Добірка наукової літератури з теми "Intermittent Renewable Energy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Intermittent Renewable Energy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Intermittent Renewable Energy":

1

Aleti, Saketh, and Gal Hochman. "Non-Constant Elasticity of Substitution and Intermittent Renewable Energy." Agricultural and Resource Economics Review 49, no. 2 (June 30, 2020): 321–59. http://dx.doi.org/10.1017/age.2020.7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this article, we present a model of the electricity sector where generation technologies are intermittent. The economic value of an electricity generation technology is given by integrating its production profile with the market price of electricity. We use estimates of the consumer's intertemporal elasticity of substitution for electricity consumption while parameterizing the model empirically to numerically calculate the elasticity between renewables and fossil energy. We find that there is a non-constant elasticity of substitution between renewable and fossil energy that depends on prices and intermittency. This suggests that the efficacy and welfare effects of carbon taxes and renewable subsidies vary geographically. Subsidizing research into battery technology and tailoring policy for local energy markets can mitigate these distributional side effects while complementing traditional policies used to promote renewable energy.
2

Coiante, Domenico. "Limiti e prospettive delle fonti rinnovabili in Italia." ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, no. 2 (May 2009): 163–79. http://dx.doi.org/10.3280/efe2008-002011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
- The Italian energy balance for year 2005 is discussed with particular attention on renewable energy production. The potentials of renewable sources are evaluated in terms of energy density that can be obtained from occupied plant area. About 20000 km2 of sunny barren lands are present in South of Italy, particularly suitable for photovoltaic plants and that corresponds to a potential production of 144 Mtep of primary energy. Therefore, in theory, the photovoltaic energy potential is comparable with energy balance. The grid connection limit due to intermittent power generation of photovoltaic and wind energy systems is considered in relation with the stability of grid power level. Assuming a 25% maximum grid penetration of intermittent power with respect to capacity of active thermoelectric generators, the renewable energy contribution amounts to about 2% of annual energy balance. In front of expectations for a larger contribution, the practical result is the renewable energy production of present systems is marginal, unsuitable for counteracting the global climate crisis. The conclusion is that, for exploiting the large renewable energy potential, is necessary to implement the plants with an energy storage system able to overcome the source intermittency. Without this improvement, the expectations on renewable energy sources could be disappointed.Key words: intermittent renewable sources, energy production limit, grid connection
3

Henriot, Arthur. "Economic curtailment of intermittent renewable energy sources." Energy Economics 49 (May 2015): 370–79. http://dx.doi.org/10.1016/j.eneco.2015.03.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baranes, Edmond, Julien Jacqmin, and Jean-Christophe Poudou. "Non-renewable and intermittent renewable energy sources: Friends and foes?" Energy Policy 111 (December 2017): 58–67. http://dx.doi.org/10.1016/j.enpol.2017.09.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Barton, J. P., and D. G. Infield. "Energy Storage and Its Use With Intermittent Renewable Energy." IEEE Transactions on Energy Conversion 19, no. 2 (June 2004): 441–48. http://dx.doi.org/10.1109/tec.2003.822305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kuntz, Mark T., and Justin Dawe. "Renewable Rechargeable. Remarkable." Mechanical Engineering 127, no. 10 (October 1, 2005): 35–39. http://dx.doi.org/10.1115/1.2005-oct-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article reviews that flow batteries can turn intermittent wind power from a utility manager’s burden to a green and reliable energy source. Customers and the popular press have made it exceedingly clear that they expect wind, solar, and other renewable energy sources to play an increasingly important role in generating the electricity that powers modern society. This desire is often driven by concerns about air quality, public health, and energy security, among other factors. For a utility planner, any intermittent source is not dispatchable. A dispatchable energy source can be scheduled for use at the planner’s convenience. Among renewable energy sources, hydroelectric and geothermal facilities are also dispatchable, within the natural limits of the resource availability.
7

Moriarty and Honnery. "Energy Accounting for a Renewable Energy Future." Energies 12, no. 22 (November 10, 2019): 4280. http://dx.doi.org/10.3390/en12224280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
For millennia, humans relied almost entirely on renewable energy (RE), largely biomass, for their energy needs. Over the past century, fossil fuels (FFs) have not only largely replaced RE, but have enabled a many-fold rise in total energy use. This FF dominance changed the way we think about and accounted for energy use. If (as at present) the world essentially continues to ignore climate change, eventual resource depletion will force conversion to RE and, perhaps, nuclear energy will once again have to provide most of the world’s energy use. However, the change is more likely to come about because of the urgent need for climate change mitigation. At present, primary RE electricity accounting is done by calculating the FF energy that would be needed to produce it. But as FFs disappear, this approach makes less sense. Instead, a new approach to energy accounting will be needed, one that allows for the intermittent nature of the two most abundant RE sources, wind and solar power. Surplus intermittent RE might be converted to H2, further complicating energy accounting. An additional complication will be the treatment of energy reductions, especially from passive solar energy, likely to be more important in the coming decades. This paper is a review of the evidence to try to determine the best approach to future energy accounting.
8

Su, Wencong, Jianhui Wang, and Jaehyung Roh. "Stochastic Energy Scheduling in Microgrids With Intermittent Renewable Energy Resources." IEEE Transactions on Smart Grid 5, no. 4 (July 2014): 1876–83. http://dx.doi.org/10.1109/tsg.2013.2280645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cavallo, Alfred J. "Energy Storage Technologies for Utility Scale Intermittent Renewable Energy Systems." Journal of Solar Energy Engineering 123, no. 4 (July 1, 2001): 387–89. http://dx.doi.org/10.1115/1.1409556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gersema, Gerke, and David Wozabal. "Risk-optimized pooling of intermittent renewable energy sources." Journal of Banking & Finance 95 (October 2018): 217–30. http://dx.doi.org/10.1016/j.jbankfin.2017.03.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Intermittent Renewable Energy":

