Добірка наукової літератури з теми "Manufacturing methodology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Manufacturing methodology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Manufacturing methodology":

1

Ahmad, Mohammad Munir. "Assessment Methodology for Competitive Manufacturing." Procedia Manufacturing 17 (2018): 843–51. http://dx.doi.org/10.1016/j.promfg.2018.10.136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

RIBEIRO, J. F. FERREIRA, and B. PRADIN. "A methodology for cellular manufacturing design." International Journal of Production Research 31, no. 1 (January 1993): 235–50. http://dx.doi.org/10.1080/00207549308956723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Solodukhin, Ya A. "Design methodology for discrete manufacturing technologies." Cybernetics and Systems Analysis 34, no. 1 (January 1998): 97–109. http://dx.doi.org/10.1007/bf02911267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Doumeingts, Guy, Bruno Vallespir, Didier Darricau, and Michel Roboam. "Design methodology for advanced manufacturing systems." Computers in Industry 9, no. 4 (December 1987): 271–96. http://dx.doi.org/10.1016/0166-3615(87)90102-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rist, Thomas, Róbert Debnár, and Jozef Krišťák. "A Methodology for Cellular Manufacturing Design." Communications - Scientific letters of the University of Zilina 2, no. 1 (March 31, 2000): 39–44. http://dx.doi.org/10.26552/com.c.2000.1.39-44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

MORIWAKI, Toshimichi. "Special Issue on Research Methodology. Research and Methodology for Manufacturing Equipment." Journal of the Japan Society for Precision Engineering 60, no. 1 (1994): 31–34. http://dx.doi.org/10.2493/jjspe.60.31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barletta, I., C. Berlin, M. Despeisse, E. Van Voorthuysen, and B. Johansson. "A Methodology to Align Core Manufacturing Capabilities with Sustainable Manufacturing Strategies." Procedia CIRP 69 (2018): 242–47. http://dx.doi.org/10.1016/j.procir.2017.11.102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kamrani, Ali K., and Hamid R. Parsaei. "A methodology of forming manufacturing cells using manufacturing and design attributes." Computers & Industrial Engineering 23, no. 1-4 (November 1992): 73–76. http://dx.doi.org/10.1016/0360-8352(92)90066-s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sim, Hyun Sik. "Hierarchical Factor Analysis Methodology for Intelligent Manufacturing." Complexity 2021 (June 8, 2021): 1–13. http://dx.doi.org/10.1155/2021/5593374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To realize intelligent manufacturing, a controllable factory must be built, and manufacturing competitiveness must be achieved through the improvement of product quality and yield. The yield in the micromanufacturing process is gaining importance as a management factor used in deciding the production cost and product quality as product functions becomes more sophisticated. Because the micromanufacturing process involves manufacturing products through multiple steps, it is difficult to determine the process or equipment that has encountered failure, which can lead to difficulty in securing high yields. This study presents a structural model for building a factory integration system to analyze big data at manufacturing sites and a hierarchical factor analysis methodology to increase product yield and quality in an intelligent manufacturing environment. To improve the product yield, it is necessary to analyze the fault factors that cause low yields and locate and manage the critical processes and equipment factors that affect these fault factors. However, yield management is a difficult problem because there exists a correlation between equipment, and in the sequence of process equipment that the lot passed through, the downstream and the upstream cause complex faults. This study used data-mining techniques to identify suspected processes and equipment that affect the yield of products in the manufacturing process and to analyze the key factors of the equipment. Ultimately, we propose a methodology to find the key factors of the suspected process and equipment that directly affect the implementation of the intelligent manufacturing scheme and the yield of the product. To verify the effect of key parameters of critical processes and equipment on the yield, the proposed methodology was applied to actual manufacturing sites.
10

Noureddine, Myriam, and Patrick Martineau. "Towards a Modeling Methodology of Manufacturing Systems." IFAC Proceedings Volumes 33, no. 17 (July 2000): 29–34. http://dx.doi.org/10.1016/s1474-6670(17)39370-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Manufacturing methodology":

1

Nahavandi, Saeid. "A control methodology for automated manufacturing." Thesis, Durham University, 1991. http://etheses.dur.ac.uk/6067/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The application of computers in the manufacturing industry has substantially altered the control procedures used to program a whole manufacturing process. Currently, one the problems which automated manufacturing systems are experiencing is the lack of a good overall control system. The subject of this research has been centred on the identification of the problems involved in current methods of control and their advantages and disadvantages in an automated manufacturing system. As a result, a different type of control system has been proposed which distributes both the control and the decision making. This control model is an hybrid of hierarchical and hierarchical control systems which takes advantage of the best points offered by both types of control structures. The Durham FMS rig has been used as a testbed for an automated manufacturing system to which the hybrid control system has been applied. The implementation of this control system would not have been possible without the design and development of a System Integration Tool (SIT). The system is capable of real-time scheduling of the system activities. Activities within the system are monitored in real-time and a recording of the system events is available, which allows the user to analyse the activities of the system off-line. A network independent communication technique was developed for the Durham FMS which allowed the manufacturing cells to exercise peer-to-peer communication. The SIT also allowed the integration of equipment from different vendors in the FMS.
2

Sandell, Malin, and Saga Fors. "Design for Additive Manufacturing - A methodology." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive manufacturing (AM), sometimes called 3D-printing is a group of manufacturing technologies that build up a product using a layer by layer technique and provides new ways of manufacturing parts and products. The Company in this thesis wants to make AM a tool in their manufacturing toolbox. When introducing this manufacturing method, new processes and methods have to be developed. The purpose of this thesis is to develop a methodology that will help the designers when identifying parts that should be manufactured using AM. The development of this methodology has followed the principles of service design which is a holistic interdisciplinary approach where methods from different disciplines are combined to create benefits to the end user experience. Before the development process, a large background study was performed to gather detailed information within the area of AM. The methodology concept was then developed through five iterative cycles where methods such as interviews, trigger material, questionnaire, case study and stakeholder mapping were used. The thesis resulted in an AM handbook with information regarding the technology and a five step methodology for choosing when and why to use AM as a manufacturing method. Step one is to identify the AM potential in a product which is based on complexity, customization and production volume. Step two is to specify requirements of the products, this can be surface finish, tolerances etc. The third step in the design methodology is part screening, which is the making of the final decision about if the product should be printed and if it can be printed. The fourth step is to choose an AM technology based on the requirements specified in step two by providing information about the technologies’ restrictions and possibilities. Step five in this methodology is the design of AM products and provides simple design guidelines. It has been shown that a dynamic task is best solved through working with dynamic methods, therefore service design approach is a flexible and good fit for this thesis. This design methodology is only a part of the AM-area and needs to be supplemented with other knowledge within the area. The first step after implementing this handbook is to investigate how the organization and business is affected when implementing AM.
Additiv tillverkning (AM), även kallat 3D-printing, är benämningen på en grupp tillverkningstekniker där en produkt byggs lager för lager. Denna masteruppsats har utförts i samarbete med ett svenskt industriföretag som levererar lösningar inom tillverkningsindustrin, i rapporten kallat Företaget. Genom att utveckla nya designprocesser och metoder vill Företaget inkludera AM i sin tillverkningsstrategi. Syftet med detta masterexamensarbete var att utveckla en metodik för hur urval och utveckling av produkter anpassade för AM ska ske. Utvecklingen av metodiken följer principerna för tjänstedesign, vilket innebär ett holistiskt tvärvetenskapligt arbetssätt där metoder från olika discipliner kombineras för att skapa en positiv upplevelse för slutanvändaren. Innan utvecklingsprocessens start gjordes en stor bakgrundsstudie för att införskaffa kunskaper kring AM. Därefter utvecklades en metod genom fem iterativa cykler där metoder som intervjuer, triggermaterial, frågeformulär, fallstudier och stakeholdermapping användes. Masteruppsatsen resulterade i en handbok med information kring teknikerna och en metodik i fem steg för att välja när och varför AM bör användas som tillverkningsmetod. Första steget är att identifiera AM potentialen hos en produkt, vilket baseras på komplexitet, kundanpassning och produktionsvolym. I steg två ska produktkrav specificeras, exempel på sådana krav är ytfinhet och toleranser. Tredje steget i metoden handlar om en produkt-undersökning under vilken ett slutgiltigt beslut fattas angående om produkten kan och bör tillverkas. I fjärde steget sker valet av teknik baserat på de produktkrav som specificerats i steg två, genom att information ges angående teknikens möjligheter och begränsningar. Femte steget i metoden handlar om designen av AM produkter och förser konstruktören med enklare riktlinjer för designen. Utveckling av en metodik kräver ett dynamiskt arbetssätt och principerna inom service design visade sig passa bra för detta projekt. Det visade sig också att den resulterade metodik behöver kompletteras med information i framtiden. Det behövs även fastställas tydliga mål för AM i företaget och vilket syfte implementeringen av denna nya process innebär
3

