). IEEE, 2012. http://dx.doi.org/10.1109/iros.2012.6385833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shuqin, Li, Zhao Qiwei, and Yuan Xiaohua. "Mobile multi-robots formation control and its implementation." In 2010 14th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2010. http://dx.doi.org/10.1109/cscwd.2010.5471923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mehrjerdi, Hasan, Maarouf Saad, and Jawhar Ghommam. "Multi mobile robots formation in presence of obstacles." In 2011 IEEE International Conference on Mechatronics (ICM). IEEE, 2011. http://dx.doi.org/10.1109/icmech.2011.5971339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Haghighi, Reza, and Chien Chern Cheah. "Asynchronous dynamic multi-group formation for swarm robots." In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011). IEEE, 2011. http://dx.doi.org/10.1109/cdc.2011.6160232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Phanichnitinon, Rattanapol, Tanakrit Hemwarangkoon, Jumpol Polvichai, Thanathep Boonpromma, and Kasin Jarutekumporn. "Multi modular robots maneuver for geometry formation control." In 2014 IEEE 7th International Workshop on Computational Intelligence and Applications (IWCIA). IEEE, 2014. http://dx.doi.org/10.1109/iwcia.2014.6988105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cheung, Yushing, Jae H. Chung, and Ketula Patel. "Semi-Autonomous Collaborative Control of Multi-Robotic Systems for Multi-Task Multi-Target Pairing." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64699.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In many applications, it is required that heterogeneous multi-robots are grouped to work on multi-targets simultaneously. Therefore, this paper proposes a control method for a single-master multi-slave (SMMS) teleoperator to cooperatively control a team of mobile robots for a multi-target mission. The major components of the proposed control method are the compensation for contact forces, modified potential field based leader-follower formation, and robot-task-target pairing method. The robot-task-target paring method is derived from the proven auction algorithm for a single target and is extended for multi-robot multi-target cases, which optimizes effect-based robot-task-target pairs based on heuristic and sensory data. The robot-task-target pairing method can produce a weighted attack guidance table (WAGT), which contains benefits of different robot-task-target pairs. With the robot-task-target pairing method, subteams are formed by paired robots. The subteams perform their own paired tasks on assigned targets in the modified potential field based leader-follower formation while avoiding sensed obstacles. Simulation studies illustrate system efficacy with the proposed control method.
8

Bastourous, Mark, Jaafar Al-Tuwayyij, Francois Guerin, and Frederic Guinand. "Image Based Visual Servoing for Multi Aerial Robots Formation." In 2020 28th Mediterranean Conference on Control and Automation (MED). IEEE, 2020. http://dx.doi.org/10.1109/med48518.2020.9182942.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"FORMATION CONTROL OF MULTI-ROBOTS VIA SLIDING-MODE TECHNIQUE." In 7th International Conference on Informatics in Control, Automation and Robotics. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002899501610166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Han, Qing, Hongjun Wang, and Changliang Zhang. "Nonlinear controllability of leader-follower formation for multi-robots." In 2017 20th International Conference on Information Fusion (Fusion). IEEE, 2017. http://dx.doi.org/10.23919/icif.2017.8009866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії