Статті в журналах з теми "High mobility channels"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: High mobility channels.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "High mobility channels".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Sadana, Devendra, Steve Koester, Y. Sun, E. W. Kiewra, Stephen W. Bedell, A. Reznicek, John Ott, et al. "High Mobility Channels for Ultimate CMOS." ECS Transactions 3, no. 2 (December 21, 2019): 343–54. http://dx.doi.org/10.1149/1.2356294.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Houssa, Michel, Valeri V. Afanas'ev, Andre Stesmans, Marc Meuris, and Marc M. Heyns. "Progress Towards Passivation of High-Mobility Channels." ECS Transactions 25, no. 6 (December 17, 2019): 249–63. http://dx.doi.org/10.1149/1.3206624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Wei, Leslie M. Shor, Eugene J. LeBoeuf, John P. Wikswo, and David S. Kosson. "Mobility of Protozoa through Narrow Channels." Applied and Environmental Microbiology 71, no. 8 (August 2005): 4628–37. http://dx.doi.org/10.1128/aem.71.8.4628-4637.2005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACT Microbes in the environment are profoundly affected by chemical and physical heterogeneities occurring on a spatial scale of millimeters to micrometers. Physical refuges are critical for maintaining stable bacterial populations in the presence of high predation pressure by protozoa. The effects of microscale heterogeneity, however, are difficult to replicate and observe using conventional experimental techniques. The objective of this research was to investigate the effect of spatial constraints on the mobility of six species of marine protozoa. Microfluidic devices were created with small channels similar in size to pore spaces in soil or sediment systems. Individuals from each species of protozoa tested were able to rapidly discover and move within these channels. The time required for locating the channel entrance from the source well increased with protozoan size and decreased with channel height. Protozoa of every species were able to pass constrictions with dimensions equal to or smaller than the individual's unconstrained cross-sectional area. Channel geometry was also an important factor affecting protozoan mobility. Linear rates of motion for various species of protozoa varied by channel size. In relatively wide channels, typical rates of motion were 300 to 500 μm s−1 (or about 1 m per hour). As the channel dimensions decreased, however, motilities slowed more than an order of magnitude to 20 μm s−1. Protozoa were consistently observed to exhibit several strategies for successfully traversing channel reductions. The empirical results and qualitative observations resulting from this research help define the physical limitations on protozoan grazing, a critical process affecting microbes in the environment.
4

OKTYABRSKY, S., P. NAGAIAH, V. TOKRANOV, M. YAKIMOV, R. KAMBHAMPATI, S. KOVESHNIKOV, D. VEKSLER, N. GOEL, and G. BERSUKER. "ELECTRON SCATTERING IN BURIED InGaAs/HIGH-K MOS CHANNELS." International Journal of High Speed Electronics and Systems 20, no. 01 (March 2011): 95–103. http://dx.doi.org/10.1142/s012915641100643x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hall electron mobility in buried QW InGaAs channels, grown on InP substrates with HfO 2 gate oxide, is analyzed experimentally and theoretically as a function of top barrier thickness and composition, carrier density, and temperature. Temperature slope α in μ ~Tα dependence is changing from α=-1.1 to +1 with the reduction of the top barrier thickness indicating the dominant role of remote Coulomb scattering (RCS) in interface-related contribution to mobility degradation. Insertion of low-k SiO x interface layer formed by oxidation of thin in-situ MBE grown amorphous Si passivation layer has been found to improve the channel mobility, but at the expense of increased EOT. This mobility improvement is also consistent with dominant role of RCS. We were able to a obtain a reasonable match between experiment and simple theory of the RCS assuming the density of charges at the high-k/barrier interface to be in the range of (2-4)×1013 cm-2.
5

Rössner, B., D. Chrastina, G. Isella, and H. von Känel. "Scattering mechanisms in high-mobility strained Ge channels." Applied Physics Letters 84, no. 16 (April 19, 2004): 3058–60. http://dx.doi.org/10.1063/1.1707223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gudjónsson, G., H. Ö. Ólafsson, Fredrik Allerstam, Per Åke Nilsson, Einar Ö. Sveinbjörnsson, T. Rödle, and R. Jos. "Field Effect Mobility in n-Channel Si Face 4H-SiC MOSFET with Gate Oxide Grown on Aluminium Ion-Implanted Material." Materials Science Forum 483-485 (May 2005): 833–36. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report investigations of Si face 4H-SiC MOSFETs with aluminum ion implanted gate channels. High quality SiO2/SiC interface is obtained both when the gate oxide is grown on p-type epitaxial material and when grown on ion implanted regions. A peak field effect mobility of 170 cm2/Vs is extracted from transistors with epitaxially grown channel region of doping 5x1015 cm-3. Transistors with implanted gate channels with aluminum concentration of 1x1017 cm-3 exhibit peak field effect mobility of 108 cm2/Vs, while the mobility is 62 cm2/Vs for aluminum concentration of 5x1017 cm-3. The mobility reduction with increasing acceptor density follows the same functional relationship as in n-channel Si MOSFETs.
7

