Добірка наукової літератури з теми "Interaction diagrams"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interaction diagrams".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Interaction diagrams"
Whittle, Jon. "Extending interaction overview diagrams with activity diagram constructs." Software & Systems Modeling 9, no. 2 (February 24, 2009): 203–24. http://dx.doi.org/10.1007/s10270-009-0114-7.
Повний текст джерелаDE LACY COSTELLO, BEN, NORMAN RATCLIFFE, ANDREW ADAMATZKY, ALEXEY L. ZANIN, ANDREAS W. LIEHR, and HANS-GEORG PURWINS. "THE FORMATION OF VORONOI DIAGRAMS IN CHEMICAL AND PHYSICAL SYSTEMS: EXPERIMENTAL FINDINGS AND THEORETICAL MODELS." International Journal of Bifurcation and Chaos 14, no. 07 (July 2004): 2187–210. http://dx.doi.org/10.1142/s021812740401059x.
Повний текст джерелаKohn, Kurt W., Mirit I. Aladjem, John N. Weinstein, and Yves Pommier. "Molecular Interaction Maps of Bioregulatory Networks: A General Rubric for Systems Biology." Molecular Biology of the Cell 17, no. 1 (January 2006): 1–13. http://dx.doi.org/10.1091/mbc.e05-09-0824.
Повний текст джерелаKim, Han Gyeol, Joonho Lee, and Guy Makov. "Phase Diagram of Binary Alloy Nanoparticles under High Pressure." Materials 14, no. 11 (May 29, 2021): 2929. http://dx.doi.org/10.3390/ma14112929.
Повний текст джерелаPlavsic, Vera, and Emil Secerov. "Modeling of login procedure for wireless application with interaction overview diagrams." Computer Science and Information Systems 5, no. 1 (2008): 87–108. http://dx.doi.org/10.2298/csis0801087p.
Повний текст джерелаPasupathi, Padma, Christopher W. Schankula, Nicole DiVincenzo, Sarah Coker, and Christopher Kumar Anand. "Teaching Interaction using State Diagrams." Electronic Proceedings in Theoretical Computer Science 363 (July 24, 2022): 132–52. http://dx.doi.org/10.4204/eptcs.363.8.
Повний текст джерелаWeng, Jianguang. "Pseudohaptic interaction with knot diagrams." Journal of Electronic Imaging 21, no. 3 (July 12, 2012): 033008. http://dx.doi.org/10.1117/1.jei.21.3.033008.
Повний текст джерелаAdi darma, Wawang. "Perancangan Sistem Produksi Lampu dengan Metode Perancangan Berorientasi Objek di PT. Cosmo Technology Indonesia Kabupaten Sukabumi." JURNAL BUANA INFORMATIKA CBI 5, no. 2 (December 11, 2022): 142–57. http://dx.doi.org/10.53918/jbicbi.v5i2.34.
Повний текст джерелаVidgen, R. "Requirements analysis and UML - interaction diagrams and state transition diagrams." Computing and Control Engineering 14, no. 3 (June 1, 2003): 7–11. http://dx.doi.org/10.1049/cce:20030301.
Повний текст джерелаNestsiarovich, Kristina, and Dirk Pons. "Interaction Diagrams: Development of a Method for Observing Group Interactions." Behavioral Sciences 9, no. 1 (December 30, 2018): 5. http://dx.doi.org/10.3390/bs9010005.
Повний текст джерелаДисертації з теми "Interaction diagrams"
Blackwell, Alan Frank. "Metaphor in diagrams." Thesis, University of Cambridge, 1998. https://www.repository.cam.ac.uk/handle/1810/272809.
Повний текст джерелаMetatla, Oussama. "Collaborating through sounds : audio-only interaction with diagrams." Thesis, Queen Mary, University of London, 2010. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1324.
Повний текст джерелаBjörklund, Daniel. "Forward engineering from interaction diagrams - can it be useful?" Thesis, University West, Department of Informatics and Mathematics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-582.
Повний текст джерелаDucasse, Julie. "Tabletop tangible maps and diagrams for visually impaired users." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30197/document.
Повний текст джерелаDespite their omnipresence and essential role in our everyday lives, online and printed graphical representations are inaccessible to visually impaired people because they cannot be explored using the sense of touch. The gap between sighted and visually impaired people's access to graphical representations is constantly growing due to the increasing development and availability of online and dynamic representations that not only give sighted people the opportunity to access large amounts of data, but also to interact with them using advanced functionalities such as panning, zooming and filtering. In contrast, the techniques currently used to make maps and diagrams accessible to visually impaired people require the intervention of tactile graphics specialists and result in non-interactive tactile representations. However, based on recent advances in the automatic production of content, we can expect in the coming years a growth in the availability of adapted content, which must go hand-in-hand with the development of affordable and usable devices. In particular, these devices should make full use of visually impaired users' perceptual capacities and support the display of interactive and updatable representations. A number of research prototypes have already been developed. Some rely on digital representation only, and although they have the great advantage of being instantly updatable, they provide very limited tactile feedback, which makes their exploration cognitively demanding and imposes heavy restrictions on content. On the other hand, most prototypes that rely on digital and physical representations allow for a two-handed exploration that is both natural and efficient at retrieving and encoding spatial information, but they are physically limited by the use of a tactile overlay, making them impossible to update. Other alternatives are either extremely expensive (e.g. braille tablets) or offer a slow and limited way to update the representation (e.g. maps that are 3D-printed based on users' inputs). In this thesis, we propose to bridge the gap between these two approaches by investigating how to develop physical interactive maps and diagrams that support two-handed exploration, while at the same time being updatable and affordable. To do so, we build on previous research on Tangible User Interfaces (TUI) and particularly on (actuated) tabletop TUIs, two fields of research that have surprisingly received very little interest concerning visually impaired users. Based on the design, implementation and evaluation of three tabletop TUIs (the Tangible Reels, the Tangible Box and BotMap), we propose innovative non-visual interaction techniques and technical solutions that will hopefully serve as a basis for the design of future TUIs for visually impaired users, and encourage their development and use. We investigate how tangible maps and diagrams can support various tasks, ranging from the (re)construction of diagrams to the exploration of maps by panning and zooming. From a theoretical perspective we contribute to the research on accessible graphical representations by highlighting how research on maps can feed research on diagrams and vice-versa. We also propose a classification and comparison of existing prototypes to deliver a structured overview of current research
ARAUJO, ANA CAROLINA INNECCO C. DE. "SUPPORTING THE DESIGN AND THE INTERPRETATION OF HUMAN-COMPUTER INTERACTION DIAGRAMS REPRESENTED IN MOLIC." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=12418@1.
Повний текст джерелаComo os usuários de computadores pessoais costumam enxergar um sistema computacional interativo como a própria interface, é desejável que esta seja construída de forma que eles entendam para que serve o sistema, o que ele permite que seus usuários façam e de que forma, para quem se destina etc. De acordo com a Engenharia Semiótica, fundamentação teórica deste trabalho, tais questões são transmitidas aos usuários por uma metamensagem do designer, comunicada pela sua interface, através de conversas entre usuário e designer - este último através de seu representante em tempo de interação, o preposto do designer. A Engenharia Semiótica propõe, antes da construção da interface concreta, uma etapa de modelagem da interação usuário-sistema, na qual o designer modela todas as possíveis conversas que consegue prever para que os usuários atinjam suas metas. Para a execução desta etapa, criou-se, em 2003, a MoLIC (Modeling Language for Interaction as Conversation), uma linguagem de modelagem que representa a interação como as possíveis conversas entre usuário e designer. Apesar de ter sido proposta como uma ferramenta epistêmica, a MoLIC ainda não tinha tido suas características epistêmicas exploradas explicitamente. Este trabalho visa explorar o valor epistêmico da MoLIC, apoiando a reflexão do designer através de um conjunto de perguntas que ele pode se fazer sobre a representação da interação, de forma a atingir dois objetivos. O primeiro é apoiar a atividade de (re)design em si, através da explicitação das conseqüências das decisões de design representadas na MoLIC. O segundo é apoiar a interpretação da interação humano-computador, a fim de que o próprio designer ou um outro leitor seja capaz de entender e explicar modelos MoLIC seguindo a metáfora de uma conversa entre usuário e designer.
Personal computer users frequently view an interactive computational system as the user interface itself. Therefore, it´s desirable that such interface be developed in a way they can understand what the system is for, what it allows their users to do and in which way, for whom it´s made etc. Based on Semiotic Engineering, which is the theoretical foundation of this work, such issues are being conveyed to the users in a metamessage from the designer, communicated by its user interface, through conversations between the user and the designer - this one through his deputy at interaction time, the designer´s deputy. Before the concrete user interface is developed, Semiotic Engineering proposes to model the user-system interaction as a dialogue. In this stage, the designer models all the possible ways he anticipates that the users will be able to accomplish their goals. For this stage, a modeling language called MoLIC (Modeling Language for Interaction as Conversation) was created in 2003 to represent the interaction as the possible conversations between the user and the designer. Although it has been proposed as an epistemic tool, until now MoLIC had not had its epistemic features explored explicitly. This work aims to explore the epistemic value of MoLIC, supporting the designer`s reflection through a set of questions that he might ask for himself about the interaction representation, in order to accomplish two goals. The first one is to support the (re)design activity itself, by making explicit the consequences of the design decisions represented in MoLIC. The second one is to support the interpretation of the human-computer interaction represented in MoLIC, so that the designer or any other reader would be able to understand and explain MoLIC diagrams based on the conversation metaphor.
ALVES, EVELYN GABBAY. "INTERACTION DIAGRAMS FOR THE DESIGN OF HIGH STRENGTH CONCRETE SLENDER COLUMNS AND CROSS-SECTIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2000. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1784@1.
Повний текст джерелаA utilização do concreto de alta resistência já é uma realidade e muitos países estão adaptando suas normas para levar em conta as propriedades deste material. No dimensionamento de pilares esbeltos e seções com concreto de alta resistência é importante observar a relação tensão- deformação adotada no cálculo, pois enquanto para o concreto convencional a deformação máxima, ecu, é 0,0035, para o de alta resistência esta deformação depende do valor da resistência do concreto, diminuindo com o aumento do fck. Para um concreto com fck = 80 MPa, por exemplo, ecu é em torno de 0,0022 de acordo com as relações tensão - deformação propostas pelo MC90-CEB. A relação tensão- deformação com ecu dependente de fck irá alterar os diagramas de interação adimensionais para o dimensionamento de pilares esbeltos e concreto de alta resistência. São construídos neste trabalho diagramas de interação força normal - momento fletor - curvatura (n,m,f) e força normal - momento fletor - índice de esbeltez (n,m,l) para o dimensionamento de pilares esbeltos e diagramas de interação (nd,md) e (nd,mdx,mdy) para o dimensionamento de seções submetidas a flexão composta reta e oblíqua. Adotou- se a relação tensão-deformação proposta pelo MC90-CEB e valores de fck de 50 a 80 MPa. Os diagramas para pilares esbeltos foram construídos com auxílio do programa PCFRAME (KRÜGER, 1989) e os diagramas para o dimensionamento de seções foram construídos com um programa desenvolvido neste trabalho. Através dos resultados, observa-se que, como ecu depende de fck, todos os diagramas de interação sofreram diferenças, podendo ser dito ainda que o uso dos diagramas já existentes, construídos com ecu constante e igual a 0,0035, pode conduzir a erros contra a segurança estrutural.
The use of high strength concrete is already a reality and many countries are adapting their design codes to take into account the properties of this material. For the design of slender columns and sections subjected to combined axial force and bending, the most important property is the stress-strain relationship. While for normal concrete the strain at ultimate, ecu, can be considered constant and equal to 0,0035, for high strength concrete ecu depends on the concrete strength, decreasing as the strength increases. For a concrete with fck of 80 MPa, for instance, ecu is around 0,0022 according to the CEB Model Code (1990). Stress-strain relationship with ecu dependent of fck will affect the nondimensional interaction diagrams for the design of slender columns and sections of high strength concretes. Nondimensional interaction diagrams moment-axial load-curvature (m,n,f) and diagrams moment-axial load- slenderness ratio (m,n,l), for the design of slender columns, and nondimensional interaction diagrams (md,nd) and (nd,mdx,mdy) , for compression plus axial and biaxial bending of sections, are constructed in this work. The diagrams were constructed for concretes with strength between 50 MPa and 80 MPa, adopting suitable stress-strain relationships recommended by the CEB Model Code 1990. The diagrams for slender columns were constructed with the aid of an existing computational program developed in an earlier thesis, while the diagrams for the design of sections were constructed with a new program, specially developed in this work. The results have shown that all these diagrams are affected, even when presented in a nondimensional form, when stress-strain diagrams with ecu dependent of fck are adopted. The use of traditional nondimensional interaction diagrams, constructed with ecu constant and equal to 0,0035, may lead to errors against structural safety.
La utilización del concreto de alta resistencia es una realidad actual y muchos países estan adaptando sus normas para tener en cuenta las propiedades de este material. En el dimensionamiento de pilares esbeltos y secciones con concreto de alta resistencia es importante observar la relación tensión-deformación que se adopta en el cálculo, porque mientras para el concreto convencional la deformación máxima, ecu, es 0,0035, para el de alta resistencia esta deformación depende del valor de la resistencia del concreto, diminuyendo con el aumento del fck. Para un concreto con fck = 80 MPa, por ejemplo, ecu es en torno de 0,0022 de acordo con las relaciones tensión - deformación propostas por el MC90-CEB. La relación tensión- deformación con ecu dependente de fck alterará los diagramas de interacción adimensionales para el dimensionamiento de pilares esbeltos y concreto de alta resistencia. En este trabajo se construyen diagramas de interacción fuerza normal - momento flector - curvatura (n,m,f) y fuerza normal - momento flector - índice de esbeltez (n,m,l) para el dimensionamiento de pilares esbeltos y diagramas de interacción (nd,md) y (nd,mdx,mdy) para el dimensionamiento de secciones sometidas a flexión compuesta recta y obliqua. se adoptó la relación tensión-deformación propuesta por el MC90-CEB y valores de fck de 50 la 80 MPa. Los diagramas para pilares esbeltos fueron construidos con auxilio del programa PCFRAME (KRÜGER, 1989) e implementamos un programa para obtener los diagramas para el dimensionamiento de las secciones. A través de los resultados se observa que, como ecu depende de fck, todos los diagramas de interacción sufren diferencias, y puede decirse que el uso de los diagramas construidos con ecu constante e igual la 0,0035, pueden conducir a errores que afectan la seguridad extructural.
Martin, Timothy Michael. "Codes of Interaction." VCU Scholars Compass, 2005. http://scholarscompass.vcu.edu/etd/849.
Повний текст джерелаAbouelleil, Alaaeldin. "Interaction domain in non-prestressed circular concrete bridge piers using simplified modified compression field theory." Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/18996.
Повний текст джерелаDepartment of Civil Engineering
Hayder Rasheed
The importance of the analysis of circular columns to accurately predict their ultimate confined capacity under shear-flexure-axial force interaction domain is recognized in light of the extreme load event imposed by the current AASHTO LRFD specification. In this study, various procedures for computing the shear strength are reviewed. Then, the current procedure adopted by AASHTO LRFD 2014, based on the simplified modified compression field theory, is evaluated for non-presetressed circular concrete bridge piers. This evaluation is benchmarked against experimental data available in the literature and against Response 2000 freeware program that depicts interaction diagrams based on AASHTO 1999 requirements. Differences in results are discussed and future improvements are proposed. A new approach is presented to improve the accuracy of AASHTO LRFD calculations. The main parameters that control the cross section shear strength are discussed based on the experimental results and comparisons.
Louati, Aymen. "Contribution à la formalisation et à la vérification des diagrammes dynamiques UML2 à base des réseaux de Petri." Thesis, Paris, CNAM, 2015. http://www.theses.fr/2015CNAM1106/document.
Повний текст джерелаThe computer systems have increasingly invaded our daily lives from the simplest application as audio files reading to the most critical one as cars and airplanes. For critical systems, the validation by the formal verification is required. This Thesis concerns this area of research and aims to ensure the betterment of UML language, which is the de facto standard, with formal semantics for verification finality. For the first part, we have analyzed and revised the theoretical foundations the existing formal verification methods used UML, their profiles and the basic concepts of the Petri nets (PNs). For the second part, we have created a novel hierarchical approach to formalize the Interaction Overview Diagrams (IOD). Based on this idea, we have developed temporal formalisms based on the UML2 Timing Diagrams (TD), applied by illustration examples. Then, we have proposed a Formal Verification approach based on last formalisms which are interested in Real Time Systems (RTS) and employ the temporal extension of the Object Constraints language (OCL/Real Time) (OCL TR), the UML MARTE profile and the timed computation Tree logic (TCTL), given by the Model Checking technique after the model's transformation. Finally, we have applied all the proposed formalisms through a case study, in order to ensure its logical and temporal efficiency
Mikulka, David. "Pokročilý nástroj pro monitorování Oracle Databáze." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2010. http://www.nusl.cz/ntk/nusl-237133.
Повний текст джерелаКниги з теми "Interaction diagrams"
Alan, Dix, and Dittmar Anke, eds. TAMODIA 2005: 4th international workshop on task models and diagrams for user interface design. New York: Association for Computing Machinery, 2005.
Знайти повний текст джерелаMilʹshin, A. A. (Aleksandr Alekseevich), ed. Microwave radiation of the ocean-atmosphere: Boundary heat and dynamic interaction. Dordrecht: Springer, 2010.
Знайти повний текст джерелаUnited States. Naval Oceanography Command Detachment, Asheville, N.C. U.S. Navy hindcast spectral ocean wave model climatic atlas: Mediterranean Sea. Asheville, N.C: The Detachment, 1990.
Знайти повний текст джерелаUnited States. Naval Oceanography Command Detachment, Asheville, N.C. U.S. Navy hindcast spectral ocean wave model climatic atlas: Mediterranean Sea. Asheville, N.C: The Detachment, 1990.
Знайти повний текст джерелаUnited, States Naval Oceanography Command Detachment Asheville N. C. U.S. Navy hindcast spectral ocean wave model climatic atlas: North Pacific Ocean. Asheville, N.C: The Detachment, 1985.
Знайти повний текст джерелаUnited States. Naval Oceanography Command Detachment, Asheville, N.C. U.S. Navy hindcast spectral ocean wave model climatic atlas: Mediterranean Sea. Asheville, N.C: The Detachment, 1990.
Знайти повний текст джерелаUnited, States Naval Oceanography Command Detachment Asheville N. C. U.S. Navy hindcast spectral ocean wave model climatic atlas: North Pacific Ocean. Asheville, N.C: The Detachment, 1985.
Знайти повний текст джерелаUnited, States Naval Oceanography Command Detachment Asheville N. C. U.S. Navy hindcast spectral ocean wave model climatic atlas: North Pacific Ocean. Asheville, N.C: The Detachment, 1985.
Знайти повний текст джерелаUnited States. Naval Oceanography Command Detachment, Asheville, N.C. U.S. Navy hindcast spectral ocean wave model climatic atlas: North Pacific Ocean. Washington, D.C: Dept. of the Navy, Oceanographic Office, 1985.
Знайти повний текст джерелаUnited States. Naval Oceanography Command Detachment, Asheville, N.C. U.S. Navy hindcast spectral ocean wave model climatic atlas: Mediterranean Sea. Asheville, N.C: The Detachment, 1990.
Знайти повний текст джерелаЧастини книг з теми "Interaction diagrams"
Parrow, Joachim. "Interaction diagrams." In A Decade of Concurrency Reflections and Perspectives, 477–508. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58043-3_26.
Повний текст джерелаD’Auria, Riccardo, and Mario Trigiante. "Fields in Interaction." In From Special Relativity to Feynman Diagrams, 453–559. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22014-7_12.
Повний текст джерелаD’Auria, Riccardo, and Mario Trigiante. "Fields in Interaction." In From Special Relativity to Feynman Diagrams, 433–535. Milano: Springer Milan, 2011. http://dx.doi.org/10.1007/978-88-470-1504-3_12.
Повний текст джерелаCordes, Björn, Karsten Hölscher, and Hans-Jörg Kreowski. "UML Interaction Diagrams: Correct Translation of Sequence Diagrams into Collaboration Diagrams." In Applications of Graph Transformations with Industrial Relevance, 275–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-25959-6_20.
Повний текст джерелаFerro, Tyler, and Dianne Pawluk. "Providing Dynamic Access to Electronic Tactile Diagrams." In Universal Access in Human–Computer Interaction. Designing Novel Interactions, 269–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58703-5_20.
Повний текст джерелаWhitman, Lisa. "The Effectiveness of Interactivity in Computer-Based Instructional Diagrams." In Human-Computer Interaction. Novel Interaction Methods and Techniques, 899–908. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02577-8_98.
Повний текст джерелаStanton, Neville A., James W. H. Brown, Kirsten M. A. Revell, Patrick Langdon, Michael Bradley, Ioannis Politis, Lee Skrypchuk, Simon Thompson, and Alexandros Mouzakitis. "Validating Operator Event Sequence Diagrams." In Designing Interaction and Interfaces for Automated Vehicles, 137–57. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021. |: CRC Press, 2021. http://dx.doi.org/10.1201/9781003050841-10.
Повний текст джерелаMoreira, Catarina, and Andreas Wichert. "Introducing Quantum-Like Influence Diagrams for Violations of the Sure Thing Principle." In Quantum Interaction, 91–108. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-35895-2_7.
Повний текст джерелаLucero, Andrés. "Using Affinity Diagrams to Evaluate Interactive Prototypes." In Human-Computer Interaction – INTERACT 2015, 231–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22668-2_19.
Повний текст джерелаGeiger, Christian, Holger Reckter, Roman Dumitrescu, Sascha Kahl, and Jan Berssenbrügge. "A Zoomable User Interface for Presenting Hierarchical Diagrams on Large Screens." In Human-Computer Interaction. Novel Interaction Methods and Techniques, 791–800. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02577-8_87.
Повний текст джерелаТези доповідей конференцій з теми "Interaction diagrams"
Song, Il-Yeol. "A Heuristic for Developing Object Interaction Diagrams." In 2001 Informing Science Conference. Informing Science Institute, 2001. http://dx.doi.org/10.28945/2355.
Повний текст джерелаRees, Dylan, Robert S. Laramee, Paul Brookes, and Tony D'Cruze. "Interaction Techniques for Chord Diagrams." In 2020 24th International Conference Information Visualisation (IV). IEEE, 2020. http://dx.doi.org/10.1109/iv51561.2020.00015.
Повний текст джерелаLano, K. "Formal Specification using Interaction Diagrams." In Fifth IEEE International Conference on Software Engineering and Formal Methods (SEFM 2007). IEEE, 2007. http://dx.doi.org/10.1109/sefm.2007.20.
Повний текст джерелаRönnquist, Ralph, and Chi Keen Low. "Analysing expert assistants through interaction diagrams." In the first international conference. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/267658.267791.
Повний текст джерелаVan den Bergh, Jan, and Karin Coninx. "CAP3 for interaction design pattern diagrams?" In the 2nd International Workshop. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2018431.2018433.
Повний текст джерелаRay, A., and R. Cleaveland. "Architectural interaction diagrams: AIDs for system modeling." In 25th International Conference on Software Engineering, 2003. Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/icse.2003.1201218.
Повний текст джерела"DETECTING ASPECTUAL BEHAVIOR IN UML INTERACTION DIAGRAMS." In 2nd International Conference on Software and Data Technologies. SciTePress - Science and and Technology Publications, 2007. http://dx.doi.org/10.5220/0001341203780386.
Повний текст джерелаVosough, Zana, Dietrich Kammer, Mandy Keck, and Rainer Groh. "Visualizing uncertainty in flow diagrams." In VINCI '17: 10th International Symposium on Visual Information Communication and Interaction. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3105971.3105972.
Повний текст джерелаMachado, Patricia D. L., Jorge C. A. Figueiredo, Emerson F. A. Lima, Ana E. V. Barbosa, and Helton S. Lima. "Component-based integration testing from UML interaction diagrams." In 2007 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icsmc.2007.4414070.
Повний текст джерелаMetatla, Oussama. "Workspace Awareness in Collaborative Audio-Only Interaction with Diagrams." In AfriCHI'16: African Conference for Human Computer Interaction. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2998581.2998598.
Повний текст джерелаЗвіти організацій з теми "Interaction diagrams"
Vakaliuk, Tetiana A., Olha V. Korotun, and Serhiy O. Semerikov. The selection of cloud services for ER-diagrams construction in IT specialists databases teaching. CEUR Workshop Proceedings, June 2021. http://dx.doi.org/10.31812/123456789/4371.
Повний текст джерелаFernando, P. U. Ashvin Iresh, Gilbert Kosgei, Matthew Glasscott, Garrett George, Erik Alberts, and Lee Moores. Boronic acid functionalized ferrocene derivatives towards fluoride sensing. Engineer Research and Development Center (U.S.), July 2022. http://dx.doi.org/10.21079/11681/44762.
Повний текст джерелаLutz, Carsten. Reasoning about Entity Relationship Diagrams with Complex Attribute Dependencies. Aachen University of Technology, 2002. http://dx.doi.org/10.25368/2022.119.
Повний текст джерелаTsidylo, Ivan M., Serhiy O. Semerikov, Tetiana I. Gargula, Hanna V. Solonetska, Yaroslav P. Zamora, and Andrey V. Pikilnyak. Simulation of intellectual system for evaluation of multilevel test tasks on the basis of fuzzy logic. CEUR Workshop Proceedings, June 2021. http://dx.doi.org/10.31812/123456789/4370.
Повний текст джерелаCalculation of Interaction Diagrams for Precast, Prestressed Piles, 2nd Edition (PD-01-15). Precast/Prestressed Concrete Institute, 2015. http://dx.doi.org/10.15554/pd-01-15.
Повний текст джерела