Sharifi, Hossein. "A methodology for assisting manufacturing organisations to implement agile manufacturing." Thesis, University of Liverpool, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gildenblatt, Robbie B. "A Methodology Incorporating Manufacturing System Capacity in Manufacturing Cost Estimation." Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1357314439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Herron, Colin. "A methodology to disseminate selected lean manufacturing tools into general manufacturing." Thesis, University of Newcastle Upon Tyne, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dasu, Sriram. "Manufacturing decisions under uncertainty : models and methodology." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/26804.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Carrus, Justin William. "Curved brick design methodology and manufacturing system." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 83).
For many people in developing contexts, the financial expense of construction can be overwhelming. There is a need for more appropriate technologies for low-cost construction. This thesis presents a concise review of construction technologies and then offers a design methodology for creating curved, interlocking brick geometries that can be produced more accurately than existing bricks. The increase in dimensional accuracy is able to dramatically reduce the cost of construction in developing areas. A design is then offered for a low-cost press for these brick geometries that can be produced by local fabricators in developing areas.
by Justin William Carrus.
S.M.
8

Benkamoun, Nadège. "Systemic design methodology for changeable manufacturing systems." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22723/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les systèmes de production sont devenus des systèmes de grande échelle dont la complexité est accentuée par des contextes marqués de plus en plus par le changement. La capacité des systèmes a répondre au changement – appelée également changea-bilité – est reconnue comme étant une propriété essentielle pour leur cycle de vie, aussi bien dans le domaine des systèmes de production que dans le domaine de la conception en ingénierie. Au regard de la complexité des systèmes de production changeables, la méthodologie proposée par cette thèse a pour objectif de supporter la change-abilité dans la conception en souscrivant au domaine de l’ingénierie des systèmes. La première contribution est un formalisme pour la modélisation des systèmes changeables étayé d’après les principes de la conception systémique. Les concepts de flexibilité et de reconfigurabilité ne sont ici pas limités à des composants organiques du système, mais englobent l’ensemble des artefacts d’ingénierie dans le domaine du problème (exigences) et le domaine de la solution (blocs structurels). La deuxième contribution est une méthodologie pour la conception et la gestion des systèmes changeables. Elle repose sur un modèle du cycle de vie des systèmes changeables où des phases de conception des capacités de change-abilité du système s’alternent avec des phases de reconception tirant bénéfice de ces capacités existantes. Ces processus complémentaires garantissent la cohérence entre les décisions de conception pour intégrer et réutiliser des capacités de change-abilité, augmentant alors leurs potentiels tout au long du cycle de vie des systèmes complexes. Les concepts et les méthodologies développés ont été validés par des projets de conception de systèmes de production chez un équipementier automobile. Enfin, des développements possibles d’outils d’aide à la conception supportant la méthodologie proposée sont discutés
Manufacturing systems have become large scale systems with increasing complexity particularly magnified by highly changing contexts. The system’s ability to cope with change (i.e. changeability) is recognized as a critical lifecycle property in the manufacturing system and engineering design domains. Given the complexity of changeable manufacturing systems, the proposed methodology of this dissertation aims to support design of changeability in subscribing to the domain of system engineering. The first contribution is a formalism for modeling changeability in a systemic way. Flexibility and reconfigurability paradigms are not limited to physical components of the system, but to the overall system architecture that encompasses all engineering artifacts relating to the designed system in both the requirements and physical solution domains. The second contribution is the methodology for the design and the management of changeability. The methodology utilizes a lifecycle model for changeable systems, in which design for changeability phases alternate with re-design phases that embrace and benefit from the existing changeability capabilities. These complementary processes allow a better consistency between design decisions to embed and reuse changeability, increasing changeability potential during the lifecycle of complex systems. The developed concepts and methodologies are validated in manufacturing system design projects from an automotive supplier. Finally, perspectives on design tools assisting the proposed methodology are discussed
9

Tang, Ying Kit. "A risk analysis methodology for micro/nano manufacturing." Thesis, University of Greenwich, 2012. http://gala.gre.ac.uk/8054/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This research concerns the development of a risk analysis and mitigation methodology for assessing the impact of uncertainties and complexity of the design requirements arising in new process and product developments in micro and nano manufacturing. The risk analysis methodology integrates different computational approaches for process and product analysis, including the reduced order modelling using design of experiments, risk analysis using sampling-based and analytical methods and optimisation techniques. The integrated risk analysis and optimisation methodology is applied to two applications: (1) the FIB sputtering process control, and (2) a flip chip design. Three different FIB processes using different ion sources were investigated in order to evaluate their process performance with respects to different process parameter uncertainties. A critical comparison of the process capability against the specification limits of different processes was studied. As parts of the research, a new modified computational model is developed for a material sputtering process using focused ion beam (FIB). This model allows the analysis of micro- and nano-structures shape with the FIB machine controlled through multiple beam scans and different beam overlapping. The FIB model related studies also address the modelling requirements for including material re-deposition effects that occur during FIB milling. The model has been validated using an experimental test case. Good agreement is observed between the analytical shape using the model and the actual experiment. The validated model enhances the accuracy of the dwell time prediction. This approach overcomes the dependence of a trial-and-error approach of the process control in nano-manufacturing industry. The proposed methodology is also used to address a design problem of a flip chip design. A novel method for the evaluation of the environmental impact of the flip chip design in a multi-disciplinary optimisation problem is proposed. The goal is to address materials constraints due to environmental regulations and to handle different types of requirements such as the reliability and cost. An optimal flip chip design reliability function is identified. The approach allows electronics manufacturers to consider the environmental impact amongst different design alternatives at an early stage of the design of the product before any real prototyping in order to reduce the total manufacturing life cycle.
10

Kagioglou, Michail. "Adapting manufacturing project processes into construction : a methodology." Thesis, University of Salford, 1999. http://usir.salford.ac.uk/26747/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The need for improvements in the construction industry in the UK has been reported through a succession of Government and Institutional reports, illustrating the problem areas. The area of project processes in manufacturing has been found to have great similarities with its equivalent (design and construction) in the construction industry. This has led to co-ordinated efforts in improving the construction industry project processes by considering 'Construction as a Manufacturing Process.' Those efforts concentrated in adapting the manufacturing project process elements into construction. However, the methodology needed to adapt those processes has not been considered. This was presented as an opportunity to develop an original and novel methodology for the Adaptation of MAnufacturing Project Processes Into Construction (AMaPPIC). The aforementioned need combined with the author's experience in both the manufacturing and construction industries were the catalysts for the formulation of the research. A case study research strategy was used to undertake the research, for the discovery, building and testing of the AMaPPIC methodology. A number of research methods were employed to collect data for the research. The necessary literature in business process management, manufacturing NPD (new product development), and design and construction was combined with a number of informing case studies for the discovery and building of the AMaPPIC methodology. The methodology consists of 14 stages, which consider the identification and demonstration of a need for adapting project processes into construction to the final 'existence' and continuous improvement of the adapted process within an organisation. The GPT case study was used to test the AMaPPIC methodology in a 'live' project within the company. The results of the case study were used to further define and improve the methodology by examining its applicability in the Poole project. The resulting AMaPPIC methodology provides an original, prototypical solution to adapting manufacturing project processes into construction.

Книги з теми "Manufacturing methodology":

1

Miller, Ros. A methodology for manufacturing strategy formulation. Uxbridge: Brunel University, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fine, Charles H. Manufacturing strategy: A methodology and an illustration. Cambridge, Mass: Massachusetts Institute of Technology, Alfred P. Sloan School of Management, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Eppinger, Steven Daniel. A methodology for manufacturing process signature analysis. Cambridge, Mass: Alfred P. Sloan School of Management, Massachusetts Institute of Technology, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bussmann, Stefan. Multiagent systems for manufacturing control: A design methodology. Berlin: Springer, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bussmann, S. Multiagent systems for manufacturing control: A design methodology. Berlin: Springer, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Canada, Statistics. Measuring entry and exit in Canadian manufacturing: methodology. Ottawa: Statistics Canada, Analytical Studies Branch, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bussmann, Stefan. Multiagent Systems for Manufacturing Control: A Design Methodology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Botti, Vicente. ANEMONA: A multi-agent methodology for holonic manufacturing systems. London: Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gu, Peihua. Concurrent engineering: Methodology and applications. Amsterdam: Elsevier, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vignais, Pierre. Discovering life, manufacturing life: How the experimental method shaped life sciences. Dordrecht [the Netherlands]: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Manufacturing methodology":