Oh, Jungwoo, Kanghoon Jeon, Se-Hoon Lee, Jeff Huang, P. Y. Hung, Injo Ok, Barry Sassman, Dae-Hong Ko, Paul Kirsch, and Raj Jammy. "High mobility CMOS transistors on Si/SiGe heterostructure channels." Microelectronic Engineering 97 (September 2012): 26–28. http://dx.doi.org/10.1016/j.mee.2012.02.030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nishii, Junya, Faruque M. Hossain, Shingo Takagi, Tetsuya Aita, Koji Saikusa, Yuji Ohmaki, Isao Ohkubo, et al. "High Mobility Thin Film Transistors with Transparent ZnO Channels." Japanese Journal of Applied Physics 42, Part 2, No. 4A (April 1, 2003): L347—L349. http://dx.doi.org/10.1143/jjap.42.l347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kawanishi, Takafumi, Takaaki Fujiwara, Megumi Akai-Kasaya, Akira Saito, Masakazu Aono, Junichi Takeya, and Yuji Kuwahara. "High-mobility organic single crystal transistors with submicrometer channels." Applied Physics Letters 93, no. 2 (July 14, 2008): 023303. http://dx.doi.org/10.1063/1.2953179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sheng, Zhichao, Hoang Duong Tuan, Ha H. Nguyen, and Yong Fang. "Pilot Optimization for Estimation of High-Mobility OFDM Channels." IEEE Transactions on Vehicular Technology 66, no. 10 (October 2017): 8795–806. http://dx.doi.org/10.1109/tvt.2017.2694821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

RUDIN, SERGEY. "NON-LINEAR PLASMA OSCILLATIONS IN SEMICONDUCTOR AND GRAPHENE CHANNELS AND APPLICATION TO THE DETECTION OF TERAHERTZ SIGNALS." International Journal of High Speed Electronics and Systems 20, no. 03 (September 2011): 567–82. http://dx.doi.org/10.1142/s0129156411006866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The conduction channel of a semiconductor Field Effect Transistor (FET) or a heterostructure High Electron Mobility Transistor (HEMT) can act as a plasma wave resonator for density oscillations in electron gas, at frequencies significantly higher than the transistor cut-off frequency in a short channel device. The hydrodynamic model predicts a resonance response to electromagnetic radiation at the plasma oscillation frequency. In particular, the hydrodynamic nonlinearities produce a constant source-to-drain voltage when gate-to-channel voltage has a time-harmonic component. In the Dyakonov-Shur detector a short channel HEMT is used for the resonant tunable detection of terahertz radiation. Starting with the quasi-classical Boltzmann equation for a semiconductor and graphene channels, we derived the viscous hydrodynamic model with temperature dependent transport coefficients in both cases. We evaluated the detector response function and in the case of semiconductor channel we also obtained the temperature dependence of the quality factor of the plasma resonance. The present treatment extends the theory of Dyakonov-Shur plasma resonator and detector to account for the temperature dependence of viscosity. In the case of semiconductor channels the treatment here also includes the energy balance equation into the analysis. The numerical results are given in cases of GaAs and GaN channels. We showed that in high mobility semiconductor channels at low temperature the quality of the resonance is strongly limited by the viscosity of the electron fluid. In the case of graphene channel the hydrodynamic model derived here accounts both for electrons and holes, and includes the related diffusion currents. When the gate voltage is a few volts, the Fermi temperature of the electron-hole liquid is considerably higher than the room temperature. In such cases the diffusion currents can be ignored, and from the simplified hydrodynamic equations we evaluated the non-linear response of the plasma in graphene channel to the external perturbation. The results are of interest in potential application to graphene based detectors due to potential of obtaining a channel with the room temperature mobility considerably higher than the mobility in semiconductor channels.
12

