Добірка наукової літератури з теми "Micro-Generators"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Micro-Generators".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Micro-Generators":

1

Wilson, Byron J. "Micro-Kipp gas generators." Journal of Chemical Education 68, no. 12 (December 1991): A297. http://dx.doi.org/10.1021/ed068pa297.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Raisigel, Hynek, Orphée Cugat, and Jérôme Delamare. "Permanent magnet planar micro-generators." Sensors and Actuators A: Physical 130-131 (August 2006): 438–44. http://dx.doi.org/10.1016/j.sna.2005.10.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yang, W. M., S. K. Chou, C. Shu, Z. W. Li, and H. Xue. "Research on micro-thermophotovoltaic power generators." Solar Energy Materials and Solar Cells 80, no. 1 (October 2003): 95–104. http://dx.doi.org/10.1016/s0927-0248(03)00135-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Scott, W. G. "Micro-turbine generators for distribution systems." IEEE Industry Applications Magazine 4, no. 3 (1998): 57–62. http://dx.doi.org/10.1109/2943.667911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Koukharenko, E., M. J. Tudor, S. P. Beeby, N. M. White, X. Li, and I. Nandhakumar. "Micro and Nanotechnologies for Thermoelectric Generators." Measurement and Control 41, no. 5 (June 2008): 138–42. http://dx.doi.org/10.1177/002029400804100501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Smith, Nigel, and Adam Harvey. "Electronic control of micro-hydro generators." Electronics Education 1994, no. 2 (1994): 15–17. http://dx.doi.org/10.1049/ee.1994.0045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SUN Shao-chun, 孙韶春, and 石庚辰 SHI Geng-chen. "Design and fabrication of micro rotational generators." Optics and Precision Engineering 19, no. 6 (2011): 1306–12. http://dx.doi.org/10.3788/ope.20111906.1306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Beretta, D., M. Massetti, G. Lanzani, and M. Caironi. "Thermoelectric characterization of flexible micro-thermoelectric generators." Review of Scientific Instruments 88, no. 1 (January 2017): 015103. http://dx.doi.org/10.1063/1.4973417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

DeArmon, James. "Improving random number generators on micro-computers." Computers & Operations Research 17, no. 3 (January 1990): 283–95. http://dx.doi.org/10.1016/0305-0548(90)90005-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mahmoud, M. A. E., E. M. Abdel-Rahman, E. F. El-Saadany, and R. R. Mansour. "Electromechanical coupling in electrostatic micro-power generators." Smart Materials and Structures 19, no. 2 (January 14, 2010): 025007. http://dx.doi.org/10.1088/0964-1726/19/2/025007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Micro-Generators":

1

Skarvelis-Kazakos, Spyros. "Emissions of aggregated micro-generators." Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/12375/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The key question this thesis aims to address is to what extent can micro-generation sources contribute to the carbon emission reduction targets set by the UK government. The operational emissions of micro-CHP capable micro-generators were examined against the UK grid electricity and gas boiler heat. Fossil and biomass fuels were considered. The life-cycle emissions associated with the manufacturing, transport and disposal of micro-generators were calculated. Case studies were constructed, based on the literature. It was found that emissions associated with domestic electrical and thermal demand would be reduced significantly. A Virtual Power Plant (VPP) was defined for aggregating micro-generators, using micro-generation penetration projections for the year 2030 from the literature. An optimisation problem was described, where the goal was to minimise the VPP carbon emissions. The results show the amount of emissions that would potentially be reduced by managing an existing micro-generation portfolio in a VPP. An Environmental Virtual Power Plant (EVPP) was defined, for controlling micro-generator carbon emissions. A multi-agent system was designed. The principle of operation resembles an Emissions Trading Scheme. Emission allowances are traded by the micro-generators, in order to meet their emissions needs. Three EVPP control policies were identified. Fuzzy logic was utilised for the decision making processes. Simulations were performed to test the EVPP operation. The main benefit for the micro-generators is the ability to participate in markets from which they would normally be excluded due to their small size. The multi-agent system was verified experimentally using micro-generation sources installed in two laboratories, in Athens, Greece. Two days of experiments were performed. Results show that system emissions have been successfully controlled, since only small deviations between desired and actual emissions output were observed. It was found that Environmental Virtual Power Plant controllability increases significantly by increasing the number of participating micro-generators.
2

Glatz, Wulf. "Development of flexible micro thermoelectric generators." Tönning Lübeck Marburg Der Andere Verl, 2008. http://d-nb.info/989530639/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rostek, Raimar [Verfasser], and Peter [Akademischer Betreuer] Woias. "Electrochemical deposition as a fabrication method for micro thermoelectric generators." Freiburg : Universität, 2016. http://d-nb.info/1122647638/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gadea, Gerard. "Integration of Si/Si-Ge nanostructures in micro-thermoelectric generators." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/459243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Silicon and silicon-germanium nanostructures were grown, integrated, optimized and characterized for their application in thermoelectric generation. Specifically two kinds of nanostructures were worked: silicon and silicon-germanium nanowire arrays (Si/Si-Ge NW) and polycrystalline silicon nanotube fabrics (pSi NT). The results are dived in four chapters. Chapters 3, 4 and 5 deal with Si/Si-Ge NWs, while chapter 6 presents the pSi NT fabrics. In Chapter 3 the growth and integration of Si/Si-Ge NWs was studied, in order to optimize their properties for thermoelectric application in micro-thermoelectric generators (µTEG). First, the methods for depositing gold nanoparticles prior to NW growth were studied. Second, the growth of NWs from the gold nanoparticles in a Chemical Vapour Deposition (CVD) process was comprehensively studied and optimized for subsequent integration of NWs in µTEGs, both of Si and Si-Ge. All important properties – NW length, diameter, density, doping and alignment – could be controlled by tuning the seeding gold nanoparticles and the process conditions, namely temperature, pressure, flows of reactants and growth time. Finally, integration was demonstrated in micro-structures for thermoelectric generation and characterization. The optimization process yielded to fully integrated thermoelectric Si/Si-Ge NW arrays with diameters and densities of ~100 nm and 5 NW/µm2 respectively. In Chapter 4 the Si NWs were thermoelectrically characterized. The Seebeck coefficient, electrical conductivity and thermal conductivity of arrays and single Si-NWs were measured in microstructures devoted to characterization comprising NWs integrated as in final µTEG application. Additionally a novel atomic force microscope based method for determination of thermal conductivity was explored. Then the results were discussed comparing them with existing literature. A ZT of 0.022 was found at room temperature, revealing an improvement of factor 2-3 with respect to bulk. In Chapter 5 The harvesting capabilities of µTEGs with integrated Si/Si-Ge NWs was assessed. The thermal gradient and the power of the µTEGs was assessed for two generation of devices and for two thermoelectric materials, namely Si and Si-Ge NWs, which were integrated for the first time in functional generators. Also a study on heat sinking and convection effects was conducted adding insight towards further device improvement. Finally, the results were discussed and compared with literature. The maximum power densities attained were 4.5 µW/cm2 for the Si NWs and 4.9 µW/cm2 for the Si-Ge NWs while harvesting over surfaces at 350 ºC. Chapter 6 deals with pSi NT fibers. First this new material concept and the growth route are presented, showing the fabrication steps and the control of the resulting properties by CVD method. Then the material is thermoelectrically characterized, by measuring its Seebeck coefficient and electrical and thermal conductivities up to 450 ºC. A ZT of 0.12 was found, doubling the optimally doped bulk at this temperature. Finally a proof of concept was demonstrated by assessing the thermal harvesting capabilities of the material on top of hot surfaces. A maximum of 3.5 mW/cm2 was attained at 650 ºC.
Los materiales termoeléctricos permiten la conversión de calor a electricidad y viceversa. Esto permite explotar el efecto termoeléctrico en generadores termoeléctricos, capaces de extraer energía térmica de fuentes calientes y convertirla a electricidad útil. Estos generadores presentan grandes ventajas, como su falta de piezas móviles – y por ende necesidad de mantenimiento alguna – y su total escalabilidad, que permite cambiar su tamaño sin afectar su rendimiento. Esto los hace obvios candidatos para la alimentación y carga de dispositivos portátiles y situados lugares de difícil acceso. A pesar de ello, su uso no está muy extendido debido a que su relación eficiencia-coste es baja en comparación a otros métodos capaces de suplir las funciones de alimentación – como la sustitución periódica de baterías – o de conversión térmica-eléctrica – como las turbinas de vapor. Los materiales termoeléctricos suelen ser o eficientes y caros (como el Bi2Te3 usado en los módulos comerciales) o ineficientes y de bajo coste (como el silicio, barato por su abundancia ya que supone un 28% de la corteza terrestre). En este trabajo se han crecido nanostructuras de silicio y silicio-germano, con dimensiones en el orden de los 100 nm. Los nanomateriales presentan propiedades termoeléctricas mejoradas respecto a sus contrapartes macroscópicas. Gracias a la nanoestructuración pues, se ha abordado del problema de eficiencia-coste por dos vertientes: • En el caso del silicio – normalmente un mal termoeléctrico debido a su alta conductividad térmica – se ha habilitado su uso como termoeléctrico al crecerlo en forma de nanohilos cristalinos y nanotubos de silicio policristalino. • En el caso de silicio-germano – que ya es un buen termoeléctrico para uso en altas temperaturas – se ha aumentado su eficiencia aún más, creciéndolo en forma de nanohilos. Yendo más allá de la síntesis, los nanohilos de silicio/silicio-germano se han optimizado, caracterizado en integrado en gran número micro-generadores termoeléctricos de 1 mm2 de superficie, pensados para la alimentación de pequeños dispositivos y circuitos integrados. Respecto a los nanotubos de Si, estos se han obtenido en densas fibras macroscópicas aptas para su aplicación directa como generadores termoeléctricos de gran área. Cabe mencionar que ambos nanomateriales – así como los microgeneradores basados en nanohilos – fueron obtenidos mediante técnicas actualmente utilizadas para la fabricación de circuitos integrados, pensando en la escalabilidad del proceso para su aplicación. El trabajo presentado en esta tesis consiste en el crecimiento, optimización, estudio e integración de nanostructuras de Si/Si-Ge para su aplicación en generación termoeléctrica. En los Capítulos 1 y 2 se pone un marco a los materiales tratados y su aplicación y se describen los métodos utilizados, respectivamente. Los resultados se han dividido en cuatro capítulos. En los Capítulos 3, 4 y 5 se tratan los nanohilos abordando su crecimiento, caracterización y aplicación en microgeneradores, respectivamente. En el Capítulo 6 se tratan las fibras de nanotubos, integrando todo el estudio en el mismo capítulo. Finalmente en el Capítulo 7 se muestran las conclusiones, resumiendo los resultados e indicando la relevancia del trabajo.
5

Demetriades, Georgios Manoli. "Integral propeller turbine-induction generator units for village hydroelectric schemes." Thesis, Nottingham Trent University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mirando, Francesco. "Micro-fabrication and characterization of highly doped silicon-germanium based thermoelectric generators." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30596/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Over the last decades of research on sustainable energy, thermoelectric generation has been identified as a potential energy harvesting solution for a wide range of applications. Nowadays, the commercial thermoelectric technology is almost entirely based on tellurium alloys, it mainly addresses room temperature applications and it is not compatible with MEMS and CMOS processing. In this work, silicon-germanium based micro-devices have been designed, developed and characterized with the aim of addressing the heat recovery needs of the automotive industry. The micro-scale of the fabricated devices, together with the full compatibility with silicon micro-processing, also profiles an interesting potential for application in the autonomous sensor field. Most importantly, the configuration and the fabrication processes of such silicon-based generators constitute a platform to transfer the results of decades of promising material investigations and engineering into practical micro-scaled thermoelectric generators. The room temperature characterization of the manufactured micro-generators revealed power factors up to 13.9x10-3 μW/(cm2K2) and maximum output power density up to 24.7 μW/cm2. In such temperature range, the micro-devices manufactured in this work are still not as performing as the state-of-the-art bismuth-telluride based technology. However, at around 300 C, the developed micro-modules are predicted to produce a maximum power output of 1.2-1.5mW under 10 C temperature gradient, which corresponds to 35-45% of the room temperature performance of the only commercial bismuth telluride based micro-devices. The results show that silicon-germanium micro-modules could potentially compete with the state-of-the-art commercial micro-devices, being better performing at higher temperature, but also offering the advantage of being a sustainable MEMS and CMOS compatible option for autonomous sensors integration.
7

Williams, Arthur A. "Pumps as turbines used with induction generators for stand-alone micro-hydroelectric power plants." Thesis, Nottingham Trent University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Edvinsson, Nils. "Energy harvesting power supply for wireless sensor networks : Investigation of piezo- and thermoelectric micro generators." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-210429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Computers and their constituent electronics continue to shrink. The same amount of work can be done with increasingly smaller and cheaper components that need less power to function than before. In wireless sensor networks, the energy needed by one sensor node borders the amount that is already present in its immediate surroundings. Equipping the electronics with a micro generator or energy harvester gives the possibility that it can become self-sufficient in energy. In this thesis two kinds of energy harvesters are investigated. One absorbs vibrations and converts them into electricity by means of piezo-electricity. The other converts heat flow through a semiconductor to electricity, utilizing a thermoelectric effect. Principles governing the performance, actual performance of off-the-shelf components and design considerations of the energy harvester have been treated. The thermoelectric micro generator has been measured to output power at 2.7 mW and 20°C with a load of 10 W. The piezoelectric micro generator has been measured to output power at 2.3 mW at 56.1 Hz, with a mechanical trim weight and a load of 565 W. In these conditions the power density of the generators lies between 2-3 W/m2.
9

Al-Asadi, Mushtaq Talib Khazaal. "Heat transfer, fluid flow analysis and energy management of micro-channel heat sinks using vortex generators and nanofluids." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/21198/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
High heat fluxes generated by modern electronic chips continue to motivate efforts to improve the efficiency of associated cooling systems. This thesis seeks to enhance heat transfer in liquid-based micro-channel heat sinks, while keeping power consumption low, using geometrical modifications and the replacement of water coolant by nanofluids. Preliminary investigation of a perforated pinned heat sink shows that geometrical enhancement strategies proven for air-cooled systems do not necessarily work well with liquid coolant. However, simple solid cylindrical or prismatic vortex generators (VGs) positioned at intervals along the base of a micro-channel are found to offer heat transfer benefits for liquid coolants flowing under laminar conditions. The performance of various VGs with different cross-sectional shapes (including semi-circular, triangular, elliptical and rectangular) is examined using detailed finite element analysis validated against published experimental data. Results show that the half-circle VGs offer the best heat transfer improvement among the considered shapes, but with a substantial increase in pressure drop along the micro-channel. To reduce the pressure penalty, various gaps are introduced along the span of the VGs and shown to reduce the pressure while further improving the heat transfer performance. A performance evaluation criteria (PEC) index is used to assess the VG benefits versus pressure penalty. A critical evaluation of various (Al2O3/SiO2-water) nanofluids in terms of energy management is conducted, highlighting that performance comparisons at equal Reynolds numbers are misleading because of kinematic viscosity differences. Enhancement of heat transfer can appear much more significant than when comparing at equal flow rate. However, it is also shown that a novel combination of elliptical VGs with nanofluids can offer genuine benefits. Finally, an optimisation study illustrates that CFD-validated surrogate modelling provides an accurate representation of the system performance over a range of design parameters, enabling optimal heat transfer and pressure drop to be determined.
10

Alrowaijeh, Jamal Salem. "Fluidic Energy Harvesting and Sensing Systems." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Smart sensors have become and will continue to constitute an enabling technology to wirelessly connect platforms and systems and enable improved and autonomous performance. Automobiles have about two hundred sensors. Airplanes have about eight thousand sensors. With technology advancements in autonomous vehicles or fly-by-wireless, the numbers of these sensors is expected to increase significantly. The need to conserve water and energy has led to the development of advanced metering infrastructure (AMI) as a concept to support smart energy and water grid systems that would respond to emergency shut-offs or electric blackouts. Through the Internet of things (IoT) smart sensors and other network devices will be connected to enable exchange and control procedure toward reducing the operational cost and improving the efficiency of residential and commercial buildings in terms of their function or energy and water use. Powering these smart sensors with batteries or wires poses great challenges in terms of replacing the batteries and connecting the wires especially in remote and difficult-to-reach locations. Harvesting free ambient energy provides a solution to develop self-powered smart sensors that can support different platforms and systems and integrate their functionality. In this dissertation, we develop and experimentally assess the performance of harvesters that draw their energy from air or water flows. These harvesters include centimeter-scale micro wind turbines, piezo aeroelastic harvesters, and micro hydro generators. The performance of these different harvesters is determined by their capability to support wireless sensing and transmission, the level of generated power, and power density. We also develop and demonstrate the capability of multifunctional systems that can harvest energy to replenish a battery and use the harvested energy to sense speed, flow rate or temperature, and to transmit the data wirelessly to a remote location.
PHD

Книги з теми "Micro-Generators":

1

Büren, Thomas von. Body-worn inertial electromagnetic micro-generators. Konstanz: Hartung-Gorre, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Smith, Nigel. Motors as generators for micro hydro power. 2nd ed. Rugby, Warwickshire, UK: Practical Action Pub., 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Smith, Nigel. Motors as generators for micro hydro power. 2nd ed. Rugby, Warwickshire, UK: Practical Action Pub., 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Moore, M. J. Micro-turbine Generators (IMechE Conference). Wiley, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Smith, Nigel, and Nigel Smith. Motors as Generators for Micro-Hydro Power. Practical Action, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Smith, Nigel. Motors as Generators for Micro-Hydro Power. Practical Action, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

