Добірка наукової літератури з теми "Méthode de Newton régularisé"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Méthode de Newton régularisé".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Méthode de Newton régularisé"
Alart, Par P. "Méthode de Newton généralisée en mécanique du contact." Journal de Mathématiques Pures et Appliquées 76, no. 1 (January 1997): 83–108. http://dx.doi.org/10.1016/s0021-7824(97)89946-1.
Повний текст джерелаDumont, Thierry. "Une méthode Quasi-Newton pour le calcul d'écoulements viscoélastiques." ESAIM: Proceedings 2 (1997): 173–81. http://dx.doi.org/10.1051/proc:1997010.
Повний текст джерелаPotvin, Patrice, and Marcel Thouin. "Étude qualitative d’évolutions conceptuelles en contexte d’explorations libres en physique-mécanique au secondaire." Articles 29, no. 3 (October 6, 2005): 525–44. http://dx.doi.org/10.7202/011402ar.
Повний текст джерелаHilali, Youssef, Bouazza Braikat, Hassane Lahmam, and Noureddine Damil. "An implicit algorithm for the dynamic study of nonlinear vibration of spur gear system with backlash." Mechanics & Industry 19, no. 3 (2018): 310. http://dx.doi.org/10.1051/meca/2017006.
Повний текст джерелаEsmez, Laurent. "Le rôle de Bacon et de Newton dans l’élaboration de la méthode de Nietzsche." Nietzsche-Studien 44, no. 1 (January 27, 2015). http://dx.doi.org/10.1515/nietzstu-2015-0128.
Повний текст джерелаДисертації з теми "Méthode de Newton régularisé"
Nguyen, Van Vu. "Méthode de Newton revisitée pour les équations généralisées." Thesis, Limoges, 2016. http://www.theses.fr/2016LIMO0066.
Повний текст джерелаThis thesis is devoted to present some results in the scope of Newton-type methods applied for inclusion involving set-valued mappings. In the first part, we follow the Kantorovich's and/or Smale's approaches to study the convergence of Josephy-Newton method for generalized equation (GE) in Banach spaces. Such results can be viewed as an extension of the classical Kantorovich's theorem as well as Smale's (alpha, gamma)-theory which were stated for nonlinear equations. The second part develops an algorithm using set-valued differentiation in order to solve GE. We proved that, under some suitable conditions imposed on the input data and the choice of the starting point, the algorithm produces a sequence converging at least linearly to a solution of considering GE. Moreover, by imposing some stronger assumptions related to the approximation of set-valued part, the proposed method converges locally superlinearly. The last part deals with inclusions involving maps defined on Riemannian manifolds whose values belong to an Euclidean space. Using the relationship between the geometric structure of manifolds and the retraction maps, we show that, our scheme converges locally superlinearly to a solution of the initial problem. With some more regularity assumptions on the data involved in the problem, the quadratic convergence (local and semi-local) can be ensured
Abbas, Boushra. "Méthode de Newton régularisée pour les inclusions monotones structurées : étude des dynamiques et algorithmes associés." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS250/document.
Повний текст джерелаThis thesis is devoted to finding zeroes of structured maximal monotone operators, by using discrete and continuous dissipative dynamical systems. The solutions are obtained as the limits of trajectories when the time t tends towards infinity.We pay special attention to the dynamics that are obtained by Levenberg-Marquardt regularization of Newton's method. We also revisit the approaches based on some related dynamical systems.In a Hilbert framework, we are interested in finding zeroes of a structured maximal monotone operator M = A + B, where A is a general maximal monotone operator, and B is monotone and locally Lipschitz continuous. We introduce discrete and continuous dynamical systems which are linked to Newton's method. They involve separately B and the resolvents of A, and are designed to splitting methods. Based on the Minty representation of A as a Lipschitz manifold, we show that these dynamics can be formulated as differential systems, which are relevant to the Cauchy-Lipschitz theorem. We focus on the particular case where A is the subdifferential of a convex lower semicontinuous proper function, and B is the gradient of a convex, continuously differentiable function. We study the asymptotic behavior of trajectories. When the regularization parameter does not tend to zero too rapidly, and by using Lyapunov asymptotic analysis, we show the convergence of trajectories. Besides, we show the Lipschitz continuous dependence of the solution with respect to the regularization term.Then we extend our study by considering various classes of dynamical systems which aim at solving inclusions governed by structured monotone operators M = $partialPhi$+ B, where $partialPhi$ is the subdifferential of a convex lower semicontinuous function, and B is a monotone cocoercive operator. By a Lyapunov analysis, we show the convergence properties of the orbits of these systems. The time discretization of these dynamics gives various forward-backward splittingmethods (some new).Finally, we focus on the study of the asymptotic behavior of trajectories of the regularized Newton dynamics, in which we introduce an additional vanishing Tikhonov-like viscosity term.We thus obtain the asymptotic selection of the solution of minimal norm
Ferzly, Joëlle. "Adaptive inexact smoothing Newton method for nonlinear systems with complementarity constraints. Application to a compositional multiphase flow in porous media." Thesis, Sorbonne université, 2022. http://www.theses.fr/2022SORUS376.
Повний текст джерелаWe consider variational inequalities written in the form of partial differential equations with nonlinear complementarity constraints. The discretization of such problems leads to nonlinear non-differentiable discrete systems that can be solved employing an iterative linearization method of semismooth type like, e.g., the Newton-min algorithm. Our goal in this thesis is to conceive a simple smoothing approach that involves approximating the problem as a system of nonlinear smooth (differentiable) equations. In this setting, a direct application of classical Newton-type methods is possible. We construct a posteriori error estimates that lie at the foundation of an adaptive inexact smoothing Newton algorithm for a solution of the considered problems. We first present the strategy in a discrete framework. Then, we develop the method for the model problem of contact between two membranes. Last, an application to a compositional multiphase flow industrial model is introduced. In Chapter 1, we are concerned about nonlinear algebraic systems with complementarity constraints arising from numerical discretizations of PDEs with nonlinear complementarity problems. We produce a smooth approximation of a nonsmooth function, reformulating the complementarity conditions. The ensuing nonlinear system is solved employing the Newton method, together with an iterative linear algebraic solver to approximately solve the linear system. We establish an upper bound on the considered system’s residual and design a posteriori error estimators identifying the smoothing, linearization, and algebraic error components. These ingredients are used to formulate efficient stopping criteria for the nonlinear and algebraic solvers. With the same methodology, an adaptive interior-point method is proposed. We apply our algorithm to the algebraic system of variational inequalities describing the contact between two membranes and a two-phase flow problem. We provide numerical comparison of our approach with a semismooth Newton method, possibly combined with a path-following strategy, and a nonparametric interior-point method. In Chapter 2, in an infinite-dimensional framework, we consider as a model problem the contact problem between two membranes. We employ a finite volume discretization and apply the smoothing approach proposed in Chapter 1 to smooth the non-differentiability in the complementarity constraints. The resolution of the arising nonlinear smooth system is again realized thanks to the Newton method, in combination with an iterative algebraic solver for the solution of the resulting linear system. We design H1-conforming potential reconstructions as well as H(div)-conforming discrete equilibrated flux reconstructions. We prove an upper bound for the total error in the energy norm and conceive discretization, smoothing, linearization, and algebraic estimators reflecting the errors stemming from the finite volume discretization, the smoothing of the non-differentiability, the linearization by the Newton method, and the algebraic solver, respectively. This enables us to establish adaptive stopping criteria to stop the different solvers in the proposed algorithm and design adaptive algorithm steering all these four components. In Chapter 3, we consider a compositional multiphase flow (oil, gas, and water) with phase transitions in a porous media. A finite volume discretization yields a nonlinear non-differentiable algebraic system which we solve employing our inexact smoothing Newton technique. Following the process of Chapter 1, we build a posteriori estimators by bounding the norm of the discrete system’s residual, resulting in adaptive criteria that we incorporate in the employed algorithm. Throughout this thesis, numerical experiments confirm the efficiency of our estimates. In particular, we show that the developed adaptive algorithms considerably reduce the overall number of iterations in comparison with the existing methods
Boussandel, Sahbi. "Méthodes de résolution d'équations algébriques et d'évolution en dimension finie et infinie." Thesis, Metz, 2010. http://www.theses.fr/2010METZ027S/document.
Повний текст джерелаIn this work, we solve algebraic and evolution equations in finite and infinite-dimensional sapces. In the first chapter, we use the Galerkin method to study existence and maximal regularity of solutions of a gradient abstract system with applications to non-linear diffusion equations and to non-degenerate quasilinear parabolic equations with nonlocal coefficients. In the second chapter, we Study local existence, uniqueness and maximal regularity of solutions of the curve shortening flow equation by using the local inverse theorem. Finally, in the third chapter, we solve an algebraic equation between two Banach spaces by using the continuous Newton’s method and we apply this result to solve a non-linear ordinary differential equation with periodic boundary conditions
Sokol, Sergueï. "Approche multi-échelle pour appariement d'images par modèles élastiques." Toulouse, ENSAE, 1997. http://www.theses.fr/1997ESAE0020.
Повний текст джерелаDaridon, Loïc. "Une modélisation des ponts de fibres pour le délaminage des matériaux composites." Metz, 1993. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1993/Daridon.Loic.SMZ9323.pdf.
Повний текст джерелаIn this work, we model the delamination in the long fiber composite material. More precisely, we study a modelling of the fiber bridging contribution in the dissipative energy during delamination test in mode I, mode II, mixed mode. For this, we introduce a density of damageable spring along the crack, to simulate the fiber bridging. This approach permit us to keep simple propagation criteria. Then, we perform a numerical simulation of different tests, as the D. C. B. , the E. L. S. And the M. M. F. S. With the Newton-Raphson method. The result, we obtain, agree with the experimental observation
Cuvilliez, Sam. "Passage d'un modèle d'endommagement continu régularisé à un modèle de fissuration cohésive dans le cadre de la rupture quasi-fragile." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00817940.
Повний текст джерелаHama, Muzafar. "Matrix eigenvalues : localization through subsets and triangularization with Newton-like iterations." Saint-Etienne, 2009. http://www.theses.fr/2009STET4016.
Повний текст джерелаDans cette thèse on développe deux sujets : d'une part, la notion de pseudo-spectre d'une matrice complexe carrée et, d'autre part, l'application de la méthode de Newton-Kantorovich au calcul des formes triangulaires supérieures semblables d'une matrice carrée complexe. Le travail sur le pseudo-spectre est une compilation de résultats qui réalise une synthèse de cette notion. Quelques contributions originales complètent ce texte. La recherche sur les formes triangulaires repose sur l'application de la méthode de Newton-Kantorovich et sa variante de la Pente xe au calcul d'une forme de Schur par similarité unitaire et d'une forme de Gauss par similarité triangulaire infèrieure a diagonal unite. On propose que les factorisations QR et (L+I)U nécessaires au calcul des formes triangulaires de Schur et de Gauss par les algorithmes de Francis et de Crout respectivement, soient accomplies par ranement itératif en utilisant encore une fois la méthode de Newton-Kantorovich et sa variante de la Pente x
Choquet, Rémi. "Étude de la méthode de Newton-GMRES. Application aux équations de Navier-Stokes compressibles." Rennes 1, 1995. http://www.theses.fr/1995REN10147.
Повний текст джерелаCotte, Romain. "L'enjeu de la différentiation automatique dans les méthodes de Newton d'ordres supérieurs." Mémoire, Université de Sherbrooke, 2010. http://savoirs.usherbrooke.ca/handle/11143/4884.
Повний текст джерелаКниги з теми "Méthode de Newton régularisé"
Alexander, Daniel S. A history of complex dynamics: From Schröder to Fatou and Julia. Braunschweig/Wiesbaden: F. Vieweg, 1994.
Знайти повний текст джерелаPoints fixes, zéros et la méthode de Newton. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-37660-7.
Повний текст джерелаDedieu, Jean-Pierre. Points fixes, zéros et la méthode de Newton (Mathématiques et Applications). Springer, 2006.
Знайти повний текст джерелаAlexander, Daniel S. A History of Complex Dynamics: From Schröder to Fatou and Julia. Vieweg+Teubner Verlag, 2014.
Знайти повний текст джерелаAlexander, Daniel S. History of Complex Dynamics: From Schröder to Fatou and Julia. Vieweg Verlag, Friedr, & Sohn Verlagsgesellschaft mbH, 2013.
Знайти повний текст джерелаТези доповідей конференцій з теми "Méthode de Newton régularisé"
Hadji, Sofiane. "Méthode Newton-asymptotique pour la résolution des équations de Saint-Venant." In Journées Nationales Génie Côtier - Génie Civil. Editions Paralia, 2004. http://dx.doi.org/10.5150/jngcgc.2004.045-h.
Повний текст джерела