Kun Chen-Hu, Yong Liu, and Ana Garcia Armada. "Non-coherent massive MIMO-OFDM for communications in high mobility scenarios." ITU Journal on Future and Evolving Technologies 1, no. 1 (December 11, 2020): 13–24. http://dx.doi.org/10.52953/qhzv6094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Under scenarios of high mobility, the traditional coherent demodulation schemes (CDS) have a limited performance, due to the fact that reference signals cannot effectively track the variations of the channel with an affordable overhead. As an alternative solution, non coherent demodulation schemes (NCDS) based on differential modulation have been proposed. Even in the absence of reference signals, they are capable of outperforming the CDS with a reduced complexity. The literature on NCDS laid the theoretical foundations for simplified channel and signal models, often single carrier and spatially uncorrelated flat fading channels. In this work, the most recent results assuming orthogonal frequency division multiplexing (OFDM) signaling and realistic channel models are explained, and the impact of some hardware impairments such as the phase noise (PN) and the non linear high power amplifier (HPA) are also considered. Moreover, new potential research lines are also highlighted.
13

Zhang, Yachao, ZhiZhe Wang, Rui Guo, Ge Liu, Shengrui Xu, Weimin Bao, Jincheng Zhang, and Yue Hao. "High performance InGaN double channel high electron mobility transistors with strong coupling effect between the channels." Applied Physics Letters 113, no. 23 (December 3, 2018): 233503. http://dx.doi.org/10.1063/1.5051685.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Hwang, Sunhyun, Eun Ji Lee, Dahae Song, and Nak Cheon Jeong. "High Proton Mobility with High Directionality in Isolated Channels of MOF-74." ACS Applied Materials & Interfaces 10, no. 41 (September 13, 2018): 35354–60. http://dx.doi.org/10.1021/acsami.8b11816.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ku, Meng-Lin, and Chia-Chi Huang. "A Refined Channel Estimation Method for STBC/OFDM Systems in High-Mobility Wireless Channels." IEEE Transactions on Wireless Communications 7, no. 11 (November 2008): 4312–20. http://dx.doi.org/10.1109/t-wc.2008.070585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Yen, Cheng Tyng, Mietek Bakowski, Chien Chung Hung, Sergey A. Reshanov, Adolf Schöner, Chwan Ying Lee, Lurng Shehng Lee, Jeng Hua Wei, Ting Yu Chiu, and Chih Fang Huang. "SiC Epi-Channel Lateral MOSFETs." Materials Science Forum 778-780 (February 2014): 927–30. http://dx.doi.org/10.4028/www.scientific.net/msf.778-780.927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
SiC lateral MOSFETs with multi-layers epi-channels were studied in this work. The epi-channel with a high concentration n-type epilayer sandwiched by two lightly doped p-type layers showed a maximum field effect mobility of 17 cm2/V.s, improved from 1.53 cm2/V.s of devices without epi-channels. These devices are normally-off with an average threshold voltage of 1.34V.
17

Singh, Madhusudan, and Jasprit Singh. "Design of high electron mobility devices with composite nitride channels." Journal of Applied Physics 94, no. 4 (August 15, 2003): 2498–506. http://dx.doi.org/10.1063/1.1594272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Sabatini, G., H. Marinchio, C. Palermo, L. Varani, T. Daoud, R. Teissier, H. Rodilla, T. González, and J. Mateos. "Monte Carlo simulation of ballistic transport in high-mobility channels." Journal of Physics: Conference Series 193 (November 1, 2009): 012035. http://dx.doi.org/10.1088/1742-6596/193/1/012035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Ma, T. P. "(Plenary) Beyond-Si CMOS Technologies Based on High-Mobility Channels." ECS Transactions 54, no. 1 (June 28, 2013): 15–24. http://dx.doi.org/10.1149/05401.0015ecst.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Li, Shuangyang, Jinhong Yuan, Weijie Yuan, Zhiqiang Wei, Baoming Bai, and Derrick Wing Kwan Ng. "Performance Analysis of Coded OTFS Systems Over High-Mobility Channels." IEEE Transactions on Wireless Communications 20, no. 9 (September 2021): 6033–48. http://dx.doi.org/10.1109/twc.2021.3071493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Greene, Andrew, Shailesh Madisetti, Michael Yakimov, Vadim Tokranov, and Serge Oktyabrsky. "Development of III-Sb Technology for p-Channel MOSFETs." International Journal of High Speed Electronics and Systems 23, no. 03n04 (September 2014): 1450015. http://dx.doi.org/10.1142/s0129156414500153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Alternative channel materials with superior transport properties over conventional silicon based systems are required for supply voltage scaling in CMOS circuits. Group III- Sb 's are a candidate for high mobility p-channel applications due to a low hole effective mass, large injection velocity in scaled devices and the ability to achieve enhanced hole mobility in strained quantum wells (QW). Multiple challenges in antimonide MOSFET development are assessed and developed technologies were implemented into p-channel MOSFET fabrication with a low thermal processing budget of 350°C. These challenges include growth of “bulk” GaSb and bi-axial compressively strained In x Ga 1-x Sb QW channels on lattice mismatched GaAs substrates, reduction of interface trap state density (Dit) at the III- Sb /high-k oxide interface and avoiding ion implanted source and drain contacts with high temperature activation annealing. A “self-aligned” single mask p-channel MOSFET fabrication process was developed on buried In 0.36 Ga 0.64 Sb QW channels using intermetallic source and drain contacts. The first “gate-last” MOSFET process on In 0.36 Ga 0.64 Sb QW channels with pre-grown epitaxial p++- GaSb contacts is demonstrated. InAs has been proven to be an excellent etch stop layer when using an optimized tetramethylammonium hydroxide (TMAH) etch of p++- GaSb to prevent InGaSb QW damage.
22