H. Voldman, Steven, ed. Electrostatic Discharge - From Electrical breakdown in Micro-gaps to Nano-generators. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.81456.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

United States. National Aeronautics and Space Administration., ed. A wind tunnel investigation of the effects of micro-vortex generators and Gurney flaps on the high-lift characteristics of a business jet wing. [Washington, DC: National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Micro-Generators":

1

Stark, Ingo. "Micro Thermoelectric Generators." In Micro Energy Harvesting, 245–69. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527672943.ch12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Smith, Nigel. "Advantages and disadvantages of induction generators." In Motors as Generators for Micro Hydro Power, 1–2. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1994. http://dx.doi.org/10.3362/9781780445533.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Smith, Nigel. "Prelims - Motors as Generators for Micro Hydro Power." In Motors as Generators for Micro Hydro Power, i—xviii. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1994. http://dx.doi.org/10.3362/9781780445533.000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Smith, Nigel. "Induction machine construction and operation." In Motors as Generators for Micro Hydro Power, 3–9. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1994. http://dx.doi.org/10.3362/9781780445533.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Smith, Nigel. "Selection of an induction motor for use as a generator." In Motors as Generators for Micro Hydro Power, 11–22. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1994. http://dx.doi.org/10.3362/9781780445533.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Smith, Nigel. "Excitation capacitor requirements." In Motors as Generators for Micro Hydro Power, 23–29. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1994. http://dx.doi.org/10.3362/9781780445533.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smith, Nigel. "Operating voltage and frequency." In Motors as Generators for Micro Hydro Power, 31–35. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1994. http://dx.doi.org/10.3362/9781780445533.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Smith, Nigel. "The effect of load upon generator output." In Motors as Generators for Micro Hydro Power, 37–39. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1994. http://dx.doi.org/10.3362/9781780445533.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smith, Nigel. "Single-phase output from a three-phase machine." In Motors as Generators for Micro Hydro Power, 41–44. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1994. http://dx.doi.org/10.3362/9781780445533.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Smith, Nigel. "Protection, safety and earthing." In Motors as Generators for Micro Hydro Power, 45–47. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1994. http://dx.doi.org/10.3362/9781780445533.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Micro-Generators":

1

Wik, Erik, and Scott Shaw. "Numerical Simulation of Micro Vortex Generators." In 2nd AIAA Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2697.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nagasawa, S., T. Suzuki, Y. Takayama, K. Tsuji, and H. Kuwano. "Mechanical rectifier for micro electric generators." In 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems. IEEE, 2008. http://dx.doi.org/10.1109/memsys.2008.4443825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stults, Allen H. "Experimental results using micro-ferromagnetic generators." In 2010 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2010. http://dx.doi.org/10.1109/ipmhvc.2010.5958299.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Borca-Tasciuc, Diana-Andra, Mona M. Hella, and Asantha Kempitiya. "Micro-power generators for ambient intelligence applications." In 2010 4th International Workshop on Soft Computing Applications (SOFA). IEEE, 2010. http://dx.doi.org/10.1109/sofa.2010.5565632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wojtas, N. Z., E. Schwyter, W. Glatz, S. Kuhne, W. Escher, and C. Hierold. "Power enhancement of micro thermoelectric generators by micro fluidic heat transfer packaging." In TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nolan, William, and Holger Babinsky. "Comparison of Micro-Vortex Generators in Supersonic Flows." In 6th AIAA Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-2812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bauer, Steven. "An aerodynamic assessment of micro-drag generators (MDGs)." In 16th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-2621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lin, Nan, Buxiang Zhou, and Xueyou Wang. "Optimal placement of distributed generators in micro-grid." In 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2011. http://dx.doi.org/10.1109/cecnet.2011.5768850.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nolan, William, and Holger Babinsky. "Characterization of Micro-Vortex Generators in Supersonic Flows." In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

De Souza, A., A. Aoki, B. Matos, H. Salamanca, J. Camargo, A. Donadon, G. Torres, and L. Da Silva. "Microgrids operation with micro dispersed generators and renewables." In CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid. IET, 2012. http://dx.doi.org/10.1049/cp.2012.0866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Micro-Generators":

1

Epstein, A. H., K. S. Breuer, J. H. Lang, M. A. Schmidt, and S. D. Senturia. Micro Gas Turbine Generators. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada391343.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії