Дисертації з теми "Lithium-ion (Li-ion)"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Lithium-ion (Li-ion).

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Lithium-ion (Li-ion)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Xing, Hanwen, and Xin Liu. "A Lithium-ion Battery Charger." Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-44826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nowadays personal small electronic devices like cellphones are more and more popular, but the various batteries in need of charging become a problem. This thesis aims to explain a Lithium-ion charger which can control the current and voltage so that it can charge most kinds of popular batteries. More specifically, Li-ion battery charging is presented. The charging circuit design, simulation and the measurements will also be included.
2

Popovic, Jelena. "Novel lithium iron phosphate materials for lithium-ion batteries." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5459/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to delive a stable 94% of the theoretically known capacity.
Konventionelle Energiequellen sind weder nachwachsend und daher nachhaltig nutzbar, noch weiterhin langfristig verfügbar. Sie benötigen Millionen von Jahren um gebildet zu werden und verursachen in ihrer Nutzung negative Umwelteinflüsse wie starke Treibhausgasemissionen. Im 21sten Jahrhundert ist es unser Ziel nachhaltige und umweltfreundliche, sowie möglichst preisgünstige Energiequellen zu erschließen und nutzen. Neuartige Technologien assoziiert mit transportablen Energiespeichersystemen spielen dabei in unserer mobilen Welt eine große Rolle. Li-Ionen Batterien sind in der Lage wiederholt Energie aus entsprechenden Prozessen nutzbar zu machen, indem sie reversibel chemische in elektrische Energie umwandeln. Die Leistung von Li-Ionen Batterien hängen sehr stark von den verwendeten Funktionsmaterialien ab. Aktuell verwendete Elektrodenmaterialien haben hohe Produktionskosten, verfügen über limitierte Energiespeichekapazitäten und sind teilweise gefährlich in der Nutzung für größere Bauteile. Dies beschränkt die Anwendungsmöglichkeiten der Technologie insbesondere im Gebiet der hybriden Fahrzeugantriebe. Die vorliegende Dissertation beschreibt bedeutende Fortschritte in der Entwicklung von LiFePO4 als Kathodenmaterial für Li-Ionen Batterien. Mithilfe einfacher Syntheseprozeduren konnten eine vollkommen neue Morphologie (mesokristallines LiFePo4) sowie ein nanostrukturiertes Material mit exzellenten elektrochemischen Eigenschaften hergestellt werden. Die neu entwickelten Verfahren zur Synthese von LiFePo4 sind einschrittig und bei signifikant niedrigeren Temperaturen im Vergleich zu konventionellen Methoden. Die Verwendung von preisgünstigen und umweltfreundlichen Ausgangsstoffen stellt einen grünen Herstellungsweg für die large scale Synthese dar. Mittels des neuen Synthesekonzepts konnte meso- und nanostrukturiertes LiFe PO4 generiert werden. Die Methode ist allerdings auch auf andere phospho-olivin Materialien (LiCoPO4, LiMnPO4) anwendbar. Batterietests der besten Materialien (nanostrukturiertes LiFePO4 mit Kohlenstoffnanobeschichtung) ergeben eine mögliche Energiespeicherung von 94%.
3

Cen, Yinjie. "Si/C Nanocomposites for Li-ion Battery Anode." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The demand for high performance Lithium-ion batteries (LIBs) is increasing due to widespread use of portable devices and electric vehicles. Silicon (Si) is one of the most attractive candidate anode materials for the next generation LIBs because of its high theoretical capacity (3,578 mAh/g) and low operation potential (~0.4 V vs Li+/Li). However, the high volume change (>300%) during Lithium ion insertion/extraction leads to poor cycle life. The goal of this work is to improve the electrochemical performance of Si/C composite anode in LIBs. Two strategies have been employed: to explore spatial arrangement in micro-sized Si and to use Si/graphene nanocomposites. A unique branched microsized Si with carbon coating was made and demonstrated promising electrochemical performance with a high active material loading ratio of 2 mg/cm2, large initial discharge capacity of 3,153 mAh/g and good capacity retention of 1,133 mAh/g at the 100th cycle at 1/4C current rate. Exploring the spatial structure of microsized Si with its advantages of low cost, easy dispersion, and immediate compatibility with the prevailing electrode manufacturing technology, may indicate a practical approach for high energy density, large-scale Si anode manufacturing. For Si/Graphene nanocomposites, the impact of particle size, surface treatment and graphene quality were investigated. It was found that the electrochemical performance of Si/Graphene anode was improved by surface treatment and use of graphene with large surface area and high defect density. The 100 nm Si/Graphene nanocomposites presented the initial capacity of 2,737 mAh/g and good cycling performance with a capacity of 1,563 mAh/g after 100 cycles at 1/2C current rate. The findings provided helpful insights for design of different types of graphene nanocomposite anodes.
4

Rosina, Kenneth. "Structural and electrochemical investigation of aluminum fluoride coated Li[Li₁/₉Ni₁/₃Mn₅/₉]O₂ cathodes for secondary Li-ion batteries." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhao, Kejie. "Mechanics of Electrodes in Lithium-Ion Batteries." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10551.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis investigates the mechanical behavior of electrodes in Li-ion batteries. Each electrode in a Li-ion battery consists of host atoms and guest atoms (Li atoms). The host atoms form a framework, into which Li atoms are inserted via chemical reactions. During charge and discharge, the amount of Li in the electrode varies substantially, and the host framework deforms. The deformation induces in an electrode a field of stress, which may lead to fracture or morphological change. Such mechanical degradation over lithiation cycles can cause the capacity to fade substantially in a commercial battery. We study fracture of elastic electrodes caused by fast charging using a combination of diffusion kinetics and fracture mechanics. A theory is outlined to investigate how material properties, electrode particle size, and charging rate affect fracture of electrodes in Li-ion batteries. We model an inelastic host of Li by considering diffusion, elastic-plastic deformation, and fracture. The model shows that fracture is averted for a small and soft host—an inelastic host of a small feature size and low yield strength. We present a model of concurrent reaction and plasticity during lithiation of crystalline silicon electrodes. It accounts for observed lithiated silicon of anisotropic morphologies. We further explore the microscopic deformation mechanism of lithiated silicon based on first-principles calculations. We attribute to the microscopic mechanism of large plastic deformation to continuous Li-assisted breaking and reforming of Si-Si bonds. In addition, we model the evolution of the biaxial stress in an amorphous Si thin film electrode during lithiation cycle. We find that both the atomic insertion driven by the chemomechanical load and plasticity driven by the mechanical load contribute to reactive flow of lithiated silicon. In such concurrent process, the lithiation reaction promotes plastic deformation by lowering the stress needed to flow. Li-ion battery is an emerging field that couples electrochemistry and mechanics. This thesis aims to understand the deformation mechanism, stresses and fracture associated with the lithiation reaction in Li-ion batteries, and hopes to provide insight on the generic phenomenon that involves interactive chemical reactions and mechanics.
Engineering and Applied Sciences
6

Seo, Imsul. "Relaxation Analysis of Cathode Materials for Lithium-Ion Secondary Battery." Kyoto University, 2013. http://hdl.handle.net/2433/180446.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zou, Haiyang. "Development of a Recycling Process for Li-Ion Batteries." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The rechargeable secondary Lithium ion (Li-ion) battery is expected to grow to more than $6.3 billion by 2012 from ~$4.6 billion in 2006. With the development of personnel electronics, hybrid and electric vehicles, Li-ion batteries will be more in demand. However, Li-ion batteries are not widely recycled because it is not economically justifiable (in contrast, at present more than 97% Lead-acid batteries are recycled). So far, no commercial methods are available to recycle different chemical Li-ion batteries economically and efficiently. Considering our limited resources, environmental impact, and national security, Li-ion batteries must be recycled. A new methodology with low temperature and high efficiency is proposed in order to recycle Li-ion batteries economically and with industrial viability. The separation and synthesis of cathode materials (most valuable in Li-ion batteries) from recycled components are the main focus of the proposed research. The analytical results showed that the recycling process is practical and has high recovery efficiency, create great commercial value as well.
8

Wagner, Reinhard, Daniel Rettenwander, Maria Maier, Walter Schmidt, Julia Langer, Martin Wilkening, and Georg Amthauer. "Synthesis of Coarse-grained Garnet-type Li-ion Conductor Li7-3x(Al/Ga)xLa3Zr2O12 and its Li-ion Dynamics." Diffusion fundamentals 21 (2014) 9, S.1-2, 2014. https://ul.qucosa.de/id/qucosa%3A32401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Buiel, Edward. "Lithium insertion in hard carbon anode materials for Li-ion batteries." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0013/NQ36573.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Drewett, Nicholas E. "Novel routes to high performance lithium-ion batteries." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3513.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis investigates several approaches to the development of high-performance batteries. A general background to the field and an introduction to the experimental methods used are given in Chapters 1 and 2 respectively. Chapter 3 presents a study of ordered and disordered LiNi₀.₅Mn₁.₅O₄ materials produced using an optimised resorcinol-formaldehyde gel (R-F gel) synthetic technique. Both materials exhibited good electrochemical properties and minimal side reaction with the electrolyte. Structural analyses of the materials in various states of discharge and charge were undertaken, and from these the charge / discharge processes were elucidated. In chapter 4 R-F gel synthesised Li(Ni₁/₃Mn₁/₃Co₁/₃)O₂ is studied and found to exhibit a high degree of structural stability on cycling, as well as excellent capacity, cyclability and rate capability. Photoelectron spectroscopy studies revealed that the R-F gel derived particles have highly stable surfaces. A discussion of the results and their significance, with particular regard to the outstanding electrochemical performance observed, is also presented. Chapter 5 sets out an investigation into the nature of R-F gel synthesised 0.5Li₂MnO₃:0.5LiNi₁/₃Mn₁/₃Co₁/₃O₂. The electrochemical data revealed that, after an initial activation stage, the R-F gel derived material exhibited a high capacity, good cyclability and exceptional rate capability. This chapter also considers some initial structural investigations and the electrochemical processes occurring on charge. In chapter 6 the use of ether-based electrolytes, combined with various cathode materials, in lithium-oxygen batteries is examined. The formation of decomposition products was observed, and a scheme suggesting probable reaction pathways is given. It was noted that significant quantities of the desired discharge product, lithium peroxide, were formed on the 1st cycle discharge, implying some electrolyte / cathode combinations do demonstrate a degree of stability. A summary of the results and a discussion of their significance are also included.
11

Liu, Hao. "Understanding two-phase reaction processes in electrodes for Li-ion batteries." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Chen, Mengyuan. "A Closed Loop Recycling Process for the End-of-Life Electric Vehicle Li-ion Batteries." Digital WPI, 2020. https://digitalcommons.wpi.edu/etd-dissertations/605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lithium-ion batteries (LIBs) play a significant role in our highly electrified world and will continue to lead technology innovations. Millions of vehicles are equipped with or directly powered by LIBs, mitigating environmental pollution and reducing energy use. This rapidly increasing use of LIBs in vehicles will introduce a large quantity of spent LIBs within an 8- to10-year span and proper handling of end-of-life (EOL) vehicle LIBs is required. Over the last several years, the Worcester Polytechnic Institute (WPI) team in the Department of Mechanical Engineering has developed a closed-loop lithium ion battery recycling process and it has been demonstrated that the recovered NMC 111 has similar or better electrochemical properties than the commercial control powder with both coin cells and pouch cells, which have been independently tested by A123 Systems and Argonne National Laboratory. In addition, the different chemical compositions of the incoming recycling streams were shown to have little observed effects on the recovered precursor and resultant cathode material. Therefore, the WPI-developed process applies to different spent Li-ion battery waste streams and is, therefore, general. During the last few years, industry has the tendency to employ higher-nickel and lower-cobalt cathode material since it can provide higher capacity and energy density and lower cost. However, higher-nickel cathode material has the intrinsic unstable properties and surface modifications can be applied to slow down its degradation. Here, two facile scalable Al2O3 coating methods (dry coating and wet coating) were applied to recycled NMC 622 and the resultants were systematically studied. The Al-rich layer from the dry coating process imparted improved structural and thermal stability in accelerated cycling performed at 45 °C between 3.0 and 4.3 V, and the capacity retention of pouch cells with dry coated NMC 622 (D-NMC) cathode increased from 83% to 91% compared to Al-free NMC 622 after 300 cycles. However, for wet coated NMC 622 (W-NMC), the increased surface area accompanying by formation of NiO rock-salt like structure could have negative impacts on the cycling performance. There exist three challenges for current LIBs’ recycling research. First of all, most of the research is done in lab-scale and the scale-up ability needs to be proven. The scale-up ability of our recycling process has been verified by our scale-up experiments. The second challenge resides in the flexibility, here once again, with our intentionally designed experiments that having various incoming chemistries, the flexibility is validated. The last challenge is the lack of reliable testing because most of the testing is conducted with coin cells. Coin cells are relatively simple format and lacks persuasion. Here, with various industrial-level cell formats that ranging from coin cell, single layer pouch cell, 1Ah cell and 11Ah cell, a reliable and trustworthy testing is established. With this validation, the hesitation of recruiting recycled materials into industry shouldn’t exist.
13

Dridi, Zrelli Yosra. "Électrochimie et spectroscopie Raman de matériaux d’électrode positive pour batteries Li-ion." Thesis, Paris Est, 2012. http://www.theses.fr/2012PEST1126/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans ce travail de thèse, la microspectrométrie Raman a été mise à profit pour décrire les changements structuraux induits par la réaction électrochimique d'insertion/désinsertion des ions lithium dans des composés de structure lamellaire LiCoO2 et cubique LiMn2O4 et LiNi0.4Mn1.6O4, utilisés comme électrodes positives dans les batteries Li-ion. L'étude du composé d'électrode LiCoO2 pendant le processus de charge permet de mettre en évidence une région biphasée où la phase initiale coexiste avec une nouvelle phase hexagonale caractérisée par une expansion du paramètre inter-feuillets de l'ordre de 3% et un affaiblissement de la liaison Co-O dans le plan des feuillets. Dans le cas de LiMn2O4, une nouvelle attribution du spectre Raman a pu être proposée. Pendant la charge à 4V, un mécanisme à trois phases (phase initiale LiMn2O4, phase intermédiaire, phase pauvre en lithium) est décrit par spectroscopie Raman alors que la diffraction des RX ne permet pas d'observer la phase intermédiaire dans nos conditions de mesure. L'étude de l'insertion électrochimique du lithium dans LiMn2O4 (région 3V), a permis de montrer pour la première fois par spectroscopie Raman la formation progressive d'une phase tétragonale de composition Li2Mn2O4 qui coexiste avec la phase cubique initiale et qui est pure en fin de décharge. La réversibilité de cette transition structurale a également été démontrée. Dans le cas du composé substitué au nickel, LiNi0.4Mn1.6O4, une attribution complète du spectre Raman est proposée pour la première fois. L'étude par diffraction des RX du matériau en fonction de l'état de charge et de décharge met en évidence une conservation de la structure cubique avec des variations modérées de paramètres de maille. Le spectre Raman présente quant à lui des variations très significatives qui rendent compte de la présence dans des proportions différentes des espèces redox impliquées dans le fonctionnement électrochimique (Mn4+, Mn3+, Ni2+, Ni3+, Ni4+). Une analyse spectrale par décompositions de bandes permet d'identifier et de quantifier les proportions relatives des différents couples redox du nickel. Une réversibilité complète de la signature Raman est observée en décharge. Une application concrète et originale de la spectroscopie Raman a consisté à étudier le mécanisme d'autodécharge qui est observé pour le matériau LiNi0.4Mn1.6O4 complètement chargé. L'évolution des spectres Raman permet de mettre en évidence une réduction rapide et quantitative des ions Ni4+ pendant les premières heures de séjour dans l'électrolyte, puis un processus plus lent de réduction des ions Ni3+. Enfin, pour la première fois également, l'insertion du lithium dans le composé LiNi0.4Mn1.6O4 a été explorée par microspectrométrie Raman et a permis notamment d'identifier l'empreinte Raman de la phase la plus réduite de symétrie tétragonale Li2Ni0.4Mn1.6O4. L'originalité de ce travail a été d'apporter un grand nombre de données Raman expérimentales sur des matériaux d'électrode performants fonctionnant à 4V. De nouvelles attributions ont pu être proposées pour les composés initiaux, et des données vibrationnelles inédites ont été fournies sur les composés formés en charge et en décharge. Dans certains cas, ces données ont permis, sur la base d'une analyse détaillée des spectres Raman par décompositions de bandes, de proposer un raisonnement quantitatif sur l'existence de phases ou d'espèces redox en mélange. Il conviendrait bien sûr de corroborer ces nouvelles données et attributions par des calculs théoriques ab initio capables de simuler les fréquences et les intensités des modes vibrationnels dans les structures hôtes et lithiées
In this work, we show the relevance of Raman spectroscopy as a useful technique to investigate the local changes induced by the electrochemical reaction of intercalation/deintercalation of lithium in positive electrode materials for rechargeable lithium ion batteries.Raman investigations concern three types of high voltage cathode materials (4-5Volts) which are layered LiCoO2 and cubic LiMn2O4 and LiNi0.4Mn1.6O4.During electrochemical deintercalation of LiCoO2, we show the existence of a two phase region where the initial hexagonal phase coexist with a second hexagonal phase with a 3% expansion of the lattice parameter indicating a weakening of the Co-O bond in the Li1-xCoO2 material.On the other hand, a new assignment of LiMn2O4 Raman spectrum was proposed. During the charge in the 4V region, a three region phase (initial LiMn2O4 phase, intermediary phase and poor lithium phase) was described using Raman spectroscopy. RX measurements can not detect this intermediary phase. Lithiated phase Raman signature shows a specific local order: Fd3m for extreme phases and F43m for partially lithiated phase. A rich Raman band spectrum is attributed to this later phase in coherence with literature calculations. Structural changes reversibility is demonstrated. Identification of this intermediary phase as a major component of a cycled electrode, underline the incomplete reduction and explain the important loss of capacity observed during cycling. Raman study of LiMn2O4 electrochemical insertion in the 3V region, has demonstrated for the first time a progressive formation of tetragonal Li2Mn2O4 phase, which is in coexistence with initial cubic phase and is pure at the end of discharge. Structural transition reversibility was also demonstrated.In the case of LiNi0.4Mn1.6O4, the assignment of the Raman spectrum of LiNi0.4Mn1.6O4 is provided for the first time. DRX study in function of the state of charge and discharge, exhibit cubic structure conservation with moderate lattice parameters variations. The Raman spectrum of the spinel oxide exhibits drastic spectral changes during Li extraction. These changes have been directly related to the Mn and Ni oxidation states in the cathode material under operation. It comes out that electrochemical reactions of LiNi0.4Mn1.6O4 are reversible and based on three redox couples of Mn3+/Mn4+, Ni2+/Ni3+, and Ni3+/Ni4+. An original and concrete Raman spectroscopy application is the study of self discharge mechanism of completely charged LiNi0.4Mn1.6O4. Raman spectra evolution exhibits a quantitative Ni4+ reduction during the first hours, and then a slower Ni3+ reduction process. Finally, LiNi0.4Mn1.6O4 lithium insertion has been explored for the first time using Raman spectroscopy, and a tetragonal Li2Ni0.4Mn1.6O4 phase has been identified.The originality of this work is the important number of experimental Raman data of 4V electrode materials. New assignment of initial compound has been proposed and original vibrationnal data of compound during charge/discharge has been presented. These Raman data has permitted to propose a quantitative explanation which must be completed with ab initio calculations to simulate vibrationnal modes frequencies/ intensities
14