Nishii, Junya, Akira Ohtomo, Keita Ohtani, Hideo Ohno, and Masashi Kawasaki. "High-Mobility Field-Effect Transistors Based on Single-Crystalline ZnO Channels." Japanese Journal of Applied Physics 44, No. 38 (September 9, 2005): L1193—L1195. http://dx.doi.org/10.1143/jjap.44.l1193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Sioncke, Sonja, Hang-Chun Lin, Christoph Adelmann, Guy Brammertz, A. Delabie, Thierry Conard, A. Franquet, et al. "ALD on High Mobility Channels: Engineering the Proper Gate Stack Passivation." ECS Transactions 33, no. 2 (December 17, 2019): 9–23. http://dx.doi.org/10.1149/1.3485237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Meng, Qingzhi, Qijing Lin, Feng Han, Weixuan Jing, Yangtao Wang, and Zhuangde Jiang. "A Terahertz Detector Based on Double-Channel GaN/AlGaN High Electronic Mobility Transistor." Materials 14, no. 20 (October 18, 2021): 6193. http://dx.doi.org/10.3390/ma14206193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A double-channel (DC) GaN/AlGaN high-electron-mobility transistor (HEMT) as a terahertz (THz) detector at 315 GHz frequency is proposed and fabricated in this paper. The structure of the epitaxial layer material in the detector is optimized, and the performance of the GaN HEMT THz detector is improved. The maximum responsivity of 10 kV/W and minimum noise equivalent power (NEP) of 15.5 pW/Hz0.5 are obtained at the radiation frequency of 315 GHz. The results are comparable to and even more promising than the reported single-channel (SC) GaN HEMT detectors. The enhancement of THz response and the reduction of NEP of the DC GaN HEMT detector mainly results from the interaction of 2DEG in the upper and lower channels, which improves the self-mixing effect of the detector. The promising experimental results mean that the proposed DC GaN/AlGaN HEMT THz detector is capable of the practical applications of THz detection.
25

Li, Haoran, Steven Wienecke, Brian Romanczyk, Elaheh Ahmadi, Matthew Guidry, Xun Zheng, Stacia Keller, and Umesh K. Mishra. "Enhanced mobility in vertically scaled N-polar high-electron-mobility transistors using GaN/InGaN composite channels." Applied Physics Letters 112, no. 7 (February 12, 2018): 073501. http://dx.doi.org/10.1063/1.5010944.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Vahidi, Vahid, and Ebrahim Saberinia. "Compressed channel estimation methods for high mobility doubly selective channels in orthogonal frequency division multiplexing systems." IET Communications 13, no. 2 (January 18, 2019): 205–15. http://dx.doi.org/10.1049/iet-com.2018.5025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Sebaai, Farid, Liesbeth Witters, Frank Holsteyns, Yoshida Yukifumi, Paul W. Mertens, and Stefan De Gendt. "Nickel Selective Etch for Contacts on Ge Based Devices." Solid State Phenomena 219 (September 2014): 105–8. http://dx.doi.org/10.4028/www.scientific.net/ssp.219.105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
of high mobility channels materials like Ge. The introduction of Ge as channel material has already shown significant interests in term of device performance enhancement [1,2]. However, the use of Ge in CMOS integration has raised new challenges in terms of clean or wet etch steps since significant Ge loss occurs when it oxidizes in aqueous media.
28