1

Grange, Léo. "Datacenter management for on-site intermittent and uncertain renewable energy sources." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les technologies de l'information et de la communication sont devenues, au cours des dernières années, un pôle majeur de consommation énergétique avec les conséquences environnementales associées. Dans le même temps, l'émergence du Cloud computing et des grandes plateformes en ligne a causé une augmentation en taille et en nombre des centres de données. Pour réduire leur impact écologique, alimenter ces centres avec des sources d'énergies renouvelables (EnR) apparaît comme une piste de solution. Cependant, certaines EnR telles que les énergies solaires et éoliennes sont liées aux conditions météorologiques, et sont par conséquent intermittentes et incertaines. L'utilisation de batteries ou d'autres dispositifs de stockage est souvent envisagée pour compenser ces variabilités de production. De par leur coût important, économique comme écologique, ainsi que les pertes énergétiques engendrées, l'utilisation de ces dispositifs sans intégration supplémentaire est insuffisante. La consommation électrique d'un centre de données dépend principalement de l'utilisation des ressources de calcul et de communication, qui est déterminée par la charge de travail et les algorithmes d'ordonnancement utilisés. Pour utiliser les EnR efficacement tout en préservant la qualité de service du centre, une gestion coordonnée des ressources informatiques, des sources électriques et du stockage est nécessaire. Il existe une grande diversité de centres de données, ayant différents types de matériel, de charge de travail et d'utilisation. De la même manière, suivant les EnR, les technologies de stockage et les objectifs en termes économiques ou environnementaux, chaque infrastructure électrique est modélisée et gérée différemment des autres. Des travaux existants proposent des méthodes de gestion d'EnR pour des couples bien spécifiques de modèles électriques et informatiques. Cependant, les multiples combinaisons de ces deux parties rendent difficile l'extrapolation de ces approches et de leurs résultats à des infrastructures différentes. Cette thèse explore de nouvelles méthodes pour résoudre ce problème de coordination. Une première contribution reprend un problème d'ordonnancement de tâches en introduisant une abstraction des sources électriques. Un algorithme d'ordonnancement est proposé, prenant les préférences des sources en compte, tout en étant conçu pour être indépendant de leur nature et des objectifs de l'infrastructure électrique. Une seconde contribution étudie le problème de planification de l'énergie d'une manière totalement agnostique des infrastructures considérées. Les ressources informatiques et la gestion de la charge de travail sont encapsulées dans une boîte noire implémentant un ordonnancement sous contrainte de puissance. La même chose s'applique pour le système de gestion des EnR et du stockage, qui agit comme un algorithme d'optimisation d'engagement de sources pour répondre à une demande. Une optimisation coopérative et multiobjectif, basée sur un algorithme évolutionnaire, utilise ces deux boîtes noires afin de trouver les meilleurs compromis entre les objectifs électriques et informatiques. Enfin, une troisième contribution vise les incertitudes de production des EnR pour une infrastructure plus spécifique. En utilisant une formulation en processus de décision markovien (MDP), la structure du problème de décision sous-jacent est étudiée. Pour plusieurs variantes du problème, des méthodes sont proposées afin de trouver les politiques optimales ou des approximations de celles-ci avec une complexité raisonnable
In recent years, information and communication technologies (ICT) became a major energy consumer, with the associated harmful ecological consequences. Indeed, the emergence of Cloud computing and massive Internet companies increased the importance and number of datacenters around the world. In order to mitigate economical and ecological cost, powering datacenters with renewable energy sources (RES) began to appear as a sustainable solution. Some of the commonly used RES, such as solar and wind energies, directly depends on weather conditions. Hence they are both intermittent and partly uncertain. Batteries or other energy storage devices (ESD) are often considered to relieve these issues, but they result in additional energy losses and are too costly to be used alone without more integration. The power consumption of a datacenter is closely tied to the computing resource usage, which in turn depends on its workload and on the algorithms that schedule it. To use RES as efficiently as possible while preserving the quality of service of a datacenter, a coordinated management of computing resources, electrical sources and storage is required. A wide variety of datacenters exists, each with different hardware, workload and purpose. Similarly, each electrical infrastructure is modeled and managed uniquely, depending on the kind of RES used, ESD technologies and operating objectives (cost or environmental impact). Some existing works successfully address this problem by considering a specific couple of electrical and computing models. However, because of this combined diversity, the existing approaches cannot be extrapolated to other infrastructures. This thesis explores novel ways to deal with this coordination problem. A first contribution revisits batch tasks scheduling problem by introducing an abstraction of the power sources. A scheduling algorithm is proposed, taking preferences of electrical sources into account, though designed to be independent from the type of sources and from the goal of the electrical infrastructure (cost, environmental impact, or a mix of both). A second contribution addresses the joint power planning coordination problem in a totally infrastructure-agnostic way. The datacenter computing resources and workload management is considered as a black-box implementing a scheduling under variable power constraint algorithm. The same goes for the electrical sources and storage management system, which acts as a source commitment optimization algorithm. A cooperative multiobjective power planning optimization, based on a multi-objective evolutionary algorithm (MOEA), dialogues with the two black-boxes to find the best trade-offs between electrical and computing internal objectives. Finally, a third contribution focuses on RES production uncertainties in a more specific infrastructure. Based on a Markov Decision Process (MDP) formulation, the structure of the underlying decision problem is studied. For several variants of the problem, tractable methods are proposed to find optimal policies or a bounded approximation
2

Görtz, Steffen. "Battery energy storage for intermittent renewable electricity production : A review and demonstration of energy storage applications permitting higher penetration of renewables." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-104285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Driven by resource politics and climate change, the transition from conventional fossil fuel based and centralized energy generation to distributed renewables is increasing rapidly. Wind and solar power generation offer carbon dioxide neutral electricity but also present some integration difficulties for energy system operators and planners due to intermittent power output. A promising way of dealing with the intermittency from renewables is energy storage. The method of storing energy in the electricity grid, especially by the means of electrochemical storage, has gained a lot of attention over the last years in the energy sector. While most utilities and energy market stakeholders have the basic understanding of energy storage, a more profound knowledge of grid storage applications is often lacking. This thesis aims to highlight and explain possible energy storage applications with focus on renewables integration. Battery energy storage can allow higher amounts of renewable electricity generation to be integrated by smoothening power output, time shifting generated energy to follow demand and increase hosting capacities through peak shaving. Power quality related issues due to intermittency can be mitigated by controlling the storage’s charging patterns to respond to grid variables. For optimal utilization and maximum storage value, several applications should be within the operational repertoire of the storage unit. Other applications including arbitrage, grid investment deferral and load following are discussed. Several battery technologies which have been developed and tested for such applications including lead acid, sodium sulfate and lithium-ion are presented. The most promising battery energy storage technology is lithium-ion with exceptional storage characteristics and most importantly a favorable near term price development. Two case studies on two of Umeå Energy’s low voltage networks simulating high penetrations of solar generation have been carried out to demonstrate mitigation of overvoltage and peak shaving with battery energy storage systems. The simulations show that energy storage systems can successfully be used to aid the integration of renewables in the electricity grid. Present capital costs are still too high for energy storage to be feasible but falling pricing and a developing market is foreseen to lower the hurdles.  The main obstacle for energy storage at grid scale besides high capital costs are, in principle, non-existing legal frameworks regulating the ownership of energy storage systems and system technology standardization. Further discussions on the matter in combination with testing and pilot projects are needed to gain national and international experience with battery energy storage for the successful high share integration of renewables.
Sinande naturresurser och växthuseffekten driver på övergången från centraliserad kraftproduktion baserad på fossila bränslen till distribuerad förnyelsebar energiproduktion i rask takt. Vind- och solkraft levererar koldioxidneutral el men ställer samtidigt balansansvariga och elnätsplanerare inför en rad problem på grund av periodiskt återkommande och tidvis ostabil effektgenerering. Energilager presenteras som en lovande lösning på problemen orsakade av förnyelsebara energikällor Att lagra energi i elnätet, i synnerhet med batterier, har fått en hel del uppmärksamhet de senaste åren i energibranschen. De flesta elnätsbolag och intressenter på energimarknaden har en grundläggande förståelse kring energilagring i elnätet men saknar ofta mer djupgående kunskap. Detta examensarbete syftar att belysa och förklara användningsområden och potentialer för energilagring med fokus på integreringen av förnyelsebara energikällor. Teorin beskriver hur batterilager kan användas för tillåta integreringen av en hög andel förnyelsebar elproduktion. Några tillämpningar är; effektutjämning, lagring av producerad energi för senare bruk samt ökad nätkapacitet genom att kapa toppar. Problem relaterade till försämrad elkvalité orsakad av varierande kraftproduktion visas kunna pareras med hjälp av programmerbara energilagringssystem som läser av storheter på elnätet såsom spänning och frekvens. För att utnyttja energilagret optimalt och komma åt dess maximala värde bör flera användningsområden kombineras. Därför diskuteras även andra användningsområden såsom arbitrage, lagringskapacitet för att skjuta upp eller undvika förstärkning av elnätet och lastföljning. Ett flertal batteriteknologier aktuella för de diskuterade användningsområdena såsom bly-, natriumsulfat- och litium-jonbatterier presenteras. Den mest lovande teknologin är litium-jon tack vare dess utmärkta egenskaper och framförallt mycket gynnsamma förväntade prisutveckling. Två fallstudier av två av Umeå Energi´s nätområden med hög simulerad andel solenergiproduktion har utförts för att demonstrera utnyttjandet av energilager för reglering av överspänning och kapning av toppar. Simuleringarna visar att energilagringssystem med framgång kan underlätta integreringen av förnyelsebara energikällor. Dagens kapitalkostnader är fortfarande för höga för att energilagring ska vara ekonomiskt försvarbart men fallande priser och en växande marknad väntas verka till teknikens fördel. Det visar sig att regelverk gällande ägandeskapet och standardiseringen av energilager är i det närmaste obefintliga vilket utgör ytterligare hinder för tekniken. Fortsatta diskussioner gällande dessa punkter i kombinationen med test- och pilotanläggningar för att införskaffa erfarenhet av energilagring i elnätet krävs.
3

Barton, John P. "A probabilistic method of modelling energy storage in electricity systems with intermittent renewable energy." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/9727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A novel probabilistic method has been developed for modelling the operation of energy storage in electricity systems with significant amounts of wind and solar powered generation. This method is based on a spectral analysis of the variations of wind speed and solar irradiance together with profiles of electrical demand. The method has been embodied in two Matlab computer programs: Wind power only: This program models wind power on any time scale from seconds to years, with limited modelling of demand profiles. This program is only capable of modelling stand-alone systems, or systems in which the electrical demand is replaced by a weak grid connection with limited export capacity. 24-hours: This program models wind power, solar PV power and electrical demand, including seasonal and diurnal effects of each. However, this program only models store cycle times (variations within a time scale) of 24 hours. This program is capable of modelling local electrical demand at the same time as a grid connection with import or export capacity and a backup generator. Each of these programs has been validated by comparing its results with those from a time step program, making four Matlab programs in total. All four programs calculate the power flows to and from the store, satisfied demand, unsatisfied demand and curtailed power. The programs also predict the fractions of time that the store spends full, empty, filling or emptying. The results obtained are promising. Probabilistic program results agree well with time step results over a wide range of input data and time scales. The probabilistic method needs further refinement, but can be used to perform initial modelling and feasibility studies for renewable energy systems. The probabilistic method has the advantage that the required input data is less, and the computer run time is reduced, compared to the time step method.
4

Barbour, Edward. "Investigation into the potential of energy storage to tackle intermittency in renewable energy generation." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Renewable Energy is by nature intermittent and matching the supply of energy to specific time dependent demand poses huge challenges. Energy storage is a useful tool in handling this temporal disparity, although except for regions very suitable for pumped hydroelectric storage schemes, it suffers from being technically difficult to implement and costly as a result. This study investigates the potential benefits offered by various scales of energy storage to different types of renewable energy generation. It also explores the economic drivers behind energy storage operating as part of an electricity spot market. A stochastic optimisation algorithm for determining the maximum possible arbitrage revenue available to energy storage devices is presented and schedule of operation of storage acting in this manner is analysed. The schedule of operation for maximising the revenue is compared to the schedule of operation for minimising the fuel cost to the network and it is demonstrated that because prices are more volatile than the demand which drives them, storage devices do not always act to decrease the fuel cost to the network. It is shown that storage behaving in the right manner can offer significant benefits to electricity systems, and increases the usage of base-load generation, reducing peak electricity demands and the need for expensive peaking plants. The value of storage also increases as the penetration of renewable energy generation increases, although the current electricity market framework is perhaps not the best way to encourage this behaviour. Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) is also identified as a theoretical storage option which deserves further scrutiny. Using thermodynamic modelling the efficiency of this type of system is estimated in the range of 63-67%, and we suggest that this may be increased closer to 73% by using direct contact heat exchangers rather than indirect contact heat exchangers (and a separate thermal fluid), as described in the currently available literature. However, dealing with large pressure ranges (leading to large variations in pressure ratios) encountered in the expansion process is a problematic area which will have to be resolved before this type of system can be constructed with “off-the-shelf” components. Some small scale experiments are used to gain valuable insights into a AA-CAES system. While these suffer from a very low overall efficiency, they highlight the effect of variable pressure ratio on expander efficiency. We conclude that AA-CAES is thermodynamically sound and will be achieved one of two ways: either through the construction of expanders that can work with high efficiency over large pressure ratios, or by resolving the engineering issues with maintaining a constant storage pressure.
5

Henriot, Arthur. "Economics of intermittent renewable energy sources : four essays on large-scale integration into European power systems." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-01018509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis centres on issues of economic efficiency originating from the large-scale development of intermittent renewable energy sources (RES) in Europe. The flexible resources that are necessary to cope with their specificities (variability, low-predictability, site specificity) are already known, but adequate signals are required to foster efficient operation and investment in these resources. A first question is to what extent intermittent RES can remain out of the market at times when they are the main driver of investment and operation in power systems. A second question is whether the current market design is adapted to their specificities. These two questions are tackled in four distinct contributions.The first chapter is a critical literature review. This analysis introduces and confronts two (often implicit) paradigms for RES integration. It then identifies and discusses a set of evolutions required to develop a market design adapted to the large-scale development of RES, such as new definitions of the products exchanged and reorganisation of the sequence of electricity markets.In the second chapter, an analytical model is used to assess the potential of intraday markets as a flexibility provider to intermittent RES with low production predictability. This study highlights and demonstrates how the potential of intraday markets is heavily dependent on the evolution of the forecast errors.The third chapter focuses on the benefits of curtailing the production by intermittent RES, as a tool to smooth out their variability and reduce overall generation costs. Another analytical model is employed to anatomize the relationship between these benefits and a set of pivotal parameters. Special attention is also paid to the allocation of these benefits between the different stakeholders.In the fourth chapter, a numerical simulation is used to evaluate the ability of the European transmission system operators to tackle the investment wave required in order to manage the production of intermittent RES. Alternative financing strategies are then assessed. The findings reveal that under the current trend of tariffs, the volumes of investment forecasted will be highly challenging for transmission system operators.
6

Anderson, Matthew John. "Economic and Environmental Analysis of Cool Thermal Energy Storage as an Alternative to Batteries for the Integration of Intermittent Renewable Energy Sources." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/51195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The balance of the supply of renewable energy sources with electricity demand will become increasingly difficult with further penetration of renewable energy sources. Traditionally, large stationary batteries have been used to store renewable energy in excess of electricity demand and dispatch the stored energy to meet future electricity demand. Cool thermal energy storage is a feasible renewable energy balancing solution that has economic and environmental advantages over utility scale stationary lead-acid batteries. Two technologies, ice harvesters and internal-melt ice-on-coil cool thermal energy storage, have the capability to store excess renewable energy and use the energy to displace electricity used for building cooling systems. When implemented by a utility, cool thermal energy storage can replace large utility scale batteries for renewable energy balancing in utility regions with high renewable energy penetration. The California Independent System Operator (CAISO) region and the Electric Reliability Council of Texas (ERCOT) are utility regions with large solar and wind resources, respectively, that can benefit from installation of cool thermal energy storage systems for renewable energy balancing. With proper scheduling of energy dispatched from cool thermal energy storage, these technologies can be effective in displacing peak power capacity for the region, in displacing traditional building cooling equipment, and in recovering renewable energy that would otherwise be curtailed.
Master of Science
7