1

Hill, Terry. "Focus: Methodology." In Manufacturing Strategy, 207–16. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13724-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hill, Terry. "Focused Manufacturing — Methodology." In Manufacturing Strategy, 178–89. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-14018-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Díaz-Reza, José Roberto, Jorge Luis García Alcaraz, and Adrián Salvador Morales García. "Methodology." In Best Practices in Lean Manufacturing, 33–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97752-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Teitel, Simón. "Methodology." In Technology and Skills in Zimbabwe’s Manufacturing, 44–51. London: Palgrave Macmillan UK, 2000. http://dx.doi.org/10.1057/9780230514027_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hill, Terry. "Developing a manufacturing strategy: methodology." In Manufacturing Strategy, 106–30. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13724-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hill, Terry. "Developing a Manufacturing Strategy — Methodology." In Manufacturing Strategy, 88–110. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-14018-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Officer, Lawrence H. "Methodology." In Two Centuries of Compensation for U.S. Production Workers in Manufacturing, 1–14. New York: Palgrave Macmillan US, 2009. http://dx.doi.org/10.1057/9780230621305_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Szczepaniak, Marta, and Justyna Trojanowska. "Methodology of Manufacturing Process Analysis." In Lecture Notes in Mechanical Engineering, 281–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18789-7_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Despeisse, M., P. D. Ball, and S. Evans. "Modelling and Tactics for Sustainable Manufacturing: An Improvement Methodology." In Sustainable Manufacturing, 9–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27290-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bussmann, Stefan, Nicholas R. Jennings, and Michael Wooldridge. "Evaluation of the DACS Methodology." In Multiagent Systems for Manufacturing Control, 187–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08872-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Manufacturing methodology":

1

Tupa, Jiri, Ales Hamacek, Jan Reboun, Vlastimil Skocil, and Frantisek Steiner. "Methodology for Manufacturing Improvement." In 2006 29th International Spring Seminar on Electronics Technology. IEEE, 2006. http://dx.doi.org/10.1109/isse.2006.365356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Waldo, Whitson G. "Methodology for optimizing transistor performance." In Microelectronic Manufacturing, edited by Mark Rodder, Toshiaki Tsuchiya, David Burnett, and Dirk Wristers. SPIE, 1997. http://dx.doi.org/10.1117/12.284610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tai, Wei-Herng, Jiann-Kwang Wang, Kuo-Cheng Lin, and Yi-Chin Hsu. "New methodology for dynamic lot dispatching." In Microelectronic Manufacturing, edited by Barbara Vasquez and Hisao Kawasaki. SPIE, 1994. http://dx.doi.org/10.1117/12.186762.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kawlra, Raj, and Walton Hancock. "Tolerance Allocation Methodology for Manufacturing." In Reliability, Maintainability, Supportability & Logistics (Rmsl) Conference & Workshop. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/961274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Laidler, David W., Philippe Leray, David A. Crow, and Keith E. Roberts. "Knowledge-based APC methodology for overlay control." In Advanced Microelectronic Manufacturing, edited by Matt Hankinson and Christopher P. Ausschnitt. SPIE, 2003. http://dx.doi.org/10.1117/12.485308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Krott, Loren C. "Methodology for identification of process-induced electrically active defects." In Microelectronic Manufacturing, edited by Barbara Vasquez and Hisao Kawasaki. SPIE, 1994. http://dx.doi.org/10.1117/12.186752.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, David, and Yves Ducq. "A Methodology for Manufacturing Servitization Engineering." In 2015 International Conference on Service Science (ICSS). IEEE, 2015. http://dx.doi.org/10.1109/icss.2015.43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lau, Christian, Gage Hills, Mindy D. Bishop, Tathagata Srimani, Rebecca Ho, Pritpal Kanhaiya, Andrew Yu, Aya Amer, Minghan Chao, and Max M. Shulaker. "Manufacturing Methodology for Carbon Nanotube Electronics." In 2020 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA). IEEE, 2020. http://dx.doi.org/10.1109/vlsi-tsa48913.2020.9203734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Simon, Paul, Kees Veelenturf, Paul van Adrichem, Jeroen de Jong, Stanley Sprij, and Wojciech P. Maly. "Layout-based manufacturability assessment and yield prediction methodology." In Microelectronic Manufacturing Technologies, edited by Kostas Amberiadis, Gudrun Kissinger, Katsuya Okumura, Seshu Pabbisetty, and Larg H. Weiland. SPIE, 1999. http://dx.doi.org/10.1117/12.346928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mehrotra, Manoj, Jerry C. Hu, Mahalingam Nandakumar, Amitava Chatterjee, Mark Rodder та Ih-Chin Chen. "New methodology of simulating pocket-implanted sub-0.18-μm CMOS". У Microelectronic Manufacturing, редактори David Burnett, Dirk Wristers та Toshiaki Tsuchiya. SPIE, 1998. http://dx.doi.org/10.1117/12.323980.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Manufacturing methodology":

1

Whisnant, R. A. Cost analysis methodology: Photovoltaic Manufacturing Technology Project. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/7075849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zimmerman, Timothy A. Manufacturing profile implementation methodology for a robotic workcell. Gaithersburg, MD: National Institute of Standards and Technology, May 2019. http://dx.doi.org/10.6028/nist.ir.8227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Narayanan, Anantha, David Lechevalier, KC Morris, and Sudarsan Rachuri. A methodology for handling standards terminology for sustainable manufacturing. National Institute of Standards and Technology, October 2013. http://dx.doi.org/10.6028/nist.ir.7965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Belzer, D. B., D. E. Serot, and M. A. Kellogg. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries - Volume 1: Concepts and Methodology. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/5887695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Whisnant, Richard A. Cost Analysis Methodology Photovoltaic Manufacturing Technology Project, Annual Subcontract Report, 11 March 1991 - 11 November 1991. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10175305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Agu, Monica, Zita Ekeocha, Stephen Robert Byrn, and Kari L. Clase. The Impact of Mentoring as a GMP Capability Building Tool in The Pharmaceutical Manufacturing Industry in Nigeria. Purdue University, December 2012. http://dx.doi.org/10.5703/1288284317447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Good Manufacturing Practices (GMP), a component of Pharmaceutical Quality Systems, is aimed primarily at managing and minimizing the risks inherent in pharmaceutical manufacture to ensure the quality, safety and efficacy of products. Provision of adequate number of personnel with the necessary qualifications/practical experience and their continuous training and evaluation of effectiveness of the training is the responsibility of the manufacturer. (World Health Organization [WHO], 2014; International Organization for Standardization [ISO], 2015). The classroom method of training that has been used for GMP capacity building in the pharmaceutical manufacturing industry in Nigeria over the years, delivered by experts from stringently regulated markets, have not yielded commensurate improvement in the Quality Management Systems (QMS) in the industry. It is necessary and long over-due to explore an alternative training method that has a track record of success in other sectors. A lot of studies carried out on mentoring as a development tool in several fields such as academia, medicine, business, research etc., reported positive outcomes. The aim of this study was to explore mentoring as an alternative GMP training method in the pharmaceutical manufacturing industry in Nigeria. Specifically, the aim of this study was to evaluate the impact of mentoring as a GMP capability building tool in the pharmaceutical manufacturing industry in Nigeria, with focus on GMP documentations in XYZ pharmaceutical manufacturing company located in South-Western region of Nigeria. The methodology comprised gap assessment of GMP documentation of XYZ company to generate current state data, development of training materials based on the identified gaps and use of the training materials for the mentoring sessions. The outcome of the study was outstanding as gap assessment identified the areas of need that enabled development efforts to be targeted at these areas, unlike generic classroom training. The mentees’ acceptance of the mentoring support was evident by their request for additional training in some other areas related to the microbiology operations that were not covered in the gap assessment. This result portrays mentoring as a promising tool for GMP capacity building, but more structured studies need to be conducted in this area to generate results that can be generalized.
7

Chappell, Mark, Wu-Sheng Shih, Cynthia Price, Rishi Patel, Daniel Janzen, John Bledsoe, Kay Mangelson, et al. Environmental life cycle assessment on CNTRENE® 1030 material and CNT based sensors. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This report details a study investigating the environmental impacts associated with the development and manufacturing of carbon nanotube (CNT)–based ink (called CNTRENE 1030 material) and novel CNT temperature, flex, and moisture sensors. Undertaken by a private-public partnership involving Brewer Science (Rolla, Missouri), Jordan Valley Innovation Center of Missouri State University (Springfield, Missouri), and the US Army Engineer Research and Development Center (Vicksburg, Mississippi), this work demonstrates the environmental life cycle assessment (ELCA) methodology as a diagnostic tool to pinpoint the particular processes and materials posing the greatest environmental impact associated with the manufacture of the CNTRENE material and CNT-based sensor devices. Additionally, ELCA tracked the degree to which optimizing the device manufacturing process for full production also changed its predicted marginal environmental impacts.
8

O'Donnell, Kevin, and Anne Greene. A Risk Management Solution Designed to Facilitate Risk-Based Qualification, Validation, and Change Control Activities within GMP and Pharmaceutical Regulatory Compliance Environments in the EU—Part II. Institute of Validation Technology, July 2006. http://dx.doi.org/10.1080/21506590.wp7142006agko-rmsdii.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
highlight the need for patient-focused and value-adding qualification, validation, and change control programmes for manufacturing and regulating medicinal products in the EU, which are cost-effective and in-line with current regulatory requirements and guidance. To this end, a formal risk management solution was presented that seeks to demonstrate, in a practical way, how Regulators and Industry in the EU may achieve these goals. This solution represents a formal and rigorous approach to risk management, offering a scientific and practical means for determining and managing, on a risk basis, the scope and extent of qualification and validation, and the likely impact of changes. Based on a ten-step, systematic process, this approach offers a ready-to-use and documented risk management methodology for these activities. This tool is not intended for use in all situations, or to address all risk areas or concerns encountered in GMP and Regulatory Compliance environments. Rather, its use should be commensurate with the complexity and/or criticality of the issue to be addressed, and in many instances, and in-line with ICH Q9 principles, a more informal approach to risk management may be more useful, and indeed proportionate.
9

Roye, Thorsten. Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0. SAE International, August 2021. http://dx.doi.org/10.4271/epr2021018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Increased production rates and cost reduction are affecting manufacturing in all sectors of the mobility industry. One enabling methodology that could achieve these goals in the burgeoning “Industry 4.0” environment is the deterministic assembly (DA) approach. The DA approach is defined as an optimized assembly process; it always forms the same final structure and has a strong link to design-for-assembly and design-for-automation methodologies. It also looks at the whole supply chain, enabling drastic savings at the original equipment manufacturer (OEM) level by reducing recurring costs and lead time. Within Industry 4.0, DA will be required mainly for the aerospace and the space industry, but serves as an interesting approach for other industries assembling large and/or complex components. In its entirety, the DA approach connects an entire supply chain—from part manufacturing at an elementary level to an OEM’s final assembly line level. Addressing the whole process of aircraft design and manufacturing is necessary to develop further collaboration models between OEMs and the supply chain, including addressing the most pressing technology challenges. Since all parts aggregate at the OEM level, the OEM—as an integrator of all these single parts—needs special end-to-end methodologies to drastically decrease cost and lead time. This holistic approach can be considered in part design as well (in the design-for-automation and design-for-assembly philosophy). This allows for quicker assembly at the OEM level, such as “part-to-part” or “hole-to-hole” approaches, versus traditional, classical assembly methods like manual measurement or measurement-assisted assembly. In addition, it can increase flexibility regarding rate changes in production (such as those due to pandemic- or climate-related environmental challenges). The standardization and harmonization of these areas would help all industries and designers to have a deterministic approach with an end-to-end concept. Simulations can easily compare possible production and assembly steps with different impacts on local and global tolerances. Global measurement feedback needs high-accuracy turnkey solutions, which are very costly and inflexible. The goal of standardization would be to use Industry 4.0 feedback and features, as well as to define several building blocks of the DA approach as a one-way assembly (also known as one-up assembly, or “OUA”), false one-way assembly, “Jig-as-Master,” etc., up to the hole-to-hole assembly approach. The evolution of these assembly principles and the link to simulation approaches are undefined and unsolved domains; they are discussed in this report. They must be discussed in greater depth with aims of (first) clarifying the scope of the industry-wide alignment needs and (second) prioritizing the issues requiring standardization. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the challenges they identify or close any topic to further scrutiny.

До бібліографії