Takagi, S., S. H. Kim, M. Yokoyama, R. Zhang, N. Taoka, Y. Urabe, T. Yasuda, et al. "High mobility CMOS technologies using III–V/Ge channels on Si platform." Solid-State Electronics 88 (October 2013): 2–8. http://dx.doi.org/10.1016/j.sse.2013.04.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Takeya, J., M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa. "Very high-mobility organic single-crystal transistors with in-crystal conduction channels." Applied Physics Letters 90, no. 10 (March 5, 2007): 102120. http://dx.doi.org/10.1063/1.2711393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Tezuka, T., N. Sugiyama, T. Mizuno, and S. Takagi. "Ultrathin body sige-on-insulator pmosfets with high-mobility sige surface channels." IEEE Transactions on Electron Devices 50, no. 5 (May 2003): 1328–33. http://dx.doi.org/10.1109/ted.2003.813249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Jatal, Wael, Uwe Baumann, Heiko O. Jacobs, Frank Schwierz, and Jörg Pezoldt. "Tri-Gate Al0.2Ga0.8N/AlN/GaN HEMTs on SiC/Si-Substrates." Materials Science Forum 858 (May 2016): 1174–77. http://dx.doi.org/10.4028/www.scientific.net/msf.858.1174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A nanochannel array structure was applied to realize enhancement-mode high electron mobility transistors based on AlGaN/AlN/GaN-heterostructures grown on Si substrates using a SiC transition layer. The fabricated nanochannel array HEMT, consisting of 78 channels connected in parallel with a channel width of 100 nm defined by electron-beam lithography and dry etching, shows a threshold voltage of 0.35 V. The high electron mobility transistors with LG= 0.2 μm had a maximum drain current density of 445 mA/mm and a peak extrinsic tranconductance of 235 mS/mm. A unity current gain cut-off frequency of 30 GHz and maximum oscillation frequency of 40 GHz were measured on these devices.
32

Pakmehr, Mehdi, B. D. McCombe, Olivio Chiatti, S. F. Fischer, Ch Heyn, and W. Hansen. "Characterization of High Mobility InAs/InGaAs/InAlAs Composite Channels by THz Magneto-Photoresponse Spectroscopy." International Journal of High Speed Electronics and Systems 24, no. 01n02 (March 2015): 1520004. http://dx.doi.org/10.1142/s0129156415200049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Inserted narrow InAs quantum wells in InAs/InGaAs/InAlAs heterostructures have been used to achieve higher mobility for high-electron-mobility transistors (HEMTs) with ultra-low-power and low-noise amplification characteristics and for spin-based devices. Due to the large nonparabolicity of the conduction band of InAs and the penetration of the confined electronic envelope function into the adjacent layer(s), accurate calculations of effective mass and g-factor of charge carriers can be problematic. Methods of making precise determinations of the mass and other electronic parameters are thus of interest. We have applied magneto-photoresponse and -transmissions measurements at several THz laser frequencies in concert with dc magnetotransport measurements at low temperature (T = 1.6 K) to determine various electronic parameters (effective mass, carrier density, g-factor, mobility and the quantum scattering time) of the 2DEG in an InAs/In0.75Ga0.25As/In0.75Al0.25As inserted channel structure. This characterization method can also be used to probe the effect of strain, Rashba field, etc on the properties of charge carriers in such structures.
33

Petersen, Alexander M., and Michelangelo Puliga. "High-skilled labour mobility in Europe before and after the 2004 enlargement." Journal of The Royal Society Interface 14, no. 128 (March 2017): 20170030. http://dx.doi.org/10.1098/rsif.2017.0030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The extent to which international high-skilled mobility channels are forming is a question of great importance in an increasingly global knowledge-based economy. One factor facilitating the growth of high-skilled labour markets is the standardization of certifiable degrees meriting international recognition. Within this context, we analysed an extensive high-skilled mobility database comprising roughly 382 000 individuals from five broad profession groups (Medical, Education, Technical, Science & Engineering and Business & Legal) over the period 1997–2014, using the 13-country expansion of the European Union (EU) to provide insight into labour market integration. We compare the periods before and after the 2004 enlargement, showing the emergence of a new east–west migration channel between the 13 mostly eastern EU entrants (E) and the rest of the western European countries (W). Indeed, we observe a net directional loss of human capital from E → W, representing 29% of the total mobility after 2004. Nevertheless, the counter-migration from W → E is 7% of the total mobility over the same period, signalling the emergence of brain circulation within the EU. Our analysis of the country–country mobility networks and the country–profession bipartite networks provides timely quantitative evidence for the convergent integration of the EU, and highlights the central role of the UK and Germany as high-skilled labour hubs. We conclude with two data-driven models to explore the structural dynamics of the mobility networks. First, we develop a reconfiguration model to explore the potential ramifications of Brexit and the degree to which redirection of high-skilled labourers away from the UK may impact the integration of the rest of the European mobility network. Second, we use a panel regression model to explain empirical high-skilled mobility rates in terms of various economic ‘push–pull’ factors, the results of which show that government expenditure on education, per capita wealth, geographical proximity and labour force size are significant attractive features of destination countries.
34