Gils, Hans Christian [Verfasser], and André [Akademischer Betreuer] Thess. "Balancing of intermittent renewable power generation by demand response and thermal energy storage / Hans Christian Gils. Betreuer: André Thess." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2016. http://d-nb.info/1081367563/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Patrick, Stasha Noelle. "Control of aggregate electric water heaters for load shifting and balancing intermittent renewable energy generation in a smart grid environment." Thesis, Montana State University, 2011. http://etd.lib.montana.edu/etd/2011/patrick/PatrickS1211.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The majority of electrical energy in the United States is produced by fossil fuels, which release harmful greenhouse gas emissions and are non-renewable resources. The U.S. Department of Energy has established goals for a smart electric power grid, which facilitates the incorporation of clean, renewable generation sources, such as wind. A major challenge in incorporating renewable energy sources onto the power grid is balancing their intermittent and often unpredictable nature. In addition, wind generation is typically higher at night, when consumer demand is low. Residential electric water heaters (EWHs), which currently account for 20% of the U.S. residential daily energy demand, are the largest contributors to the morning and evening peaks in residential power demand. The simulations in this thesis tested the hypothesis that controlling the thermostat setpoints of EWHs can shift EWH electrical energy demand from hours of higher demand to hours of lower demand, provide a large percentage of the balancing reserves necessary to integrate wind energy generation onto the electric power grid, and economically benefit the customer, while maintaining safe water temperatures and without significantly increasing average daily power demand or maximum power demand of the EWHs. In the experimental simulation, during on-peak hours for demand, when electricity prices are high, the thermostat setpoints of EWHs were set to the minimum, in order to consume minimal energy. The result was that the vast majority of EWH demand occurred during off-peak hours, a significant improvement over the base case (normal operation in which no setpoint control was implemented). During off-peak hours, the thermostat setpoints of EWHs were controlled by the utility in order to provide balancing reserves necessary to maintain power system stability when wind generation is included in the system. The EWHs were able to provide the balancing reserves desired by the utility a majority of the time. In this combined control method, the customer benefitted financially by saving in electrical energy costs when compared to the base case, the EWH water temperatures always remained within safe limits. There was only a small increase in the total energy consumption, but the peak power demand did not change.
9

Ahmed, Samar. "Carbon neutral scenarios for Växjö municipality." Thesis, Linnéuniversitetet, Institutionen för byggd miljö och energiteknik (BET), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-104962.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Sweden’s municipalities are leading the green energy transition, in this study, a techno-economic evaluation was done for a number of carbon neutral scenarios for Växjö municipality’s future energy system, situated within Sweden’s projected energy demand development in 2030 and 2050. The municipality’s partially decentralized energy system relies heavily on interconnected electricity supply from the national grid, and fuels imports from other parts of Sweden. It was a matter of question: in which ways will future demand changes induce supply changes, and whether a future carbon neutral energy system will be less costly in a sustained-electricity supply condition? To answer this, a balanced energy reference system for the municipality was created from an actual energy balance, using an hour-by-hour dynamic energy analysis tool EnergyPlan. Afterward, a future energy demand projection for Växjö was stemmed from the Swedish Energy Agency (SEA) sustainable future scenarios for Sweden, based on an average inhabitant energy demand. Modelling results for Växjö carbon neutral scenarios showed that Växjö energy system will be sufficient to supply future heat demand but not electricity demand, nor transport and industrial fuels. While in the short-term being carbon neutral is more economically attainable without changes in electricity supply technologies, a projected electricity price and consumption increase, change the outcomes for a carbon neutral scenario based on Intermittent Renewable Energy (IRE) to be less costly in the long term.
10

Nguyen, Duc Trung. "Optimal sizing and system management of water pumping and desalination process supplied with intermittent renewable sources." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette étude s’intéresse à la conception systémique intégrant simultanément les questions de dimensionnement et de gestion optimale de l'énergie. Le système étudié concerne un procédé de pompage intégrant un processus de dessalement d’eaux saumâtres alimenté par des sources de puissance hybrides renouvelable incluant un minimum de stockage électrochimique. Ce cas d’étude appartient à une classe typique de systèmes autonomes alimentés par des sources intermittentes dont profil de puissance a une forme "donnée" : « selon les conditions climatiques (ensoleillement, vent), avec un minimum de stockage d’électricité, la puissance offerte doit être convertie ou stockée hydrauliquement sous peine d’être gaspillée ». L'influence des conditions d'environnement et la robustesse du processus d’optimisation est enfin aussi discutée dans cette thèse. Deux types de modèles mathématiques, dynamiques et quasi-statiques, sont mis en œuvre pour décrire l'ensemble du dispositif. Le système est tout d’abord modélisé dynamiquement par Bond Graphs. Pour une simulation plus rapide, plus adaptée à l’optimisation globale du système, un modèle quasi-statique est créé pour être simulé dans l'environnement Matlab. Pour de tels dispositifs, étant donné une certaine puissance offerte au fil du vent et du soleil, trouver le point optimal de fonctionnement à chaque période consiste en un partage de puissance entre les sous systèmes de pompage et de traitement de l’eau : ce processus est plutôt complexe compte tenu des non linéarités (courbes rendement – puissance) et de la présence de nombreuses contraintes relatives aux limitations de puissance des pompes, aux conditions de niveau des réservoirs, ainsi qu’aux limitations de pression et de débit dans les processus hydrauliques (pompes osmoseur). Nous montrerons qu’il n’est pas si trivial de choisir une fonction objectif qui assure simultanément la performance et la robuste du système vis-à-vis des conditions d’environnement : une fonction objectif robuste quel que soit le profil de puissance des sources est ainsi proposée pour mettre en œuvre une gestion optimale de l’énergie. Le problème d’optimisation étant posé sous forme standard, consistant en la maximisation d’une fonction objectif sous contraintes, des approches d’optimisation efficaces par programmation non linéaire sont employées. La question du dimensionnement et son couplage à la gestion énergétique est finalement étudiée. En particulier, l’intérêt de la modularité des systèmes, considérant plusieurs pompes connectées en parallèle pour la même fonction, est investigué
This study focuses on systemic design, integrating simultaneously issues of sizing and optimal energy management. The system under study consists of a pumping process including a brackish water desalination system fed by hybrid renewable power sources with minimum electrochemical storage. Such a device belongs to the class of “autonomous systems” supplied by intermittent sources whose power profile has a “given” waveform: “with minimum electrical storage, power has to be converted, stored in water tanks, or wasted following climatic (sun, wind) conditions”. Influence of environment conditions and robustness of the optimization process is then also discussed in this thesis. Both dynamic and quasi static models are implemented for representing the whole system. The device is firstly modeled dynamically by Bond Graph methodology. For faster simulations, which are more suitable for system optimization, a quasi static model is created to be simulated in the Matlab environment. For such systems, given a certain source power, finding optimal operation point at each period consists of a power sharing between all pumping devices: it is a complex process with huge nonlinearities (efficiency vs power curves) and with many constraints as for the limitation of pump powers, tank level conditions, or pressure and flow limitations in hydraulic network and pumping devices. It is not so trivial to define an objective function which ensures system performance and robustness versus environment conditions: a convenient objective function, whatever the input power profile, is then proposed to implement the optimal management. The optimization problem being mathematically expressed, consisting of objective function maximization under constraints, efficient optimization methods by non linear programming are implemented. The issue of sizing and its coupling with system management efficiency is finally studied. In particular, the interest of modular operation with several pumps connected in parallel is also concerned in this research

Книги з теми "Intermittent Renewable Energy":

1

Gowrisankaran, Gautam. Intermittency and the value of renewable energy. Cambridge, MA: National Bureau of Economic Research, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rez, Peter. The Simple Physics of Energy Use. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198802297.001.0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In industrially developed countries, energy is used primarily for three things—maintaining a comfortable environment in buildings, transporting people and goods and manufacturing products. Each accounts for about one-third of the total primary energy use. Controlling the indoor temperature accounts for most of the energy use in buildings. Therefore, this strongly depends on the local climate. Electricity accounts for a high proportion of the energy transfer in developed countries. The problem is that electricity cannot easily be stored, and that supply therefore has to match demand. This makes the use of intermittent renewables such as solar and wind particularly challenging. Transportation efficiency can be measured by the energy used to move a person or a tonne of freight over a given distance, but there is also the journey time to consider. Transportation, with the exception of trains, is constrained by the energy density and convenience of fuels, and it is hard to beat liquid hydrocarbons as fuels. Materials that are dug out of the earth are nearly always oxides, but we want the element itself. The reduction process inevitably uses energy and produces carbon dioxide. Even growing crops requires energy in addition to that provided by sunlight. A meat-based diet requires significantly higher energy inputs than a vegetarian diet. Growing crops for fuel is a poor use of land, the problem being that crops do not grow fast enough. Policy should ultimately be based on what works from a physics and engineering viewpoint, and not on legislation that mandates the use of favoured renewable energy sources.
3

González Huerta, R. G., J. M. Sandoval Pineda, N. Hernández Pérez, and E. Álvarez del Rio. Interconnection to the network and energy storage systems. State of the art. EPOMEX-UAC, 2017. http://dx.doi.org/10.26359/epomex.cemie022017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
For technical reasons, the amount of electricity fed to the electrical grid must always remain at the same level of the demand requested by theconsumers to prevent blackouts and damage to the network. This leads to situations where production is greater than consumption and vice versa. This is where storage system technologies and interconnection to the network play a key role in balancing these disadvantages. Untilrecently, the utility of energy storage systems was focused on improving the efficiency of conventional generation systems, such as the use of pumped hydroelectricity to supplement the supply to the network in periods of extra demand or for plant start-ups. This type of storage technology is today the most reliable and in many ways the only one economically available. However, its use it is limited to specific cases that meet strict characteristics. Currently globally, the approach to storage technologies of energy, is to help improve the overall sustainability of large quantities of renewable energies, coming from intermittent sources such like the sun, the sea or the wind
4

Rez, Peter. Electrical Power Generation: Renewables—Solar and Wind. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198802297.003.0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Solar and wind power have low power densities. Large areas will be required to generate the electrical energy that we are using right now. These energy sources are intermittent, although sunshine is reasonably predictable in desert climates. Even in these ideal locations, fixed rooftop PV can only be used to meet a relatively small proportion of total electrical demand. Solar thermal with molten salt storage has a higher efficiency, and can better match electrical demands in these places. For wind turbines to generate their advertised or rated power, winds have to be blowing at about 12 m/sec (20 kt or 24 mph). In the United States, except in mountain passes and the Texas panhandle, this does not appear to happen very often. A simple test of whether a given renewable energy source is practical is to check whether it can meet the electrical demands of a single house.
5

van Leeuwen, Matthijs, and Martha Roggenkamp. Regulating Electricity Storage in the European Union. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822080.003.0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The chapter discusses the EU regulatory framework governing electricity storage. The obligation to reduce greenhouse gas emissions and the subsequent increase of electricity production from intermittent renewable energy sources is causing problems for balancing demand and supply, thus also balancing networks. Electricity storage is key to managing any excess electricity production and avoiding negative prices. However, this development takes place in a liberalized energy market, where network operators must act independently from production and supply. Establishing the purpose of electricity storage and where storage can or should be placed is crucial. The authors present the reasons for and the types of electricity storage available; analyse the EU legal framework ; identify potential obstacles; and present pros and cons for positioning storage in the electricity system. Finally, they discuss whether the EU Commission’s proposal to legislate electricity storage meets the requirements for providing cost efficiency and thus provides sufficient regulatory certainty.
6

Rez, Peter. Summary—What Should Be Done? Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198802297.003.0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Energy policy should start with an analysis of what physics and engineering say is possible, followed by an analysis of economics, and not be driven by mandates that favour renewable energy sources. In practice, it is very hard to make renewables such as solar and wind work, owing to their intermittency, and so widespread adoption might not lead to any reduction in carbon dioxide emissions, as demonstrated by the German ‘Energiewende’. To reduce carbon dioxide emissions, all base load electrical demand should be generated by nuclear power, as in France. To cut down on energy requirements, industrial countries should transition from a ‘throwaway society’ to a ‘repair’ society, and people should cut down on travel and meat consumption.
7

Shrader-Frechette, Kristin. Ethical Energy Choices. Edited by Stephen M. Gardiner and Allen Thompson. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199941339.013.35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter helps explain why energy ethics has not prevailed, despite thousands of years of energy pollution–caused deaths. Section 1 outlines the harms created by fossil fuels and nuclear energy. Section 2 surveys environmental ethicists’ responses to these harms. Because energy harms are so obvious and well established, most environmental ethicists have not spent time arguing against them. Instead, as section 3 explains, most environmental ethics work on energy has been at the level of third-order analyses—responding to those who attempt to justify continued use of dirty energy, often by saying other power sources are unavailable or too expensive. Sections 4 through 8 provide brief third-order ethical analyses of five major second-order ethical excuses for not moving to clean, renewable energy: namely, the readiness, intermittency, expense, regulation, and intention excuses. The final section outlines how future energy-related ethics research is likely to develop. Because other chapters in this volume address climate this one does not do so.
8