Arksand, Elsa. "Parametrization of a Lithium-ion battery." Thesis, KTH, Kemiteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Batterimodeller används för att representera batterier. För ändamål som batterihanteringssystem används idag främst empiriska modeller som representerar ett batteri med en motsvarande kretsmodell. Några nackdelar för dessa modeller ligger i dess oförmåga att simulera interna tillstånd och en tidskrävande parametriseringsprocess. Dessa nackdelar motiverar ingenjörer att vända sig till modeller som är baserade på fysiska lagar som ett alternativ eftersom de kan ge insikt i vad som händer inuti batteriet. Batterimodellerna som är baserade på de fysiska lagarna har alltför krävande beräkningar för att kunna användas för vissa applikationer, som batterihanteringssystem. Singel-partikelmodellen (SPM) är en fysikbaserad modell som används i detta avhandlingsprojekt. Syftet med projektet var att hitta en metod för att parametrisera SPM för nya kommersiella cylindriska HTPFR18650 1100mAh 3.2V litiumjärnfosfatceller. En litteraturundersökning och experiment användes för att extrahera parametervärdena. 17 parametrar valdes från litteraturundersökningen eftersom de kunde användas för att parametrisera modellen. Geometriska parametrar hittades genom en cellöppning. Tre typer av icke-destruktiva experiment som var inspirerade av litteraturen utfördes för att extrahera värden för de andra icke-geometriska parametrarna. Ett cykeltest med låg strömhastighet utfördes för att få en pseudo-OCV-kurva och för att extrahera kapacitetsrelaterade parametrarna. En känslighetsanalys genomfördes för galvanostatisk intermittent titreringsteknik testet (GITT) och pulstestet för de parametrar som var kopplade till transportoch kinetiska fenomen. Python matematisk batterimodellering (PyBaMM) användes för att simulera experimenten. Parametersamlingen Prada 2013 användes som standardvärden. Standardvärdena för de valda parametrarna ersattes av de värden som hittades genom experiment. Känslighetsanalysen visade att några av de valda parametrarna var känsliga för experimenten medan andra inte var det. Parametrarna extraherades genom fysiska relationer och genom att anpassa parametervärde för simuleringen så att den passar den experimentella datan under urladdningsförloppet. Värden för 14 av de 17 parametrarna extraherades i metoden. Den parametriserade modellen validerades mot två potentiella applikationer, en för ett batterielfordon och den andra för ett mild-hybridfordon. Den parametriserade modellen visade att den negativa partikelradien inte kan hittas med den föreslagna parametriseringsmetoden. Simuleringen visade sig också matchade den experimentella datan bättre under urladdning av cellerna jämfört till uppladdning. Flera förbättringar för framtida arbete har föreslagits, såsom att utvidgning av känslighetsanalysen, att erhålla OCV-kurvan från GITT istället för att använda pseudo-OCVkurvan, att använda strängare gränser vid kurvanpassningarna samt att skapa mer optimala tester för att extrahera parametervärdena.
Battery models are used to represent batteries. For purposes like battery management systems, empirical based models like the equivalent circuit models are widely used. These models have downsides regarding for example inability to simulate internal states and parametrization time that make engineers look at physics-based models as an alternative. The physics-based models are made up of physical relationships that offer insights into what is happening inside the battery. These are too computationally demanding to be used for certain applications, like battery managements systems. The Single Particle Model (SPM) is a physics-based model that is utilized in this thesis project. The aim of the project is to find a method to parametrize the SPM for fresh commercial cylindrical HTPFR18650 1100mAh 3.2V lithium iron phosphate cells. Literature survey and experiments were used to extract the parameter values. 17 parameters were selected from the literature survey since they could be used to parametrize the model. Geometrical parameters were found through a cell opening. Three types of nondestructive experiments inspired by literature were performed to extract values for the other non-geometric parameters. A low-rate cycling test was performed to get pseudo-OCV curve and to extract capacity related parameters. A sensitivity analysis is done for the GITT and the Pulse test for the parameters that were connected to the transport and kinetic phenomena. Python mathematical battery modelling (PyBaMM) was used to simulate the experiments. The Prada 2013 parameter set was be used as default values. The default values for the selected parameters were replaced by the values found through experiments. The sensitivity analysis showed that some of the selected parameters were sensitive while others were not. The parameters were extracted through physical relations and through curve fitting procedures during discharge. Values for 14 out of the 17 parameters were extracted in the method. The parametrized model was validated against two potential applications, one for a battery electric vehicle and the other for a mild hybrid. The parametrized model showed that the negative particle radius cannot be found through the proposed parametrization procedure. The simulation matched the experimental data better for discharging cells than charging cells. Several improvements for future work have been suggested such as extending the sensitivity analysis, obtaining the OCV-curve from GITT instead of low-rate cycling, having stricter bounds for the curve fitting as well as creating more optimal tests to extract the parameter values.
15

Bascaran, Julen. "Amorphous Materials as Fast Charging Li-ion Battery Anodes." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1565192878407804.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Kim, Taehoon. "Fading phenomena in li-rich layered oxide material for lithium-ion batteries." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:749fb26b-b226-487c-9f6b-4408967c9db6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lithium-rich layered transition metal oxide cathode, represented as the chemical formula of xLi2MnO3 · (1 - x)LiMO2(M = Mn, Ni, Co) , retains immense interest as one of the most promising candidates for energy storage system ranging from mobile devices to electric vehicle applications (EV/HEV/PHEV). This battery type benefits from superior theoretical capacity (>250 mAhg-1), high chemical potential (>4.6 V vs Li0), good thermal stability, high discharge capacity and lower cost compared with conventional cathodes (e.g. LiCoO2, Li(Ni1/3Mn1/3Co1/3)O2 cathodes). However, there remain major barriers which still need to be improved in order to achieve a successful commercialization for large-scale devices or electric vehicle applications. The irreversible capacity loss of 40-100 mAhg-1 during the initial electrochemical cycle and the battery fading phenomena (capacity fading/voltage decay) on further cycles are the major problems which have emerged. The Li+ ion extraction accompanied by oxygen release from the active material in the form of oxide known as lithia (Li2O) along with the transition metal migration has been suggested as the dominant processes underlying the capacity fading mechanism. Those processes, in turn, cause a phase transition from a layered structure into a spinel within the electrode material. The interplay of the local atomic environments between Li2MnO3 (monoclinic, C2/m) and LiMO2 (trigonal/hexagonal, R3m) holds the key to developing better cathodes with enhanced stability. In the present thesis, an in operando XAS study using a specially-designed cell of the graphene- coated Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode is employed to examine the chemical, electronic, and structural states of the transition metals (Mn, Co, and Ni) during electrochemical cycle(s). Precise oxidation states for the transition metals is evaluated by the combined analyses from the XANES and SQUID measurements. The K-edge XANES spectral shift is quantified to investigate the contribution to the charge compensation mechanism by the oxidation change. Absorption features in K-edge XANES are identified. These features describe the electronic state of the individual atoms in the cathode composite, as well as the local distortion from the octahedral structure of MO6. The Fourier transform of EXAFS offers a satisfactory description of the local structure changes with the connection to the cation arrangement. The description is generally involved with the peak amplitude, position, shape changes (trend), and coordination numbers in the real space. Hence, similarities or discrepancies in the local atomic environments could be compared at different state of charge. Major structural parameters are deduced from the EXAFS fitting process. These parameters can be used to distinguish different atomic environments upon voltage bias levels or investigate the appearance of the Jahn-Teller effect. A new approach to understand the atomic environment upon charge-discharge is demonstrated, namely, a Continuous Cauchy Wavelet Transform (CCWT) which enables the visualization of the EXAFS spectra in three dimensions by decomposing the k-space and R-space (uncorrected for phase shift) signals. The wavelet transform analysis provides possible evidence of the precursor that leads to the spinel phase transition in this battery system.
17

Deng, Haokun. "Nanostructured Si and Sn-Based Anodes for Lithium-Ion Batteries." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/612405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lithium-ion batteries (LIBs) are receiving significant attention from both academia and industry as one of the most promising energy storage and conservation devices due to their high energy density and excellent safety. Graphite, the most widely used anode material, with limitations on energy density, can no longer satisfy the requirements proposed by new applications. Therefore, further improvement on the electrochemical performance of anodes has been long pursued, along with the development of new anode materials. Among potential candidates, Si and Sn based anodes are believed to be the most promising. However, the dramatic volume expansion upon Li-intercalation and contraction upon Li de-intercalation cause mechanical instability, and thus cracking of the electrodes. To overcome this issue, many strategies have been explored. Among them the most efficient strategies include introduction of a nanostructure, coupled with a buffering matrix and coating with a protective film. However, although cycling life has been significantly increased using these three strategies, the capacity retention still needs improvement, especially over extensive charge-discharge cycles. In addition, more efforts are still needed to develop new fabrication methods with low costs and high efficiency. To further improve mechanical stability of electrodes, understanding of the failure mechanisms, particularly, the failure mechanisms of Si and Sn nanomaterials is essential. Therefore, some of the key factors including materials fabrication and microstructural changes during cycling are studied in this work. Hollow Si nanospheres have proved to be have a superior electrochemical performance when applied as anode materials. However, most of fabrication methods either involve use of processing methods with low throughput, or expensive temporary templates, which severely prohibits large-scale use of hollow Si spheres. This work designed a new template-free chemical synthesis method with high throughput and simple procedures to fabricate Si hollow spheres with a nanoporous surface. The characterization results showed good crystallinity and a uniform hollow sphere structure. The substructure of pores on the surface provides pathways for electrolyte diffusion and can alleviate the damage by the volume expansion during lithiation. The success of this synthesis method provides valuable inspiration for developing industrial manufacturing method of hollow Si spheres.3D graphene is the most promising matrix that can provide the necessary mechanical support to Sn and Si nanoparticles during lithiation. 2D graphene, however, results in Sn/graphene nanocomposites with a continuous capacity fade during cycling. It is anticipated that this is due to microstructural changes of Sn, however, no studies have been performed to examine the morphology of such cycled anodes. Hence, a new Sn/2D graphene nanocomposite was fabricated via a simple chemical synthesis, in which Sn nanoparticles (20-200 nm) were attached onto the graphene surface. The content of Sn was 10 wt.% and 20 wt.%. These nanopowders were cycled against pure Li-metal and, as in previous studies, a significant capacity decrease occurred during the first several cycles. Transmission and scanning electron microscopy revealed that during long term cycling electrochemical coarsening took place, which resulted in an increased Sn particle size of over 200 nm, which could form clusters that were 1 m. Such clusters result in a poor electrochemical performance since it is difficult for complete lithiation of the Sn to occur. It is hence concluded that the inability of Sn/2D graphene anodes to retain high capacities is due to coarsening that occurs during cycling. In addition to using forms of carbon to buffer the Sn expansion, it has been proposed to alloy Sn with S, which has a low redox potential vs Li⁰/Li⁺. Therefore, another new anode proposed here is that of SnS attached to graphite. The as prepared powders had a flower-like structure of the SnS alloy. Electrochemical cycling and subsequent microstructural analysis showed that after electrochemical cycling this pattern was destroyed and replaced by Sn and SnS nanoparticles. Based on the electron microscopy and XRD analysis, it was concluded that selective leaching of S occurs during lithiation of SnS particles, which results into nano SnS and Sn particles to be distributed throughout the electrolyte or SEI layer, without being able to take part in the electrochemical reactions. This mechanism has not been noted before for SnS anodes and indicates that it may not be possible to retain the initial morphology of SnS alloy during cycling, or the ability of SnS to be active throughout long term cycling. To conclude it should be stated that the goal and novelty of this thesis was (i) the fabrication of new Si, Sn/graphene and SnS/C nanostructures that can be used as anodes in Li-ion batteries and (ii) the documentation of the mechanisms that disrupt the initial structural stability of Sn/2D graphene and SnS/C anodes and result in severe capacity loss during long term cycling (over 100 cycles). These systems are of high interest to the electrochemistry community and battery developers.
18

Klett, Matilda. "Electrochemical Studies of Aging in Lithium-Ion Batteries." Doctoral thesis, KTH, Tillämpad elektrokemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lithium-ion batteries are today finding use in automobiles aiming at reducing fuel consumption and emissions within transportation. The requirements on batteries used in vehicles are high regarding performance and lifetime, and a better understanding of the interior processes that dictate energy and power capabilities is a key to strategic development. This thesis concerns aging in lithium-ion cells using electrochemical tools to characterize electrode and electrolyte properties that affect performance and performance loss in the cells.   A central difficulty regarding battery aging is to manage the coupled effects of temperature and cycling conditions on the various degradation processes that determine the lifetime of a cell. In this thesis, post-mortem analyses on harvested electrode samples from small pouch cells and larger cylindrical cells aged under different conditions form the basis of aging evaluation. The characterization is focused on electrochemical impedance spectroscopy (EIS) measurements and physics-based EIS modeling supported by several material characterization techniques to investigate degradation in terms of properties that directly affect performance. The results suggest that increased temperature alter electrode degradation and limitations relate in several cases to electrolyte transport. Variations in electrode properties sampled from different locations in the cylindrical cells show that temperature and current distributions from cycling cause uneven material utilization and aging, in several dimensions. The correlation between cell performance and localized utilization/degradation is an important aspect in meeting the challenges of battery aging in vehicle applications.   The use of in-situ nuclear magnetic resonance (NMR) imaging to directly capture the development of concentration gradients in a battery electrolyte during operation is successfully demonstrated. The salt diffusion coefficient and transport number for a sample electrolyte are obtained from Li+ concentration profiles using a physics-based mass-transport model. The method allows visualization of performance limitations and can be a useful tool in the study of electrochemical systems.

QC 20140512

19

Glass, Hugh. "Borate polyanion-based systems as Li- and Mg-ion cathode materials." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/264940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of this thesis is to investigate pyroborates, M2B2O5, and orthoborates, M3(BO3)2, where M = Mg, Mn, Co, Ni, as high capacity and high voltage Li- and Mg-ion cathode materials. We explore the layered orthoborates (M3(BO3)2 which, to our knowledge, have not been previously considered as Li- or Mg-ion cathodes, perhaps due to the lack of Li analogues. Structural analysis shows that mixed metal orthoborates form a solid solution, with cation order driven by the presence of directional d orbitals. Electrochemical studies show that Mg can be removed from the structure and replaced with Li in a 1:1 ion ratio. In the compound Mg2Mn(BO3)2 removal of 1 Mg is achieved giving a capacity of 209.9 mAh g 1. The pyroborates (M2B2O5) are an unexplored family of borate polyanions, which offer higher theoretical capacities and voltages than LiMBO3 due to their more condensed frameworks. There are no known Li containing pyroborates, we use electrochemical ion exchange, with the aim of replacing each Mg with 2 Li to form LixMB2O¬5. The stoichiometry can be varied to alter the redox couple utilised and the Mg available for removal. MgxM2-xB2O5 has been synthesised for M = Mn, Co, Fe and Ni and all forms have been shown to form a solid solution with cation ordering over the two M sites. In MgMnB2O5 we have shown that Mg can be fully removed while retaining the pyroborate structure. Subsequently up to 1.1 Li can be inserted giving discharge capacities of 240 mAhg-1 above 1.5 V. After 100’s of cycles 2 Li can be reversibly cycled. The insertion of Li has been confirmed by 7Li NMR and the oxidation state changes in Mn have been investigated by SQUID magnetometry and XANES spectroscopy. Electrochemical studies in materials where M = Fe, Co, and Ni show high voltage plateaus ( > 3.5 V) but limited capacity at room temperature. Increased temperatures improves cycling, with Co and Fe based compounds reaching full theoretical capacities ( > 200 mAhg-1). As Mg can be removed from the structure, the pyroborates could be of interest in Mg-ion batteries, which offer benefits in energy density, cost, and safety. Mg-ion battery research is still in its infancy, therefore here we develop methods to reliably test Mg-ion cathodes and electrolytes. We demonstrate that despite significant side reactions, Mg can be reversibly cycled in the MgMnB2O5 system in a full Mg-ion cell, showing that pyroborates are a promising family of materials for high capacity, high voltage Mg-ion cathodes. This study shows that the pyroborates and orthoborates are a promising family of materials for Li- and Mg-ion cathodes, with the light weight structure leading to high specific capacities. The ability to replace Mg for Li in polyanion materials without disrupting the crystal structure opens a new way to search for novel, high energy density, Li-ion cathodes.
20

Perea, Alexis. "Les phosphates de structure olivine LiMPO4 (M=Fe, Mn) comme matériau actif d’électrode positive des accumulateurs Li-ion." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20074/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce mémoire est consacré à la recherche de matériaux d'électrode positive pour batteries Li-ion et plus particulièrement aux phases de type olivine : LiFePO4, LiFe1-yMnyPO4, LiFe1-yCoyPO4 et LiMnyCo1-yPO4 obtenues par voie céramique. Une étude des propriétés physico-chimiques et structurales de ces composés a été réalisée par les techniques classiques de la Chimie du Solide et de la Science des Matériaux : spectrométrie Mössbauer de 57Fe, microscopie MEB et diffraction des rayons X. L'objectif de cette étude est d'identifier et de comprendre les mécanismes de réaction lors du cyclage de la batterie qui peuvent améliorer ou limiter les performances de la batterie.Cette étude a permis de montrer la complémentarité de la spectrométrie Mössbauer et de la diffraction des rayons X pour l'analyse des mécanismes d'oxydo-réduction mis en jeu dans les réactions électrochimiques. A partir du mécanisme biphasé bien connu de LiFePO4, des mécanismes électrochimiques en trois étapes et les phases formées lors du cyclage ont été identifiés pour les phases substituées au manganèse. L'aptitude de ces composés à fonctionner comme matériaux d'électrode positive de batteries Li-Ion de puissance a été démontrée par des cyclages à longue durée à différentes températures et vitesses de cyclage
This thesis is devoted to finding positive electrode materials for Li-ion batteries and more particularlycompounds of olivine type: LiFePO4, LiFe1-yMnyPO4, LiFe1-yCoyPO4 and LiMnyCo1-yPO4. An in-depth study of their physicochemical and structural properties was done combining Solid State Chemistry and Material Sciences techniques: Mössbauer spectrometry of 57Fe, microscopy SEM and X-ray diffraction. The aim of this study is to identify and understand the electrochemical mechanism during the cycling of the battery that can enhance or limit the battery performance. This study has shown the complementarity of Mössbauer spectrometry and X-ray diffraction to analyze the redox mechanisms involved into the electrochemical reactions. From the well-known two-phase mechanism of LiFePO4, electrochemical mechanisms in three steps and phases formed during cycling have been identified for phase substituted manganese. The ability of these compounds to be used as positive electrode materials for powerful Li-Ion batteries was demonstrated by long-term cycling at different temperatures and rates of cycling
21

Mubenga, Ngalula Sandrine. "A Lithium-Ion Battery Management System with Bilevel Equalization." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513207337549147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Petersburg, Cole Fredrick. "Novel in operando characterization methods for advanced lithium-ion batteries." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Currently, automotive batteries use intercalation cathodes such as lithium iron phosphate (LiFePO4) which provide high levels of safety while sacrificing cell voltage and therefore energy density. Lithium transition metal oxide (LiMO2) batteries achieve higher cell voltages at the risk of releasing oxygen gas during charging, which can lead to ignition of the liquid electrolyte. To achieve both safety and high energy density, oxide cathodes must be well characterized under operating conditions. In any intercalation cathode material, the loss of positive lithium ions during charge must be balanced by the loss of negative electrons from the host material. Ideally, the TM ions oxidize to compensate this charge. Alarmingly, the stoichiometry of the latest LiMO2 cathode materials includes more lithium ions than the TM ions can compensate for. Inevitably, peroxide ions or dioxygen gas must form. The former mechanism is vital for lithium-air batteries, while the latter must be avoided. Battery researchers have long sought to completely characterize the intercalation reaction in working batteries. However, the volatile electrolytes employed in batteries are not compatible with vacuum-based characterization techniques, nor are the packaging materials required to contain the liquid. For the first time, a solid state battery (using exposed particles of Li1.17Ni0.25Mn0.58O2) was charged while using soft X-ray absorption spectroscopy to observe the redox trends in nickel, manganese and oxygen. This was combined with innovative hard X-ray absorption spectroscopic studies on the same material to create the most complete picture yet possible of charge compensation.
23

Hekselman, Aleksandra K. "Crystalline polymer and 3D ceramic-polymer electrolytes for Li-ion batteries." Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/11950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The research work presented in this thesis comprises a detailed investigation of conductivity mechanism in crystalline polymer electrolytes and development of a new class of ceramic-polymer composite electrolytes for Li-ion batteries. Firstly, a robust methodology for the synthesis of monodispersed poly(ethylene oxides) has been established and a series of dimethyl-protected homologues with 13, 15, 17, 28, 29, 30 ethylene oxide repeat units was prepared. The approach is based on reiterative cycles of chain extension and deprotection, followed by end-capping of the oligomeric chain ends with methyl groups. The poly(ethylene oxide) homologues show a superior level of monodispersity to previous work and were subsequently used to prepare crystalline PEO6:LiPF6 polymer electrolytes. A correlation between the number of ether oxygens in the polymer chain and the ionic conductivity of crystalline polymer electrolytes has been established. The structure and dynamics of the monodispersed complexes were studied using solid-state NMR spectroscopy for the first time. The results are in agreement with the proposed mechanism of ionic conductivity in crystalline polymer electrolytes. A new class of composite solid electrolytes for all-solid-state batteries with a lithium metal anode is reported. The composite material consists of a 3D interpenetrating network of a ceramic electrolyte, Li₁.₄Al₀.₄Ge₁.₆(PO₄)₃, and an inert polymer (polypropylene), providing continuous pathways for the ionic transport and excellent mechanical properties. 3D connectivity of this novel composite was confirmed using X-ray microtomography and AC impedance spectroscopy.
24

Bazin, Laurent. "Anodes nanostructurées pour microbatteries 3D Li-ion." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/815/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse a pour sujet l'élaboration et la caractérisation d'anodes nano-architecturées pour des applications en microbatteries Li-ion 3D. Ces électrodes sont basées sur un collecteur de courant nano-structuré, constitué d'un tapis de nano-piliers de cuivre (Ø200nm, L=2µm) alignés verticalement. L'objectif de ce travail a été de montrer les avantages d'une électrode tridimensionnelle en revêtant ce substrat avec différents matériaux actifs en utilisant différentes techniques. De l'étain métallique Sn a pu être déposé par voie électrochimique et forme une couche conforme sur la nanostructure de cuivre. L'électrode obtenue cycle à une capacité de 0,02 mAh. Cm-2 durant plus de 500 cycles, ainsi que 75% de rétention de capacité entre 0,05 et 6C. L'alliage Cu6Sn5 formé à l'interface cuivre/étain a été identifié comme responsable de cette bonne tenue en cyclage. Suite à ce résultat, on a tenté de réaliser un dépôt conforme de matériau actif par électrophorèse (EPD). Dans un premier temps, la faisabilité de ce dépôt a été prouvée en utilisant des nanoparticules de silice SiO2. Ces expériences ont permis de mettre en lumière l'importance de la qualité de la dispersion lors d'un dépôt électrophorétique sur un substrat nanométrique de géométrie complexe. Le dépôt EPD de nanoparticules d'oxyde d'étain SnO2 a ensuite été réalisé. Les tests électrochimiques de l'anode obtenue ont montrés un comportement identique à celui de l'anode de Sn. Ceci confirme l'intérêt de la technique d'EPD pour l'élaboration d'électrodes nanostructurées
The aim of this thesis is to elaborate and characterise nano-architectured anodes for Li-ion 3D microbatteries. These electrodes are based on a nanostructured current collector, consisting in vertically-aligned arrays of copper nanopillars (Ø200nm, L=2µm). The goal of this work is to highlight the merits of a 3D electrode prepared by coating this substrate using different techniques and active materials. Tin metal has been deposited by ELD and formed a conformal layer onto the Cu current collectors. The obtained electrode showed a capacity of 0,02 mAh. Cm-2 during more than 500 cycles and a retention capacity of 75 % between 0,05 and 6C. Cu6Sn5 alloy, formed at the Cu/Sn interface was identified as responsible of this good cycling behaviour. Then, we attempted to realise a conformal coating using the electrophoretic deposition technique. In a first step, the feasibility of this deposition was proved using silica nanoparticules. These experiments enlighted the importance of the quality of the dispersion during EPD onto a nanostructured substrate. After this, an EPD depositin of SnO2 nanoparticle has been realised. Electrochemical charactyerisations of the obtained SnO2 anodes show similar behavior as Sn anodes. This confirms the interest of EPD techniques for elaboration nanostructured electrodes
25

Li, Jiahao [Verfasser]. "Adaptive model-based state monitoring and prognostics for lithium-ion batteries / Jiahao Li." Ulm : Universität Ulm, 2016. http://d-nb.info/1117087336/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Lin, Qian. "A Plastic-Based Thick-Film Li-Ion Microbattery for Autonomous Microsensors." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1175.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Novotný, Jakub. "Numerický model teplotního pole Li-Ion akumulátoru při vybíjení." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-319562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work is focused on lithium-ion batteries in general and their modeling capabilities in ANSYS Fluent. The various advantages and disadvantages of li-ion batteries are describes in my work. There are also described the various models and submodels offered by ANSYS Fluent. An essential part of the work is to model the real battery and compare the results between the real battery and the simulation itself. Finally, simulation of battery breakdown is performed.
28

Snyders, Charmelle. "An investigation of the morphological and electrochemical properties of spinel cathode oxide materials used in li-ion batteries." Thesis, Nelson Mandela Metropolitan University, 2016. http://hdl.handle.net/10948/12929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Li-ion batteries have become the more dominant battery type used in portable electronic devices such as cell phones, computers and more recently their application in full electric vehicles (EV). Li-ion batteries have many advantages over the traditional rechargeable systems (Pb-acid and Ni-MH) such as their higher energy density, low self-discharge, long capacity cycle life and relatively maintenance free. Due to their commercial advantages, a lot of research is done in developing new novel Li-ion electrode materials, improving existing ones and to reduce manufacturing costs in order to make them more cost effective in their applications. This study looked at the cathode material chemistry that has a typical spinel manganese oxide (LiMn2O4) type structure. For comparison the study also considered the influence of doping the phase with various metals such as Al, Mg, Co and Ni that were made as precursors using various carboxylic acids (Citric, Ascorbic, Succinic and Poly-acrylic acid) from a sol-gel process. Traditional batch methods of synthesizing the electrode material is costly and do not necessarily provide optimized electrochemical performance. Alternative continuous less energy intensive methods would help reduce the costs of the preparation of the electrode materials. This study investigated the influence of two synthesis techniques on the materials physical and electrochemical characteristics. These synthesis methods included the use of a typical batch sol-gel method and the continuous spray-drying technique. The spinel materials were prepared and characterized by Powder X-Ray Diffraction (PXRD) to confirm the formation of various phases during the synthesis process. In addition, in-situ PXRD techniques were used to track the phase changes that occurred in the typical batch synthesis process from a sol-gel mixture to the final crystalline spinel oxide. The materials were also characterized by thermal gravimetric analysis (TGA), whereby the materials decomposition mechanisms were observed as the precursor was gradually heated to the final oxide. These synthesized materials prepared under various conditions were then used to build suitable Li-ion coin type of cells, whereby their electrochemical properties were tested by simple capacity tests and electrochemical impedance spectroscopy (EIS). EIS measurements were done on the built cells with the various materials at various charge voltages. TG analysis showed that the materials underwent multiple decomposition steps upon heating for the doped lithium manganese oxides, whereas the undoped oxide showed only a single decomposition step. The results showed that all the materials achieved their weight loss below 400 °C, and that the final spinel oxide had already formed. The in-situ PXRD analysis showed the progression of the phase transitions where certain of the materials changed from a crystalline precursor to an amorphous intermediate phase and then finally to the spinel cathode oxide (Li1.03Mg0.2Mn1.77O4, and LiCo1.09Mn0.91O4). For other materials, the precursor would start as an amorphous phase, and then upon heating, convert into an impure intermediate phase (Mn2O3) before forming the final spinel oxide (Li1.03Mn1.97O4 and LiNi0.5Mn1.5O4). The in-situ study also showed the increases in the materials respective lattice parameters of the crystalline unit cells upon heating and the significant increases in their crystallite sizes when heated above 600 °C. Hence the results implied that a type of sintering of the particles would occur at temperatures above 600 °C, thereby increasing the respective crystallite size. The study showed that the cathode active materials made by the sol-gel spray-drying method would give a material that had a significantly larger surface area and a smaller crystallite size when compared to the materials made by the batch process. The electrochemical analysis showed that there was only a slight increase in the discharge capacities of the cells made with the spray-drying technique when compared to the cells made with the materials from the batch sol-gel technique. Whereas, the EIS study showed that there were distinct differences in the charging behavior of the cells made with the various materials using different synthesis techniques. The EIS results showed that there was a general decrease in the cells charge transfer resistance (Rct) as the charge potential increased regardless of the synthesis method used for the various materials. The results also showed that the lithium-ion diffusion coefficient (DLi) obtained from EIS measurements were in most of the samples higher for the cathode materials that had a larger surface area. This implied that the Li-ion could diffuse at a faster rate through the bulk material. The study concluded that by optimizing the synthesis process in terms of the careful control of the thermal parameters, the Li-ion batteries‟ cathode active material of the manganese spinel type could be optimized and be manufactured by using a continuous flow micro spray process.
29

Fan, Feifei. "Revealing novel degradation mechanisms in high-capacity battery materials by integrating predictive modeling with in-situ experiments." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53915.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lithium-ion (Li-ion) batteries are critically important for portable electronics, electric vehicles, and grid-level energy storage. The development of next-generation Li-ion batteries requires high-capacity electrodes with a long cycle life. However, the high capacity of Li storage is usually accompanied by large volume changes, dramatic morphological evolution, and mechanical failures in the electrodes during charge and discharge cycling. To understand the degradation of electrodes and resulting loss of capacity, this thesis aims to develop mechanistic-based models for predicting the chemo-mechanical processes of lithiation and delithiation in high-capacity electrode materials. To this end, we develop both continuum and atomistic models that simulate mass transport, interface reaction, phase and microstructural evolution, stress generation and damage accumulation through crack or void formation in the electrodes. The modeling studies are tightly coupled with in-situ transmission electron microscopy (TEM) experiments to gain unprecedented mechanistic insights into electrochemically-driven structural evolution and damage processes in high-capacity electrodes. Our models are successfully applied to the study of the two-phase lithiation and associated stress generation in both crystalline and amorphous silicon anodes, which have the highest known theoretical charge capacity, as well as the lithiation/sodiation-induced structural changes and mechanical failures in silicon-based multilayer electrodes. The modeling studies have uncovered unexpected electrochemical reaction mechanisms and revealed novel failure modes in silicon-based nanostructured anodes. Our modeling research provides insights into how to mitigate electrode degradation and enhance capacity retention in Li-ion batteries. More broadly, our work has implications for the design of nanostructured electrodes in next-generation energy storage systems.
30

Philippe, Bertrand. "Insights in Li-ion Battery Interfaces through Photoelectron Spectroscopy Depth Profiling." Doctoral thesis, Uppsala universitet, Strukturkemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-197250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Compounds forming alloys with lithium, such as silicon or tin, are promising negative electrode materials for the next generation of Li-ion batteries due to their higher theoretical capacity compared to the current commercial electrode materials. An important issue is to better understand the phenomena occurring at the electrode/electrolyte interfaces of these new materials. The stability of the passivation layer (SEI) is crucial for good battery performance and its nature, formation and evolution have to be investigated. It is important to follow upon cycling alloying/dealloying processes, the evolution of surface oxides with battery cycling and the change in surface chemistry when storing electrodes in the electrolyte. The aim of this thesis is to improve the knowledge of these surface reactions through a non-destructive depth-resolved PES (Photoelectron spectroscopy) analysis of the surface of new negative electrodes. A unique combination utilizing hard and soft-ray photoelectron spectroscopy allows by variation of the photon energy an analysis from the extreme surface (soft X-ray) to the bulk (hard X-ray) of the particles. This experimental approach was used to access the interfacial phase transitions at the surface of silicon or tin particles as well as the composition and thickness/covering of the SEI. Interfacial mechanisms occurring upon the first electrochemical cycle of Si-based electrodes cycled with the classical salt LiPF6 were investigated. The mechanisms of Li insertion (LixSi formation) have been illustrated as well as the formation of a new irreversible compound, Li4SiO4, at the outermost surface of the particles. Upon long cycling, the formation of SiOxFy was shown at the extreme surface of the particles by reaction of SiO2 with HF contributing to battery capacity fading. The LiFSI salt, more stable than LiPF6, improved the electrochemical performances. This behaviour is correlated to the absence of SiOxFy upon long-term cycling. Some degradation of LiFSI was shown by PES and supported by calculations. Finally, interfacial reactions occurring upon the first cycle of an intermetallic compound MnSn2 were studied. Compared to Si based electrodes, the SEI chemical composition is similar but the alloying process and the role played by the surface metal oxide are different.
31

Joulié, Marion. "Mécanisme de dissolution de matériaux actifs d'électrodes de type LiNi1/3Mn1/3Co1/3O2 d'accumulateurs Li-ion en vue de leur recyclage." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2015. http://www.theses.fr/2015ENCM0011/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La voie hydrométallugique représente une alternative pour la récupération des métaux de valeur tels que le nickel et le cobalt contenus dans les batteries Li-ion usagées. La première étape du procédé hydrométallurgique, l'étape de lixiviation a été optimisée grâce à l'étude du comportement du matériau actif d'électrode positive LiNi1/3Mn1/3Co1/3O2 (NMC) qui s'avère être le candidat idéal pour les batteries de véhicules électriques. Tout d'abord, l'étude des aspects thermodynamiques de la réaction de dissolution a permis de prédire le comportement du NMC dans divers acides. Puis, l'approche cinétique a conduit à l'élucidation du mécanisme se produisant lors de l'étape de lixiviation et à la mise en évidence de l'étape cinétiquement déterminante de la dissolution. Ce mécanisme a par la suite été généralisé aux autres matériaux couramment rencontrés dans les batteries Li-ion. L'impact d'agents réducteurs minéraux, organiques et métalliques pour promouvoir la dissolution du NMC a été évalué. Cette approche compare l'effet de réactifs à faible (acides sulfurique et chlorhydrique) et fort (acides citrique, oxalique et formique et peroxyde d'hydrogène) pouvoir réducteur ainsi que celui du cuivre et de l'aluminium provenant des collecteurs de courants des batteries Li-ion. Cette étude soulève le fort intérêt de l'emploi des collecteurs de courant présents de manière inhérente dans la fraction traitée par hydrométallurgie
Basic hydrometallurgical routes represent an alternative to recover valuable metals such as nickel and cobalt from spent Li-ion batteries. The first step of hydrometallurgical process, lixiviation step is optimized by studying the behaviour of LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrode active material, due to its good performances which make it an adequate candidate for the electric vehicles. First of all, the study of thermodynamic aspects allows predicting the behaviour of NMC material in various acidic media. Then, the kinetic approach leads to define the mechanism occurring during the leaching step and to outline the rate-limiting step of the dissolution. The reductive effect of mineral, organic and metallic reducing agents to promote leaching of NMC material is evaluated. The approach comparatively evaluates the reducing power impact of weak (sulfuric and hydrochloric acids), strong reducing agents (citric, oxalic and formic acids and hydrogen peroxide) and copper and aluminum from Li-ion batteries current collectors. This work points out the strong interest to advantageously use current collectors inherently present in the fraction treated by hydrometallurgy
32

Svens, Pontus. "Methods for Testing and Analyzing Lithium-Ion Battery Cells intended for Heavy-Duty Hybrid Electric Vehicles." Doctoral thesis, KTH, Tillämpad elektrokemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lithium-ion batteries designed for use in heavy-duty hybrid vehicles are continuously improved in terms of performance and longevity, but they still have limitations that need to be considered when developing new hybrid vehicles.                The aim of this thesis has been to study and evaluate potential test and analysis methods suitable for being used in the design process when maximizing lifetime and utilization of batteries in heavy-duty hybrid vehicles. A concept for battery cell cycling on vehicles has been evaluated. The work included development of test equipment, verification of hardware and software as well as an extended period of validation on heavy-duty trucks. The work showed that the concept has great potential for evaluating strategies for battery usage in hybrid vehicles, but is less useful for accelerated aging of battery cells.                             Battery cells encapsulated in flexible packaging material have been investigated with respect to the durability of the encapsulation in a demanding heavy-duty hybrid truck environment. No effect on water intrusion was detected after vibration and temperature cycling of the battery cells.                    Aging of commercial battery cells of the type lithium manganese oxide - lithium cobalt oxide / lithium titanium oxide (LMO-LCO/LTO) was investigated with different electrochemical methods to gain a deeper understanding of the origin of performance deterioration, and to understand the consequences of aging from a vehicle manufacturer's perspective. The investigation revealed that both capacity loss and impedance rise were largely linked to the positive electrode for this type of battery chemistry.                           Postmortem analysis of material from cycle-aged and calendar-aged battery cells of the type LMO-LCO/LTO and LiFePO4/graphite was performed to reveal details about aging mechanisms for those cell chemistries. Analysis of cycle-aged LMO-LCO/LTO cells revealed traces of manganese in the negative electrode and that the positive electrode exhibited the most severe aging. Analysis of cycle-aged LFP/graphite cells revealed traces of iron in the negative electrode and that the negative electrode exhibited the most severe aging.
Litiumjonbatterier anpassade för användning i tunga hybridfordon förbättras kontinuerligt med avseende på prestanda och livslängd men har fortfarande begränsningar som måste beaktas vid utveckling av nya hybridfordon.                 Syftet med denna avhandling har varit att studera och utvärdera potentiella prov- och analysmetoder lämpliga för användning i arbetet med att maximera livslängd och utnyttjandegrad av batterier i tunga hybridfordon.                               Ett koncept för battericykling på fordon har utvärderats. Arbetet innefattade utveckling av testutrustning, verifiering av hårdvara och mjukvara samt en längre periods validering på lastbilar. Arbetet har visat att konceptet har stor potential för utvärdering av strategier för användandet av batterier i hybridfordon, men är mindre användbar för åldring av batterier.                                Batterier kapslade i flexibelt förpackningsmaterial har undersökts med avseende på kapslingens hållbarhet i en krävande hybridlastbilsmiljö. Ingen påverkan på fuktinträngning kunde påvisas efter vibration och temperaturcykling av de testade battericellerna.                     Åldring av kommersiella battericeller av typen litiummanganoxid - litiumkoboltoxid/litiumtitanoxid (LMO-LCO/LTO) undersöktes med olika elektrokemiska metoder för att få en djupare förståelse för prestandaförändringens ursprung och för att förstå konsekvenserna av åldrandet ur en fordonstillverkares användarperspektiv. Undersökningen visade att både kapacitetsförlust och impedanshöjning till största delen var kopplat till den positiva elektroden för denna batterityp.                  Post-mortem analys av material från cyklade och kalenderåldrade kommersiella battericeller av typen LMO-LCO/LTO och LiFePO4/grafit utfördes för att avslöja detaljer kring åldringsmekanismerna för dessa cellkemier. Vid analys av cyklade LMO-LCO/LTO celler påvisades mangan i den negativa elektroden samt uppvisade den positiva elektroden kraftigast åldring. Vid analys av cyklade LFP/grafit celler påvisades järn i den negativa elektroden samt uppvisade den negativa elektroden kraftigast åldring.

QC 20140520

33

Xiao, Jie. "Layered lithium nickel manganese cobalt dioxide as a cathode material for Li-ion batteries." Diss., Online access via UMI:, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Šindelářová, Anna. "Srovnání různých typů komerčních lithium-iontových baterií." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The master's thesis is devoted to the comparison of different types of lithium-ion batteries. Primarily, an introduction to electrochemical power sources and their division is described. Furthermore, the thesis deals only with lithium-ion batteries. In the theoretical part, the chapters discuss the history, the principle of operation and a detailed description of the main battery parts, including used materials. A comparison of commercially available lithium-ion cells with each other as well as with other types of batteries is also included in the theoretical part. The practical part deals with the cyclinf of lithium-ion cells and subsequent evaluation of the effect of temperature on the capacitance and current characteristics of these lithium-ion batteries.
35

Volgmann, K., B. Kresse, A. F. Privalov, F. Fujara, and P. Heitjans. "7Li Field-Cycling NMR as Powerful Tool for Investigating Li Ion Conductors." Diffusion fundamentals 21 (2014) 25, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wei, X., S. C. Zhang, X. X. Lu, and G. R. Liu. "Structure and Electrochemical Performance of Li[Li0.2Co0.4Mn0.4]O2 Cathode Material for Lithium Ion Battery by Co-precipitation Method." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The nano-structured Li[Li0.2Co0.4Mn0.4]O2 cathode material is synthesized by a co-precipitation method. X-ray diffraction shows that the synthesized material has a hexagonal α-NaFeO2 type structure with a space group R-3m. Scanning electron microscopy and transmission electron microscopy images show the homogeneous distribution with 100-200 nm. X-ray photoelectron spectroscopy results indicate that the oxi-dation states of Co and Mn in Li[Li0.2Co0.4Mn0.4]O2 are present in trivalence and tetravalence, respectively. The charge-discharge curves and cycling performance are analyzed in detail. The initial charge and dis-charge capacities are respectively 236.5 mAh g-1 and 140.3 mAh g-1 at the current density of 100 mA g-1 in the voltage range of 2.0-4.6 V. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35203
37

Uitz, M., P. Bottke, W. Schmidt, M. Wark, I. Hanzu, and M. Wilkening. "Li Insertion Behaviour of Rutile TiO2 Nanorods as Anode Material in Lithium-Ion Batteries." Diffusion fundamentals 21 (2014) 23, S.1-2, 2014. https://ul.qucosa.de/id/qucosa%3A32433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Dubois, Vincent. "Electrodes positives lithiées d’oxysulfures de titane pour microbatteries Li-ion." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14858/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le développement à grande échelle des microbatteries pour des applications diverses comme l’alimentation de secours de certains composants électroniques dans les téléphones portables nécessite une compatibilité avec le procédé de solder-reflow employé dans le domaine de la microélectronique. Dans ce contexte, cette étude porte sur la mise au point d’un nouveau procédé de réalisation de couches minces d’oxysulfures de titane lithiés (LixTiOySz) pour une utilisation en tant qu’électrode positive dans une microbatterie Li-ion. Tout d’abord ce travail a débuté par la synthèse et la caractérisation de plusieurs compositions de sulfures de titane lithiés à l’état massif par réaction en solution de TiS2 ou TiS3 avec le n-butyllithium mais aussi par réaction à l’état solide à haute température entre les précurseurs TiS2, Li2S et Ti. Par la suite, des couches minces de LixTiOySz ont été déposées par pulvérisation cathodique radiofréquence à effet magnétron de cibles réalisées à partir des matériaux lithiés à l’état massif. La composition chimique de ces dépôts dépend de celle de la cible utilisée ce qui permet d’obtenir des couches plus ou moins riches en lithium et en soufre. En revanche, elles sont toutes très mal cristallisées, denses et elles ne présentent pas de structuration particulière. Enfin, les caractérisations électrochimiques des dépôts de LixTiOySz, à la fois en électrolyte liquide et solide, ont permis de mettre en évidence une corrélation entre leur composition chimique et leur comportement électrochimique. Globalement, ces dernières sont performantes, compatibles avec le solder-reflow et donc tout à fait intéressante pour l’application
Large-scale development of microbatteries for various applications such as back-up power sources for cell phone electronic components needs suitability with reflowing process that is often used in microelectronic. Here we report on the development of a new realization process to produce lithiated titanium oxysulfides (LixTiOySz) thin films for use as positive electrode in Li-ion microbatteries. First of all, this work began with synthesis and characterization of several lithiated titanium sulfides compounds prepared by reaction between TiS2 or TiS3 with n-butyllithium but also by solid state reaction at high temperature between TiS2, Li2S and Ti. Then, LixTiOySz thin films were sputtered by magnetron effect radio-frequency sputtering from targets made of lithiated materials previously synthesized. The chemical composition of those films depends on the target one and allows obtaining thin films with different lithium and sulfur contents. In contrast, they are all amorphous, dense and they don’t have a morphological structuration. Finally, electrochemical characterizations of thin films, both in liquid and solid electrolyte, have highlighted a correlation between their chemical composition and their electrochemical behavior. Taken as a whole, LixTiOySz thin films are powerful, suitable with reflowing process and thus very interesting for the application
39

Dougassa, Yvon. "Propriétés de transport et solubilité des gaz dans les électrolytes pour les batteries lithium-ion." Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4035/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lors du fonctionnement des batteries Li-ion, la dégradation progressive de l’électrolyte engendre la génération des gaz qui sont à l’origine du phénomène des surpressions dans ces dispositifs, et a pour conséquence des problèmes de sécurité. Cette thèse aborde l’étude de la solubilité des gaz issus des réactions de dégradation des électrolytes tels que le CO2, CH4, ou encore C2H4 dans plusieurs systèmes simples (solvants purs) ou complexes (mélanges binaires, ternaires et quaternaires avec sel de lithium), en fonction de la température, de la structure des solvants et des sels, ainsi que de leurs concentrations en solution. A cet effet, nous avons mesuré préalablement les propriétés volumétriques, de transport, ainsi que les pressions de vapeur des électrolytes formulés en fonction de la composition et de la température
The performance and the safety of a lithium-ion battery depend to a great extent on the stability of the electrolyte solution, because the high voltage of the battery may cause the decomposition of lithium salt or organic solvents, which limits then the battery lifetime. During these degradations, several gases are, generally, generated like the CO2, CO, CH4 and C2H4, which induce in fact several problems related to the pressure increase inside the sealed cell. The main objective of this PhD thesis is to understand the key thermodynamic parameters which drive the gas dissolution in classical solvents and electrolytes. For that, several pure solvents and electrolytes have been firstly investigated to determine their volumetric and transport properties, as well as, their vapour pressure as the function of temperature and composition
40

Gentili, Valentina. "Titanium dioxide nanomaterials as negative electrodes for rechargeable lithium-ion batteries." Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/2612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Titanium dioxide, TiO₂, materials have received much attention in recent years due to their potential use as intercalation negative electrodes for rechargeable lithium-ion batteries. The aim of this doctoral work was to synthesise and characterise new titanium dioxide nanomaterials and to investigate their electrochemical behaviour. Three morphologies of TiO₂(B) phase: micro-sized (bulk), nanowires and nanotubes, were synthesised. All three exhibit properties which make them excellent hosts for lithium intercalation. The nanotubes show the best capability of accommodating lithium in the structure, being able to host over one molar equivalent of lithium at low current rates (5 mA g⁻¹). The lithium insertion mechanism in the TiO₂(B) was studied using powder neutron diffraction. In addition, the nature of the irreversible capacity of the nanotubes was studied and ways of reducing it proposed. Nanotubes of another titanium dioxide polymorph, anatase, were synthesised and characterised. Their electrochemical performance was compared with that of commercially available counterparts with different morphologies and particle sizes. The interrelation between particle size/morphology and electrochemical properties has been established. The insertion of lithium which leads to phase variations was studied using in situ Raman microscopy and neutron powder diffraction. It has been demonstrated that doping of the TiO₂(B) nanotubes with vanadium improves their electronic conductivity which is essential for practical applications. Remarkably good electrochemical performance is exhibited by the 6% V-doped TiO₂(B) nanotubes.
41

Marino, Cyril. "Optimisation de nouvelles électrodes négatives énergétiques pour batteries lithium-ion : caractérisation des interfaces électrode/électrolyte." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20175/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce mémoire est consacré à l'étude de deux matériaux d'électrodes négatives pour batteries Li-ion : NiSb2 et TiSnSb. Ces matériaux de conversion possèdent des capacités presque deux fois supérieures à celle du graphite, actuellement utilisé, mais ils souffrent i) d'une faible cyclabilité causée par les variations volumiques caractéristiques de ce type d'électrode et ii) d'une grande perte de lithium irréversible lors de la 1ère insertion due à la réactivité de surface avec l'électrolyte. Les mécanismes réactionnels avec le lithium ont été étudiés en profondeur par diffraction des rayons X, spectrométrie Mössbauer (119Sn et 121Sb). Les études in situ et ex situ en spectroscopie d'absorption X ont permis d'identifier la formation de nanoparticules de métal de transition très réactives et dont l'instabilité est probablement à l'origine des phénomènes de relaxation observés dans l'électrode à l'état déchargé. L'amélioration des performances a été réalisée grâce à l'élaboration d'électrodes composites contenant des fibres de carbone et de la CMC. Cette formulation d'électrodes permet d'atteindre une cyclabilité de 250 cycles pour TiSnSb à régimes variables entre 4C et C. L'ajout de FEC dans l'électrolyte apparait également comme une solution pour augmenter la durée de vie des électrodes.L'interface électrode/électrolyte a été analysée par Résonance Magnétique Nucléaire, Spectroscopie Photoéletronique à rayonnement X et spectroscopie infrarouge. Li2CO3 est l'espèce majoritairement formée lors de la réduction de l'électrolyte en 1ère décharge (lié à la création de nouvelles surfaces lors de la réaction et à expansion volumique). Lors de la charge, une restructuration (ou fragmentation) de la SEI (couche de passivation) est probable à cause de la contraction de l'électrode. L'épaisseur de la couche de SEI à l'interface continue de croitre après 15 cycles
The thesis is devoted to the study of two negative electrode materials for Li-ion batteries: NiSb2 and TiSnSb. These conversion type materials have high capacities greater than graphite electrode used in current devices. However, these compounds suffer from i) a low cyclability caused by volumetric variations which are characteristic of this type of electrode, and ii) a loss of lithium (irreversible process) during the 1st insertion due to the reduction of the liquid electrolyte on the surface of active material.The mechanisms have been studied by X-Ray Diffraction, Mössbauer Spectroscopy (119Sn and 121Sb). The in situ and ex situ X-ray Absorption Spectroscopy analysis have allowed identifying both the formation of highly reactive Ti and Ni nanoparticles and a relaxation effect in the discharged electrode at 0V. The improvement of performances is based on the composite electrodes formulation using carbon fibers as conductive additive and Carboxymethyl cellulose CMC as binder. A cyclability of 250 cycles at C and 4C rate is reached for TiSnSb electrodes. The addition of Fluoro Ethylene Carbonate (FEC) in the electrolyte is another way to increase the life span of electrodes.The electrode/electrolyte interface has been analyzed by Nuclear Magnetic Resonance, X-ray Photoelectron Spectroscopy and Infrared Spectroscopy. During the discharge, among the species produced from the reduction of electrolyte Li2CO3 is in the majority because new surfaces are created (volumetric expansion). On charge, a fragmentation of the Solid Electrolyte Interphase (SEI) deposited on the surface of the active material grains is observed. Moreover, first XPS investigations have shown that the SEI thickness continuously increases on cycling
42

El, Khalifi Mohammed. "Étude théorique des matériaux d'électrode positive négative pour batteries Li-ion." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce mémoire est consacré à l'étude théorique des matériaux de cathode pour batteries Li-ion de structure olivine LiMPO4 (M=Mn, Fe, Co, Ni), des phases délithiées MPO4 et des phases mixtes LiFexMn1-xPO4, FexMn1-xPO4 et LiFexCo1-xPO4. La stabilité des phases magnétiques et les paramètres de maille théoriques ont été déterminés par la méthode des pseudopotentiels et comparés aux données expérimentales. Les structures électroniques ont été calculées par une méthode « tout électron » et analysées en termes d'hybridation des orbitales atomiques Ces résultats ont permis d'interpréter les spectres de photoélectrons X et d'absorption des rayons X, en particulier les modifications réversibles associées aux cycles de lithiation/délithiation. Les effets de la polarisation de spin et de la corrélation électronique ont été discutés. Enfin, le calcul des paramètres Mössbauer du 57Fe a montré qu'un accord quantitatif entre les résultats théoriques et les données expérimentales nécessitait la prise en compte de ces deux effets. Ce type de calcul a permis de prédire et d'expliquer que la transformation LiFePO4FePO4 s'accompagnait de la variation du gradient de champ électrique Vzz d'une extrémité à l'autre de l'échelle Mössbauer pour 57Fe
This thesis is devoted to the theoretical study of the cathode materials for Li-ion batteries with olivine structure LiMPO4 (M=Mn, Fe, Co, Ni), the delithiated phases MPO4 and the mixed phases LiFexMn1-xPO4, FexMn1-xPO4 and LiFexCo1-xPO4. The magnetic phase stability and lattice parameters were theoretically determined from pseudopotential calculations and the results have been compared with experiments. Electronic structures were obtained from all electron calculations and analyzed in terms of orbital hybridization. The results have been used for the interpretation of X-ray photoemission and X-ray absorption spectra, especially changes due to lithiation/delithiation cycles. Effects of spin polarization and electronic correlation on the electronic structures have been also discussed. It has been shown that ab initio calculations of the 57Fe Mössbauer parameters also require these two effects in order to obtain a quantitative agreement with experiments. Finally, it was found that LiFePO4FePO4 transformation involves a dramatic change of the electric field gradient VZZ from one end to the other of the 57Fe Mössbauer scale
43

Kršňák, Jiří. "Studium vlastností katodového materiálu pro Li-ion články v závislosti na struktuře aktivní vrstvy." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article deals with properties of cathode material of lithium-ion cells study in term of active layer dependence. Aim of the work is to get familiar with problematics of cathode material production and diagnostics and to compare different active layer production methods. The opening of the work is concentrating on rechargeable batteries, mainly lithium-ion batteries and their electrode materials. Practical part is describing method of cathode material production and its characteristics.
44

Khasawneh, Hussam Jihad. "ANALYSIS OF HEAT-SPREADING THERMAL MANAGEMENT SOLUTIONS FOR LITHIUM-ION BATTERIES." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313603207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ihrfors, Charlotte. "Binder-free oxide nanotube electrodes for high energy and power density 3D Li-ion microbatteries." Thesis, Uppsala universitet, Strukturkemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis covers synthesis and characterisation of TiO2 nanotubes and TiO2 / Li4Ti5O12 composite nanotubes. The aim was to build batteries with high areal capacity and good rate capability. TiO2 nanotubes were synthesized by two step anodization of titanium metal foil and the composite electrodes were synthesized through electrochemical lithiation of TiO2 nanotubes. To improve the battery performance the TiO2 nanotubes were annealed at 350 °C in air atmosphere, while the composite electrodes were annealed in argon at 550 °C. The longest TiO2 nanotubes were measured to 42.5 μm. The 40 μm long nanotubes displayed an areal capacity of 1.0 mAh/cm2 and a gravimetric capacity of 89 mAh/g. Nanotubes having a length of 10 μm had an areal capacity of 0.33 mAh/cm2 and a gravimetriccapacity of 130 mAh/g. When cycled at high rates, 10C, the capacity of the 40 μm nanotubes was 0.25 mAh/cm2, using a current density of 9.3 mA. The capacity of the 40 μm long nanotubes were higher than for the 10 μm long, but the increase was not proportional to the increase in length. A composite electrode was successfully synthesized and was found to have a capacity of 0.25 mAh/cm2 at a rate of C/5.
46