Horner, Andreas, Florian Zocher, Johannes Preiner, Nicole Ollinger, Christine Siligan, Sergey A. Akimov, and Peter Pohl. "The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues." Science Advances 1, no. 2 (March 2015): e1400083. http://dx.doi.org/10.1126/sciadv.1400083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Channel geometry governs the unitary osmotic water channel permeability, pf, according to classical hydrodynamics. Yet, pf varies by several orders of magnitude for membrane channels with a constriction zone that is one water molecule in width and four to eight molecules in length. We show that both the pf of those channels and the diffusion coefficient of the single-file waters within them are determined by the number NH of residues in the channel wall that may form a hydrogen bond with the single-file waters. The logarithmic dependence of water diffusivity on NH is in line with the multiplicity of binding options at higher NH densities. We obtained high-precision pf values by (i) having measured the abundance of the reconstituted aquaporins in the vesicular membrane via fluorescence correlation spectroscopy and via high-speed atomic force microscopy, and (ii) having acquired the vesicular water efflux from scattered light intensities via our new adaptation of the Rayleigh-Gans-Debye equation.
35

Zingman, L. V., A. E. Alekseev, D. M. Hodgson-Zingman, and A. Terzic. "ATP-sensitive potassium channels: metabolic sensing and cardioprotection." Journal of Applied Physiology 103, no. 5 (November 2007): 1888–93. http://dx.doi.org/10.1152/japplphysiol.00747.2007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The cardiovascular system operates under a wide scale of demands, ranging from conditions of rest to extreme stress. How the heart muscle matches rates of ATP production with utilization is an area of active investigation. ATP-sensitive potassium (KATP) channels serve a critical role in the orchestration of myocardial energetic well-being. KATP channel heteromultimers consist of inwardly-rectifying K+ channel 6.2 and ATP-binding cassette sulfonylurea receptor 2A that translates local ATP/ADP levels, set by ATPases and phosphotransfer reactions, to the channel pore function. In cells in which the mobility of metabolites between intracellular microdomains is limited, coupling of phosphotransfer pathways with KATP channels permits a high-fidelity transduction of nucleotide fluxes into changes in membrane excitability, matching energy demands with metabolic resources. This KATP channel-dependent optimization of cardiac action potential duration preserves cellular energy balance at varying workloads. Mutations of KATP channels result in disruption of the nucleotide signaling network and generate a stress-vulnerable phenotype with excessive susceptibility to injury, development of cardiomyopathy, and arrhythmia. Solving the mechanisms underlying the integration of KATP channels into the cellular energy network will advance the understanding of endogenous cardioprotection and the development of strategies for the management of cardiovascular injury and disease progression.
36

Haowei Wu, Shizhong Yang, Jinglan Ou, and Lisheng Yang. "Improved ICI Mitigation Scheme over Time-varying Channels for High-Mobility OFDM Systems." Journal of Convergence Information Technology 6, no. 4 (April 30, 2011): 264–72. http://dx.doi.org/10.4156/jcit.vol6.issue4.29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Zhang, Xiuyan, Qiming Sun, and Yan Gao. "Spectral efficiency of adaptive OFDM systems over high mobility Nakagami-m fading channels." Systems Science & Control Engineering 8, no. 1 (January 1, 2020): 628–38. http://dx.doi.org/10.1080/21642583.2020.1854132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Takagi, S., T. Tezuka, T. Irisawa, S. Nakaharai, T. Numata, K. Usuda, N. Sugiyama, M. Shichijo, R. Nakane, and S. Sugahara. "Device structures and carrier transport properties of advanced CMOS using high mobility channels." Solid-State Electronics 51, no. 4 (April 2007): 526–36. http://dx.doi.org/10.1016/j.sse.2007.02.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Tezuka, Tsutomu, Yoshiki Kamata, Keiji Ikeda, Yuichi Kamimuta, Yoshihiko Moriyama, Masahiro Koike, Minoru Oda, and Toshifumi Irisawa. "(Invited) Non-Planar Transistors with High-Mobility SiGe/Ge Channels for CMOS Applications." ECS Transactions 33, no. 3 (December 17, 2019): 357–66. http://dx.doi.org/10.1149/1.3481624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Chan, Silvia H., Stacia Keller, Maher Tahhan, Haoran Li, Brian Romanczyk, Steven P. DenBaars, and Umesh K. Mishra. "High electron mobility recovery in AlGaN/GaN 2DEG channels regrown on etched surfaces." Semiconductor Science and Technology 31, no. 6 (April 14, 2016): 065008. http://dx.doi.org/10.1088/0268-1242/31/6/065008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Delabie, A., Sonja Sioncke, S. Van Elshocht, Matty Caymax, Geoffrey Pourtois, and Kristine Pierloot. "(Invited) Chemisorption Reaction Mechanisms for Atomic Layer Deposition of High-k Oxides on High Mobility Channels." ECS Transactions 33, no. 2 (December 17, 2019): 343–53. http://dx.doi.org/10.1149/1.3485270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kim, HyunJeong, WungYeon Kim, Maria O'Brien, Niall McEvoy, Chanyoung Yim, Mario Marcia, Frank Hauke, Andreas Hirsch, Gyu-Tae Kim, and Georg S. Duesberg. "Optimized single-layer MoS2 field-effect transistors by non-covalent functionalisation." Nanoscale 10, no. 37 (2018): 17557–66. http://dx.doi.org/10.1039/c8nr02134a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Olayinka, Joshua Akinlolu, and Sirinuch Loykulnanta. "How Domestic Firms Benefit from the Presence of Multinational Enterprises: Evidence from Indonesia and Philippines." Economies 7, no. 3 (September 16, 2019): 94. http://dx.doi.org/10.3390/economies7030094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Incentives are provided to attract multinational enterprises (MNEs) to host countries, with the expectation that their technology will spread to domestic firms. The purpose of this study is to examine how domestic firms benefit from the spillover of technology from MNEs. Using balanced panel data obtained from the World Bank Enterprise Survey, this study examined the impact of technology spillover through three channels: demonstration, competition, and worker mobility on productivity of domestic firms in Indonesia and Philippines. This study also explored the importance of domestic firms’ absorptive capacity in capturing benefits from the three spillover channels. The Cobb–Douglas production model was used as the basis for the estimation model. A fixed-effect model for panel data analysis was used to analyze the data. The empirical outcome of this study revealed that worker mobility is the most viable channel of spillover in the two countries. It also showed that firms with high absorptive capacity were found to benefit from all the channels of spillover in both countries, while the firms with low absorptive capacity benefit differently in the two countries. Thus, this study validates the need for domestic firms to develop absorptive capacity in order to benefit from the technology spillover from MNEs.
44

Choi, C. S., H. S. Kang, Woo-Young Choi, H. J. Kim, W. J. Choi, D. H. Kim, K. C. Jang, and K. S. Seo. "High optical responsivity of InAlAs-InGaAs metamorphic high-electron mobility transistor on GaAs substrate with composite channels." IEEE Photonics Technology Letters 15, no. 6 (June 2003): 846–48. http://dx.doi.org/10.1109/lpt.2003.811339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Batson, P. E. "Atomic and electronic structure of a 60° misfit dislocation." Proceedings, annual meeting, Electron Microscopy Society of America 53 (August 13, 1995): 276–77. http://dx.doi.org/10.1017/s0424820100137756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Strained Si quantum wells provide high electron mobility channels for devices within the standard Si-based technology. These wells consist of 8-12nm thick layers, epitaxially grown over relaxed Si-Ge alloys. The 1.4% lattice mismatch between Si and a Ge40Si60 alloy produces a Si layer strained in tension in the plane of the layer and in compression in the direction perpendicular to the layer, splitting the Si conduction band into a higher energy four-fold degenerate band and a lower energy two-fold degenerate band. The latter band is a high mobility channel for electron conduction. If the Si layer is made thicker than the critical thickness for epitaxy, misfit dislocations result to accommodate the strain. For growth of Si on (001) Ge40Si60 these are of the 60° type, dissociated into a 30° partial dislocation at the Si/alloy interface, a 90° partial some tens of Angstroms away in the alloy, and a connecting stacking fault. In the presence of this strain relieving structure, the electron mobility is degraded.
46

Kao, M. J., W. C. Hsu, H. M. Shieh, W. C. Liu, and C. Y. Chang. "High Carrier Density and Mobility in GaAs/InGaAs/GaAs Double Delta-Doped Channels Heterostructures." Japanese Journal of Applied Physics 34, no. 1A (January 1, 1995): L1. http://dx.doi.org/10.7567/jjap.34.l1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Wang, Kai, Jingzhi Liu, Zhichun Gan, and Bo Zhang. "Compressed Sensing Based Recursive Estimation of Doubly-Selective Channels for High-Mobility OFDM Systems." Wireless Personal Communications 102, no. 2 (December 29, 2017): 1387–400. http://dx.doi.org/10.1007/s11277-017-5201-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Kao, M. J., W. C. Hsu, H. M. Shieh, W.C.Liu, and C. Y. Chang. "High Carrier Density and Mobility in GaAs/InGaAs/GaAs Double Delta-Doped Channels Heterostructures." Japanese Journal of Applied Physics 34, Part 2, No. 1A (January 1, 1995): L1—L3. http://dx.doi.org/10.1143/jjap.34.l1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Lysochenko, S. V., Yu S. Zharkikh, O. G. Kukharenko, O. V. Tretiak, and M. G. Tolmachov. "Hall Study of Conductive Channels Formed in Germanium by Beams of High-Energy Light Ions." Ukrainian Journal of Physics 66, no. 1 (January 29, 2021): 62. http://dx.doi.org/10.15407/ujpe66.1.62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The implantation of the high-energy ions of H+ or He+ in germanium leads to the creation of buried conductive channels in its bulk with equal concentrations of acceptor centers. These centers are the structure defects of the crystal lattice which arise in the course of deceleration of high-energy particles. This method of introducing electrically active defects is similar to the doping of semiconductors by acceptor-type impurities. It has been established that the density of defects increases with the implantation dose till ≈5×10^15 cm−2. The further increase of the implantation dose does not affect the level of doping. In the range of applied doses (10^12–6×10^16) cm−2, the Hall mobility of holes in the formed conducting channels is practically independent of the implanted dose and is about (2-3)×10^4 cm2/Vs at 77 K. The doping ofthe germanium by high-energy ions of H+ or He+ to obtain conducting regions with high hole mobility can be used in the microelectronics technology.
50

Zhou, Yandong, Robert M. Nwokonko, Xiangyu Cai, Natalia A. Loktionova, Raz Abdulqadir, Ping Xin, Barbara A. Niemeyer, Youjun Wang, Mohamed Trebak, and Donald L. Gill. "Cross-linking of Orai1 channels by STIM proteins." Proceedings of the National Academy of Sciences 115, no. 15 (March 26, 2018): E3398—E3407. http://dx.doi.org/10.1073/pnas.1720810115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The transmembrane docking of endoplasmic reticulum (ER) Ca2+-sensing STIM proteins with plasma membrane (PM) Orai Ca2+ channels is a critical but poorly understood step in Ca2+ signal generation. STIM1 protein dimers unfold to expose a discrete STIM–Orai activating region (SOAR1) that tethers and activates Orai1 channels within discrete ER–PM junctions. We reveal that each monomer within the SOAR dimer interacts independently with single Orai1 subunits to mediate cross-linking between Orai1 channels. Superresolution imaging and mobility measured by fluorescence recovery after photobleaching reveal that SOAR dimer cross-linking leads to substantial Orai1 channel clustering, resulting in increased efficacy and cooperativity of Orai1 channel function. A concatenated SOAR1 heterodimer containing one monomer point mutated at its critical Orai1 binding residue (F394H), although fully activating Orai channels, is completely defective in cross-linking Orai1 channels. Importantly, the naturally occurring STIM2 variant, STIM2.1, has an eight-amino acid insert in its SOAR unit that renders it functionally identical to the F394H mutant in SOAR1. Contrary to earlier predictions, the SOAR1–SOAR2.1 heterodimer fully activates Orai1 channels but prevents cross-linking and clustering of channels. Interestingly, combined expression of full-length STIM1 with STIM2.1 in a 5:1 ratio causes suppression of sustained agonist-induced Ca2+ oscillations and protects cells from Ca2+ overload, resulting from high agonist-induced Ca2+ release. Thus, STIM2.1 exerts a powerful regulatory effect on signal generation likely through preventing Orai1 channel cross-linking. Overall, STIM-mediated cross-linking of Orai1 channels is a hitherto unrecognized functional paradigm that likely provides an organizational microenvironment within ER–PM junctions with important functional impact on Ca2+ signal generation.

До бібліографії