Fleming, Ruven, and Joshua P. Fershee. The ‘Hydrogen Economy’ in the United States and the European Union. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822080.003.0008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The chapter provides a wide-ranging look at prospects for ‘the hydrogen economy’ regarding fuel. In the European Union, hydrogen may be a means to address the intermittency of supply in the renewables sector. The US emphasis on hydrogen to operate motor vehicles contrasts with the EU’s broader climate change driven move to explore alternatives to fossil fuel. Regarding drivers of energy innovation, it is striking that the US introduction of hydrogen is specifically aimed at the transport sector and was driven by security of supply reasons rather than climate change. Further technological innovation is evident in that hydrogen can be injected into the natural gas grid or stored in dedicated reservoirs. In this regard, the chapter analyses the legal innovations required, by considering the impact on and interaction with the storage provisions of the EU Gas Directive and the proposed storage provision in the recast Electricity Directive.

Частини книг з теми "Intermittent Renewable Energy":

1

Soroudi, Alireza, Behnam Mohammadi-Ivatloo, and Abbas Rabiee. "Energy Hub Management with Intermittent Wind Power." In Large Scale Renewable Power Generation, 413–38. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-4585-30-9_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Möst, Dominik, Steffi Schreiber, and Martin Jakob. "Introduction." In The Future European Energy System, 3–7. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60914-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe future energy system in Europe needs to be decarbonized and thus be based almost exclusively on renewable energy sources. Therefore it is challenged by the intermittent nature of renewables and requires several flexibility options. The interaction between different options and the impact on environment and society are in the focus of this contribution. It is the core objective of this book to analyze and evaluate the development toward a low-carbon energy system with focus on flexibility options in the EU to support the implementation of the Strategy Energy Technology Plan. The analyses are based on a bottom-up modeling environment that considers current and future energy technologies, policy measures and their impact on environment and society while considering technological learning of low-carbon and flexibility technologies.
3

Reiter, Ulrich, and Martin Jakob. "What is the Flexibility Potential in the Tertiary Sector?" In The Future European Energy System, 137–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60914-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractDemand side management (DSM) is seen as a promising, cost-effective measure to cope with high shares of intermittent renewable energy in the electricity grid system. As the regulatory framework in Europe is changing in favor of opening up new market opportunities for DSM, the question is answered, which potentials are effectively available in the tertiary sector today and in the future. Results in this study are based on empirical data gathered from services companies. The collected data is of high quality and rich in detail and is of utmost importance for relevant model-based analyses. Additionally, the discussed acceptance rates of new technology or behavioral trends have a high impact on the results of the model analyses.
4

Franco, Alessandro. "Strategies for Increasing Electrical Energy Production from Intermittent Renewables." In Sustainable Development in Chemical Engineering Innovative Technologies, 51–79. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118629703.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Notton, Gilles, and Cyril Voyant. "Forecasting of Intermittent Solar Energy Resource." In Advances in Renewable Energies and Power Technologies, 77–114. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-812959-3.00003-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Iqbal, Fahad, Ankur Singh Rana, and Shufali Ashraf Wani. "Design and Analysis of a Cost-Effective Standalone Solar." In Research Anthology on Clean Energy Management and Solutions, 433–51. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-9152-9.ch019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The foremost issues of the twenty-first century are the ever-increasing challenging demand of electrical energy and controlling the emission of greenhouse gases (GHG). Along with these issues and with limited energy resources, it is imperative to look for non-conventional methods of power generation like from renewable energy resources. Microgrid has emerged as a new field that can meet the energy demand with a special emphasis on good power quality, reliability, and security. A major concern with the use of renewable energy resources is their intermittent nature which makes their integration and operation a challengeable task. Energy storage devices like batteries can be used to overcome the problem of intermittent nature of renewable energy resources. This chapter focusses on different aspects of renewable energy resources in detail. It analyzes the effectiveness of the proposed topology of the microgrid for health clinic load profile with the help of PVSYST software.
7

Iqbal, Fahad, Ankur Singh Rana, and Shufali Ashraf Wani. "Design and Analysis of a Cost-Effective Standalone Solar." In Handbook of Research on Power and Energy System Optimization, 552–70. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3935-3.ch016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The foremost issues of the twenty-first century are the ever-increasing challenging demand of electrical energy and controlling the emission of greenhouse gases (GHG). Along with these issues and with limited energy resources, it is imperative to look for non-conventional methods of power generation like from renewable energy resources. Microgrid has emerged as a new field that can meet the energy demand with a special emphasis on good power quality, reliability, and security. A major concern with the use of renewable energy resources is their intermittent nature which makes their integration and operation a challengeable task. Energy storage devices like batteries can be used to overcome the problem of intermittent nature of renewable energy resources. This chapter focusses on different aspects of renewable energy resources in detail. It analyzes the effectiveness of the proposed topology of the microgrid for health clinic load profile with the help of PVSYST software.
8

Luo, Yu, Yixiang Shi, and Ningsheng Cai. "Stabilization of intermittent renewable energy using power-to-X." In Hybrid Systems and Multi-energy Networks for the Future Energy Internet, 113–40. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-819184-2.00005-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Amaral de Almeida Prado, Fernando. "How much is possible? An integrative study of intermittent and renewables sources deployment. A case study in Brazil." In Renewable-Energy-Driven Future, 511–38. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820539-6.00017-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Greenwood, David, Sara Walker, Neal Wade, Stalin Munoz-Vaca, Andrew Crossland, and Charalampos Patsios. "Integration of High Penetrations of Intermittent Renewable Generation in Future Electricity Networks Using Storage." In Future Energy, 649–68. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102886-5.00030-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Intermittent Renewable Energy":