Portalis, Guillaume. "Compréhension des phénomènes de « cross-talking » au sein des accumulateurs Li-ion." Thesis, Sorbonne université, 2020. http://www.theses.fr/2020SORUS001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les mécanismes de dégradation dans les accumulateurs Li-ion lors de leur vieillissement sont nombreux. Parmi ceux-ci, un phénomène spécifique au système LiFePO4 (LFP)/graphite s’installe lors du fonctionnement en cyclage de la batterie : c’est le « cross-talking ». Le matériau LFP se dissout et les espèces Fe2+ migrent vers le graphite pour se réduire et former des dépôts de fer dans sa couche protectrice (SEI). Cette pollution s’accompagne d’une perte linéaire de capacité de stockage lors du cyclage et diminue donc la durée de vie de la batterie. La méthodologie utilisée dans ce travail repose sur le vieillissement accéléré d’accumulateurs LFP/graphite au format bouton et sur la caractérisation des matériaux et des processus électrochimiques par la technique non destructive de spectroscopie d’impédance électrochimique (SIE). Cette approche constitue une étape préliminaire de l’étude du vieillissement car il est nécessaire de comprendre les mécanismes en jeu au niveau de chaque électrode. Différentes études ont donc été réalisées, dans une première partie, afin d’attribuer les signaux enregistrés par SIE pour chaque matériau d’électrode à leurs caractéristiques physico-chimiques. Dans une seconde partie, le suivi des performances et des propriétés des accumulateurs lors de cyclages a été effectué. Grâce aux investigations préalablement menées par SIE, nous avons pu caractériser la détérioration des propriétés de l’électrode de graphite et de sa SEI par le cross-talking dès le début du cyclage de l’accumulateur. Nous avons aussi montré que ce phénomène est thermiquement activé avec des dégradations plus importantes à l’issu de cyclages à températures élevées
Many different degradation mechanisms can occur during the ageing of Li-ion batteries. Among them, a particular phenomenon takes place within the LiFePO4 (LFP)/graphite system during battery cycling operation, namely the “cross-talking”. The LFP material dissolves and the Fe2+ species migrate toward the graphite electrode and then reduce to form iron deposits in its protective layer (SEI). This poisoning entails a linear storage capacity fading during cycling and therefore reduces the life of the battery.The methodology used in this work bears on accelerated ageing tests carried on LFP/graphite coin cells and also relies on the characterization of the electrodes materials and the electrochemical processes thanks to a non-destructive technique, namely the electrochemical impedance spectroscopy (EIS). This approach is a preliminary step in the study of aging because it is necessary to understand the mechanisms at stake at each electrode.As a first step, several studies have been carried out in order to attribute the obtained EIS signals for each electrode material to their physico-chemical properties. In a second part, the performance and properties of accumulators during cycling were investigated. Thanks to the studies previously carried out by EIS, we were able to characterize the deterioration of the properties of the graphite electrode and its SEI due to the cross-talking from the early stage of the battery cycling. We have also shown that this phenomenon is thermally activated with greater degradation following high-temperature cycling
47

Dridi, Zrelli Yosra. "Électrochimie et spectroscopie Raman de matériaux d'électrode positive pour batteries Li-ion." Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00807008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans ce travail de thèse, la microspectrométrie Raman a été mise à profit pour décrire les changements structuraux induits par la réaction électrochimique d'insertion/désinsertion des ions lithium dans des composés de structure lamellaire LiCoO2 et cubique LiMn2O4 et LiNi0.4Mn1.6O4, utilisés comme électrodes positives dans les batteries Li-ion. L'étude du composé d'électrode LiCoO2 pendant le processus de charge permet de mettre en évidence une région biphasée où la phase initiale coexiste avec une nouvelle phase hexagonale caractérisée par une expansion du paramètre inter-feuillets de l'ordre de 3% et un affaiblissement de la liaison Co-O dans le plan des feuillets. Dans le cas de LiMn2O4, une nouvelle attribution du spectre Raman a pu être proposée. Pendant la charge à 4V, un mécanisme à trois phases (phase initiale LiMn2O4, phase intermédiaire, phase pauvre en lithium) est décrit par spectroscopie Raman alors que la diffraction des RX ne permet pas d'observer la phase intermédiaire dans nos conditions de mesure. L'étude de l'insertion électrochimique du lithium dans LiMn2O4 (région 3V), a permis de montrer pour la première fois par spectroscopie Raman la formation progressive d'une phase tétragonale de composition Li2Mn2O4 qui coexiste avec la phase cubique initiale et qui est pure en fin de décharge. La réversibilité de cette transition structurale a également été démontrée. Dans le cas du composé substitué au nickel, LiNi0.4Mn1.6O4, une attribution complète du spectre Raman est proposée pour la première fois. L'étude par diffraction des RX du matériau en fonction de l'état de charge et de décharge met en évidence une conservation de la structure cubique avec des variations modérées de paramètres de maille. Le spectre Raman présente quant à lui des variations très significatives qui rendent compte de la présence dans des proportions différentes des espèces redox impliquées dans le fonctionnement électrochimique (Mn4+, Mn3+, Ni2+, Ni3+, Ni4+). Une analyse spectrale par décompositions de bandes permet d'identifier et de quantifier les proportions relatives des différents couples redox du nickel. Une réversibilité complète de la signature Raman est observée en décharge. Une application concrète et originale de la spectroscopie Raman a consisté à étudier le mécanisme d'autodécharge qui est observé pour le matériau LiNi0.4Mn1.6O4 complètement chargé. L'évolution des spectres Raman permet de mettre en évidence une réduction rapide et quantitative des ions Ni4+ pendant les premières heures de séjour dans l'électrolyte, puis un processus plus lent de réduction des ions Ni3+. Enfin, pour la première fois également, l'insertion du lithium dans le composé LiNi0.4Mn1.6O4 a été explorée par microspectrométrie Raman et a permis notamment d'identifier l'empreinte Raman de la phase la plus réduite de symétrie tétragonale Li2Ni0.4Mn1.6O4. L'originalité de ce travail a été d'apporter un grand nombre de données Raman expérimentales sur des matériaux d'électrode performants fonctionnant à 4V. De nouvelles attributions ont pu être proposées pour les composés initiaux, et des données vibrationnelles inédites ont été fournies sur les composés formés en charge et en décharge. Dans certains cas, ces données ont permis, sur la base d'une analyse détaillée des spectres Raman par décompositions de bandes, de proposer un raisonnement quantitatif sur l'existence de phases ou d'espèces redox en mélange. Il conviendrait bien sûr de corroborer ces nouvelles données et attributions par des calculs théoriques ab initio capables de simuler les fréquences et les intensités des modes vibrationnels dans les structures hôtes et lithiées
48

Gao, Yifan. "Chemo-mechanics of alloy-based electrode materials for Li-ion batteries." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lithium alloys with metallic or semi-metallic elements are attractive candidate materials for the next-generation rechargeable Li-ion battery anodes, thanks to their large specific and volumetric capacities. The key challenge, however, has been the large volume changes, and the associated stress buildup and failure during cycling. The chemo-mechanics of alloy-based electrode materials entail interactions among diffusion, chemical reactions, plastic flow, and material property evolutions. In this study, a continuum theory of two-way coupling between diffusion and deformation is formulated and numerically implemented. Analyses based on this framework reveal three major conclusions. First, the stress-to-diffusion coupling in Li/Si is much stronger than what has been known in other electrode materials. Practically, since the beneficial effect of stress-enhanced diffusion is more pronounced at intermediate or higher concentrations, lower charging rates should be used during the initial stages of charging. Second, when plastic deformation and lithiation-induced softening take place, the effect of stress-enhanced diffusion is neutralized. Because the mechanical driving forces tend to retard diffusion when constraints are strong, even in terms of operational charging rate alone, Li/Si nano-particles are superior to Li/Si thin films or bulk materials. Third, the diffusion of the host atoms can lead to significant stress relaxation even when the stress levels are below the yield threshold of the material, a beneficial effect that can be leveraged to reduce stresses because the host diffusivity in Li/Si can be non-negligible at higher Li concentrations. A theory of coupled chemo-mechanical fracture driving forces is formulated in order to capture the effect of deformation-diffusion coupling and lithiation-induced softening on fracture. It is shown that under tensile loading, Li accumulates in front of crack tips, leading to an anti-shielding effect on the energy release rate. For a pre-cracked Li/Si thin-film electrode, it is found that the driving force for fracture is significantly lower when the electrode is operated at higher Li concentrations -- a result of more effective stress relaxation via global yielding. The results indicate that operation at higher concentrations is an effective means to minimize failure of thin-film Li/Si alloy electrodes.
49

Stjerndahl, Mårten. "Stability Phenomena in Novel Electrode Materials for Lithium-ion Batteries." Doctoral thesis, Uppsala University, Department of Materials Chemistry, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

Li-ion batteries are not only a technology for the future, they are indeed already the technology of choice for today’s mobile phones, laptops and cordless power tools. Their ability to provide high energy densities inexpensively and in a way which conforms to modern environmental standards is constantly opening up new markets for these batteries. To be able to maintain this trend, it is imperative that all issues which relate safety to performance be studied in the greatest detail. The surface chemistry of the electrode-electrolyte interfaces is intrinsically crucial to Li-ion battery performance and safety. Unfortunately, the reactions occurring at these interfaces are still poorly understood. The aim of this thesis is therefore to increase our understanding of the surface chemistries and stability phenomena at the electrode-electrolyte interfaces for three novel Li-ion battery electrode materials.

Photoelectron spectroscopy has been used to study the surface chemistry of the anode material AlSb and the cathode materials LiFePO4 and Li2FeSiO4. The cathode materials were both carbon-coated to improve inter-particle contact. The surface chemistry of these electrodes has been investigated in relation to their electrochemical performance and X-ray diffraction obtained structural results. Surface film formation and degradation reactions are also discussed.

For AlSb, it has been shown that most of the surface layer deposition occurs between 0.50 and 0.01 V vs. Li°/Li+ and that cycling performance improves when the lower cut-off potential of 0.50 V is used instead of 0.01 V. For both LiFePO4 and Li2FeSiO4, the surface layer has been found to be very thin and does not provide complete surface coverage. Li2CO3 was also found on the surface of Li2FeSiO4 on exposure to air; this was found to disappear from the surface in a PC-based electrolyte. These results combine to give the promise of good long-term cycling with increased performance and safety for all three electrode materials studied.

50

Mahdalová, Kateřina. "Vzájemné působení záporných elektrod a iontových kapalin." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-318179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work deals with electrolytes and ionic liquids for Li-ion batteries. Following interaction of electrolytes and ionic liquids to electrodes material. In the theoretical part attention is focused on the description of battery electrolytes and ionic liquids for lithium-ion batteries.

До бібліографії