1

Abdelrahman, Ahmad, Lisa Lamont, and Lana El Chaar. "Energy Storage Systems for Intermittent Renewable Energy Systems." In The 2nd World Sustainability Forum. Basel, Switzerland: MDPI, 2012. http://dx.doi.org/10.3390/wsf2-00972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kilicccote, Sila, Elizabeth Reid, Robert Anderson, and John Hernandez. "Flexible loads for Intermittent Renewable generation Management." In 2016 IEEE Power and Energy Society General Meeting (PESGM). IEEE, 2016. http://dx.doi.org/10.1109/pesgm.2016.7741438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ji, Ying, Jianhui Wang, Shijie Yan, Wenzhong Gao, and Hepeng Li. "Optimal microgrid energy management integrating intermittent renewable energy and stochastic load." In 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2015. http://dx.doi.org/10.1109/iaeac.2015.7428570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Enslin, Johan H. R. "Dynamic reactive power and energy storage for integrating intermittent renewable energy." In Energy Society General Meeting. IEEE, 2010. http://dx.doi.org/10.1109/pes.2010.5589588.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alpcan, Tansu, Sajeeb Saha, and Mohammad Aldeen. "Assessment of voltage stability risks under intermittent renewable generation." In 2014 IEEE Power & Energy Society General Meeting. IEEE, 2014. http://dx.doi.org/10.1109/pesgm.2014.6939423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fangxing Li and Yanli Wei. "A probability-driven multilayer framework for scheduling intermittent renewable energy." In 2012 IEEE Power & Energy Society General Meeting. New Energy Horizons - Opportunities and Challenges. IEEE, 2012. http://dx.doi.org/10.1109/pesgm.2012.6345132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Welch, Michael, and Andrew Pym. "Flexible Natural Gas/Intermittent Renewable Hybrid Power Plants." In ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/es2017-3079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Increasing grid penetration of intermittent renewable power from wind and solar is creating challenges for the power industry. There are times when generation from these intermittent sources needs to be constrained due to power transmission capacity limits, and times when fossil fuel power plant are required to rapidly compensate for large power fluctuations, for example clouds pass over a solar field or the wind stops blowing. There have been many proposals, and some actual projects, to store surplus power from intermittent renewable power in some form or other for later use: Batteries, Compressed Air Energy Storage (CAES), Liquid Air Energy Storage (LAES), heat storage and Hydrogen being the main alternatives considered. These technologies will allow power generation during low periods of wind and solar power, using separate discrete power generation plant with specifically designed generator sets. But these systems are time-limited so at some point, if intermittent renewable power generation does not return to its previous high levels, fossil fuel power generation, usually from a large centralized power plant, will be required to ensure security of supplies. The overall complexity of such a solution to ensure secure power supplies leads to high capital costs, power transmission issues and potentially increased carbon emissions to atmosphere from the need to keep fossil fuel plant operating at low loads to ensure rapid response. One possible solution is to combine intermittent renewables and energy storage technologies with fast responding, flexible natural gas-fired gas turbines to create a reliable, secure, low carbon, decentralized power plant. This paper considers some hybrid power plant designs that could combine storage technologies and gas turbines in a single location to maximize clean energy production and reduce CO2 emissions while still providing secure supplies, but with the flexibility that today’s grid operators require.
8

Chenrui Jin, Xiang Sheng, and Prasanta Ghosh. "Energy efficient algorithms for Electric Vehicle charging with intermittent renewable energy sources." In 2013 IEEE Power & Energy Society General Meeting. IEEE, 2013. http://dx.doi.org/10.1109/pesmg.2013.6672568.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Alamri, B. R., and A. R. Alamri. "Technical review of energy storage technologies when integrated with intermittent renewable energy." In 2009 International Conference on Sustainable Power Generation and Supply. SUPERGEN 2009. IEEE, 2009. http://dx.doi.org/10.1109/supergen.2009.5348055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Varadan, S., H. Todus, J. Thiemsuwan, Ke Chen, Khoi Vu, D. Hawkins, and S. Shen. "A new approach to studying the impact of intermittent renewable resources." In 2012 IEEE Power & Energy Society General Meeting. New Energy Horizons - Opportunities and Challenges. IEEE, 2012. http://dx.doi.org/10.1109/pesgm.2012.6344746.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Intermittent Renewable Energy":

1

Castro Abril, Miguel. Intermittent Renewable Energy, Hydropower Dynamics and the Profitability of Storage Arbitrage. Inter-American Development Bank, May 2020. http://dx.doi.org/10.18235/0002360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Angulo Rodríguez, Emilio, and Ariel Yépez-García. The Role of Natural Gas in Energy Transition. Inter-American Development Bank, November 2020. http://dx.doi.org/10.18235/0002868.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As of 2004 and continuously to this day, the annual growth rate of renewable sources has been greater than that of all fossil fuels combined. In the midst of this transition to cleaner energy, natural gas is the only fossil fuel that has increased its share in the global energy matrix. Technological changes in the LNG supply chain, as well as transformations in the global natural gas market, largely explain this growth. This publication provides evidence on the fundamental role that natural gas plays in the energy transition, given that: (i) its greenhouse gas emissions are substantially lower than those of oil and coal; (ii) it provides the firm power necessary to complement intermittent renewable energies; (iii) it is particularly safe compared to other fossil fuels. In line with these attributes, the International Energy Agency projects that the share of natural gas in the global energy matrix by 2040 will remain stable (around 24%), even in its Sustainable Development Scenario, which would allow to meet the goals established in the Paris Agreement.
3

Gowrisankaran, Gautam, Stanley Reynolds, and Mario Samano. Intermittency and the Value of Renewable Energy. Cambridge, MA: National Bureau of Economic Research, May 2011. http://dx.doi.org/10.3386/w17086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії