Добірка наукової літератури з теми "Nonlinear lasers dynamics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nonlinear lasers dynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nonlinear lasers dynamics":

1

Lu, Weiping, and Robert G. Harrison. "Nonlinear dynamics of Raman lasers." Physical Review A 43, no. 11 (June 1, 1991): 6358–67. http://dx.doi.org/10.1103/physreva.43.6358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Glorieux, Pierre, and Albert Le Floch. "Nonlinear polarization dynamics in anisotropic lasers." Optics Communications 79, no. 3-4 (October 1990): 229–34. http://dx.doi.org/10.1016/0030-4018(90)90041-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sterian, Andreea Rodica. "Numerical Simulations on Nonlinear Dynamics in Lasers as Related High Energy Physics Phenomena." Advances in High Energy Physics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/516396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper aims to present some results on nonlinear dynamics in active nanostructures as lasers with quantum wells and erbium doped laser systems using mathematical models, methods, and numerical simulations for some related high energy physics phenomena. We discuss nonlinear dynamics of laser with quantum wells and of fiber optics laser and soliton interactions. The results presented have important implications in particle detection and postdetection processing of information as well as in soliton generation and amplification or in the case that these simulations are thought to be useful in the experiments concerning the high energy particles. The soliton behaviour as particle offers the possibility to use solitons for better understanding of real particles in this field. The developed numerical models concerning nonlinear dynamics in nanostructured lasers, erbium doped laser systems, the soliton interactions, and the obtained results are consistent with the existing data in the literature.
4

Wang, Xiang-Hui, Zheng-Mao Wu, Zai-Fu Jiang, and Guang-Qiong Xia. "Nonlinear Dynamics of Two-State Quantum Dot Lasers under Optical Feedback." Photonics 8, no. 8 (July 27, 2021): 300. http://dx.doi.org/10.3390/photonics8080300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A modified rate equation model was presented to theoretically investigate the nonlinear dynamics of solitary two-state quantum dot lasers (TSQDLs) under optical feedback. The simulated results showed that, for a TSQDL biased at a relatively high current, the ground-state (GS) and excited-state (ES) lasing of the TSQDL can be stimulated simultaneously. After introducing optical feedback, both GS lasing and ES lasing can exhibit rich nonlinear dynamic states including steady state (S), period one (P1), period two (P2), multi-period (MP), and chaotic (C) state under different feedback strength and phase offset, respectively, and the dynamic states for the two lasing types are always identical. Furthermore, the influences of the linewidth enhancement factor (LEF) on the nonlinear dynamical state distribution of TSQDLs in the parameter space of feedback strength and phase offset were also analyzed. For a TSQDL with a larger LEF, much more dynamical states can be observed, and the parameter regions for two lasing types operating at chaotic state are widened after introducing optical feedback.
5

Sytova, S. N. "Nonlinear Dynamics of Radiation in Multiple-Beam Vacuum Electronic Devices." Nonlinear Phenomena in Complex Systems 25, no. 4 (December 12, 2022): 359–67. http://dx.doi.org/10.33581/1561-4085-2022-25-4-359-367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The article is devoted to overview of different types of vacuum electronic devices with two or more charged particle beams. There are travelling wave and backward wave tubes, free electron lasers and masers, volume free electron lasers. Two different cases take place in such situation: multiple-beam instability in such devices and multiple-stream instability. In the first case some charged particle beams moves in the system with different velocities. In the second one there are beams with almost equal velocities (streams). Two systems of equations for volume free electron laser with two electron beams are proposed. Some numerical results of VFEL numerical simulation are given and discussed.
6

Panajotov, Krassimir, Marc Sciamanna, Ignace Gatare, Mikel Arteaga, and Hugo Thienpont. "Nonlinear Dynamics of Vertical-Cavity Surface-Emitting Lasers." Advances in Optical Technologies 2011 (October 11, 2011): 1–16. http://dx.doi.org/10.1155/2011/469627.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nonlinear dynamics of Vertical-Cavity Surface-Emitting Lasers (VCSELs) induced by optical injection, optical feedback, current modulation and mutual coupling is reviewed. Due to the surface emission and cylindrical symmetry VCSELs lack strong polarization anisotropy and may undergo polarization switching. Furthermore, VCSELs may emit light in multiple transverse modes. These VCSEL properties provide new features to the rich nonlinear dynamics induced by an external perturbation. We demonstrate for the case of orthogonal optical injection that new Hopf bifurcation on a two-polarization-mode solution delimits the injection locking region and that polarization switching and injection locking of first-order transverse mode lead to a new resonance tongue for large positive detunings. Similarly, the underlying polarization mode competition leads to chaotic-like behavior in case of gain switching and the presence of two transverse modes additionally reduces the possibility of regular dynamics. The bistable property of VCSEL makes it possible to investigate very fundamental problems of bistable systems with time-delay, such as the coherence resonance phenomenon. We also demonstrate that the synchronization quality between unidirectionally coupled VCSELs can be significantly enhanced when the feedback-induced chaos in the master laser involves both orthogonal LP fundamental transverse modes.
7

Yan, Senlin. "Controlling two chaotic lasers via OD-DCF." ITM Web of Conferences 47 (2022): 03003. http://dx.doi.org/10.1051/itmconf/20224703003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present a novelty optoelectronic delay double-cross-feedback (OD-DCF) scheme to control two chaotic lasers based on coupled lasers. We design out the OD-DCF technical solution to convert two lights from two lasers into two photocurrents by two photo-detectors, and then the delay photocurrents are cross-fed back to each other’s lasers respectively to suppress two chaotic oscillations and guide two laser’s dynamics behaviours, respectively. By adjusting the feedback levels and delayed time of OD-DCF, two lasers can obtain chaos-control and show all kinds of dynamics behaviours. We find that chaotic oscillation behaviours of two lasers are suppressed into a stable state and different quasi-cycle states, such as a cycle-one, cycle-two, a cycle-three, a cycle-four, and other quasi-cycle states. We find also that two movement behaviours of two lasers can be controlled to lead to two different cycle-double states. The results prove that the control of two chaotic lasers can be effectively realized via OD-DCF. It is very helpful for our studies of control science, nonlinear optics, chaos, and laser.
8

J. Ablowitz, Mark, Terry S. Haut, Theodoros P. Horikis, Sean D. Nixon, and Yi Zhu. "Nonlinear wave dynamics: From lasers to fluids." Discrete & Continuous Dynamical Systems - S 4, no. 5 (2011): 923–55. http://dx.doi.org/10.3934/dcdss.2011.4.923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Labukhin, Dmitry, Christopher A. Stolz, Nickolay A. Zakhleniuk, Rodney Loudon, and Michael J. Adams. "Nonlinear Dynamics of Multi-Section Tunable Lasers." IEEE Journal of Quantum Electronics 46, no. 5 (May 2010): 689–99. http://dx.doi.org/10.1109/jqe.2010.2046881.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kravtsov, Nikolai V., and E. G. Lariontsev. "Nonlinear dynamics of solid-state ring lasers." Quantum Electronics 36, no. 3 (March 31, 2006): 192–221. http://dx.doi.org/10.1070/qe2006v036n03abeh013124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Nonlinear lasers dynamics":

1

Eriksson, Stefan. "Nonlinear dynamics of optically injected semiconductor lasers." Helsinki : University of Helsinki, 2002. http://ethesis.helsinki.fi/julkaisut/mat/fysik/vk/eriksson/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jiad, Khalid Mohammed. "Nonlinear dynamics of optically pumped laser." Thesis, Heriot-Watt University, 1993. http://hdl.handle.net/10399/1403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Olejniczak, Lukasz. "Polarization properties and nonlinear dynamics of quantum dot lasers." Thesis, Metz, 2011. http://www.theses.fr/2011METZ001S/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans cette thèse nous présentons dans un premier temps nos résultats expérimentaux sur les instabilités de polarisation de lasers à boîtes quantiques (QD) et à cavité verticale (VCSELs). Ces instabilités présentent des caractéristiques différentes de celles observées dans les lasers VCSELs à puits quantiques : une compétition se produit entre deux états polarisés elliptiquement et non orthogonaux, qui donne lieu à une dynamique de saut de mode de polarisation dans le temps. Le temps de séjour moyen dans un mode décroit de huit ordres de grandeur en augmentant le courant d’injection (de la seconde à la nanoseconde). A notre connaissance ceci constitue la première observation d’une dynamique de polarisation d’un VCSEL avec une échelle de temps aussi diversifiée.Nous présentons ensuite une étude théorique d’un laser QD avec injection optique, en prenant en compte la dynamique des porteurs de charge vers des états énergétiques excités. Nous montrons qu’aux dynamiques d’impulsions excitables observées expérimentalement s’ajoutent des dynamiques auto-pulsées complexes résultant d’une phénomène de bifurcation autour d’un point de selle (« bottleneck »). Finalement nous avons étudié le cas d’un laser QD émettant simultanément depuis les états d’énergie fondamental et excité. Alors que la lumière est injectée dans laser QD esclave à la fréquence proche de l’état d’énergie fondamental, nous montrons que l’émission à la fréquence de l’état excité présente une dynamique auto-pulsée avec des impulsions très courtes (ps) suite à un mécanisme de basculement de gain
In this thesis we first show our experimental results on polarization instabilities in quantum dot (QD) lasers with vertical cavity, so called VCSELs. Their characteristics are different from what is typically observed in their QW counterparts: light that is linearly polarized close to lasing threshold becomes elliptically polarized as current is increased and then a wide region of polarization mode hopping between nonorthogonal, elliptically polarized modes sets on. Within this region the average dwell time decreases by eight orders of magnitude from seconds to nanoseconds. To our best knowledge this is the first observation of such a diversified dynamics of polarization mode hopping in a single VCSEL. We have also carried out theoretical studies of optically injected QD lasers accounting for the intradot carrier dynamics through the higher-energy excited states. We show that experimentally observed excitable pulses are complemented by self-pulsations resulting from the so-called bottleneck phenomenon. Finally, we have theoretically investigated optically injected QD laser lasing simultaneously from the ground and excited states. We show that although the external light is injected to the ground state mode alone, modulation of the relaxation time induced by injected signal can provide a gain switching mechanism leading to generation of picosecond pulses from the excited state
4

Bauer, Stefan. "Nonlinear dynamics of semiconductor lasers with active optical feedback." Doctoral thesis, [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973616423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chan, Sze-Chun. "Nonlinear dynamics of semiconductor lasers for microwave photonics applications." Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1472130221&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kozyreff, Gregory. "Nonlinear aspects of the dynamics induced by dissipative light-matter interaction." Doctoral thesis, Universite Libre de Bruxelles, 2001. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211644.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans cette thèse, nous avons appliqué les outils modernes de la théorie des systèmes dynamiques à l'étude des lasers. Le but de ce travail était de mieux comprendre les sources cohérentes existantes en vue de les améliorer et de proposer de nouveaux mécanismes d'amplification lumineuse.

Motivé par de récentes expériences menées sur des lasers miniatures avec absorbant saturable, nous en avons repris la description théorique. Les nouvelles valeurs de paramètres suggérées par l'expérience nous ont amenés à découvrir de nouveaux comportements dynamiques pour ces systèmes. En particulier, nous avons décrit comment l'intensité délivrée par ces lasers devenait temporellement sinusoïdale, puis impulsionnelle sur un très petit intervalle de paramètres.

Par la connaissance acquise du laser à absorbant saturable, nous avons pu comprendre comment s'établissait un régime impulsionnel semblable dans un autre laser. Il s'agissait du laser multimode à pompage longitudinalement inhomogène. Il est apparu en effet qu'une partie du milieu emprisonné dans la cavité optique agissait à la manière d'un absorbant saturable, déstabilisant ainsi l'émission continue de ce laser. Nous avons également montré que, dans certaines circonstances, son état dynamique présentait des effets de mémoire. Une autre propriété importante de la dynamique du laser multimode a été mise en évidence: pour de petites perturbations, l'intensité totale présente un comportement plus régulier que les intensités modales prises séparément.

Ce type intrigant d'auto organisation fut rencontré plus tard, lorsque nous avons envisagé la dynamique d'un réseau de lasers à semi conducteur couplés par un feedback optique. Le retard accumulé par la lumière au cours de ce feedback est un paramètre essentiel du problème. Ce système important sur le plan technologique s'est révélé extrêmement riche sur le plan dynamique. Nous avons pu montrer que plus le retard était grand, plus les lasers avaient tendance à se synchroniser. Cela fut observé aussi bien en régime continu qu'en régime périodique ou chaotique. Par une telle synchronisation, la qualité du rayon optique émis par le réseau de lasers augmente spectaculairement, élargissant par là ses possibilités d'application.

Au début des années 1990, les physiciens commencèrent à étudier systématiquement les effets d'interférence quantique dans l'interaction lumière matière. Ceci faisait suite à l'annonce fracassante que de tels effets devaient permettre de construire des lasers sans inversion de population. Récemment, une série d'expériences a montré que de telles interférences quantiques étaient à l’œuvre dans le laser miniature LNP. Une partie de cette thèse y fut consacrée. Nous avons montré que le comportement dynamique observé résultait d'un renforcement quantique de l'absorption stimulée par les niveaux énergétiques inférieurs.

Nous avons poursuivi notre étude des effets d'interférence quantique sur un schéma électronucléaire. Nous avons montré que pour ce système, un rayon gamma peut être amplifié sans inversion de population. Ce résultat est très important, compte tenu du fait qu'une telle inversion est techniquement impossible à réaliser pour ces très hautes fréquences électromagnétiques, empêchant jusqu'ici la réalisation de lasers gamma. Afin d'atteindre l'amplification sans inversion, un rayonnement d'appoint dans le domaine optique s'avère nécessaire. Tenant compte de la décroissance de ce champ optique en cours de propagation, et donc de la diminution des effets quantiques associés, nous avons déterminé une distance optimale de propagation. Au-delà de cette distance, l'amplification se mue en absorption. Une telle information est dès lors cruciale sur le plan expérimental.


Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished

7

Alharthi, Sami S. "Nonlinear dynamics of solitary and optically-injected spin vertical-cavity lasers." Thesis, University of Essex, 2016. http://repository.essex.ac.uk/16632/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work investigates the nonlinear dynamics and polarisation properties of Spin-Vertical-(External)-Cavity Surface-Emitting Lasers (V(E)CSELs). The focus is on gaining a broad understanding of the various polarised resolved nonlinear dynamical effects in solitary and injected 1300 nm spin-V(E)CSELs. We report a comprehensive study including theory, based on the Spin Flip Model, and experiments of the stability characteristics of solitary 1300 nm dilute nitride Quantum-Well (QW) spin-VCSELs. Various forms of oscillatory behaviour causing self-sustained oscillations in the polarisation of the spin-VCSEL subject to Continuous-Wave (CW) pumping are found. Additionally, this work is extended to study experimentally and theoretically the evolution of the output polarisation ellipticity, and experimentally the nonlinear dynamics of the light polarisation emitted by the QW spin VCSELs under polarised optical injection. Rich nonlinear dynamics of the optically injected QW spin-VCSEL are reported ranging from polarisation control, polarisation switching and bistability to periodic oscillations and chaos. Good agreement is found between measurements and calculations where theoretical results are available. We also report the first 1300 nm Quantum-Dot (QD) Semiconductor Disk Laser (SDL) using a very simple and compact laser configuration involving a high reflection (HR)-coated fibre as the top mirror. Moreover, by applying spin injection to the 1300 nm SDL via CW polarised optical pumping we also demonstrate the first 1300 nm QD spin Vertical-External-Cavity Surface-Emitting Laser (Spin-VECSEL). This is also accompanied by an investigation of the dynamics of the solitary 1300 nm QD spin-VECSEL. Finally, we present the first experimental study of the evolution of the output polarisation ellipticity and nonlinear dynamics of the 1300 nm QD spin-VECSEL under polarised optical injection. Our findings show nonlinear effects similar to the ones seen in optically injected QW spin-VCSELs.
8

Farnum, Edward D. "Stability and dynamics of solitary waves in nonlinear optical materials /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/6766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Camacho, Lopez Santiago. "Spatio-temporal dynamics of nonlinear volume gratings for holographic laser oscillators." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311942.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Virte, Martin. "Two-mode dynamics and switching in quantum dot lasers." Thesis, Supélec, 2014. http://www.theses.fr/2014SUPL0020/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans cette thèse, j'étudie la dynamique non linéaire résultant d’une compétition entre deux modes dans des systèmes lasers à boites quantiques.D’abord, je considère le cas de la compétition entre deux modes de polarisation apparaissant dans les diodes laser nanostructurées à cavité verticale et émettant par la surface (VCSELs). Il est connu que ces composants peuvent avoir une polarisation instable menant à des dynamiques riches. Récemment, un surprenant saut de mode entre deux états polarisés elliptiquement a été récemment découvert dans les VCSELs à boites quantiques. Ce comportement montre des propriétés intrigantes qui nécessitent une interprétation alternative. Dans cette thèse, je montre que ce comportement dynamique peut-être reproduit en utilisant le modèle spin-flip (SFM). En particulier je démontre et confirme expérimentalement que les sauts de modes sont en réalité des fluctuations chaotiques de faible dimension : un chaos en polarisation. Je démontre ensuite la pertinence de la dynamique chaotique observée pour les applications exploitant le chaos optique, en réalisant un générateur de nombres aléatoires à grande vitesse basé sur le chaos en polarisation.Deuxièmement, j'étudie les effet d'une rétroaction optique à délai sur les lasers à boites quantiques émettant simultanément depuis l'état fondamental et le premier état excité. Je clarifie l'impact the cette rétroaction optique ainsi que les mécanismes et bifurcations correspondantes. Je montre théoriquement qu'une rétroaction optique favorise globalement l'émission par l'état fondamental, mais aussi qu'un tel montage peut être utilisé pour commuter entre ces deux modes d'émission lorsque l'on change le taux ou le délai de la rétroaction. Enfin, je confirme ces observations expérimentalement, en rapportant des commutations entre l'état fondamental et l'état excité
In this thesis, I study the nonlinear dynamics induced by the competition between two modes in quantum dot laser systems.First, I focus on the competition between polarization modes that takes place in quantum dot vertical-cavity surface-emitting lasers (VCSELs). It is well-known that these devices can exhibit polarization instabilities leading to rich dynamical evolution. Recently, a new peculiar random-like hopping between two non-orthogonal elliptically polarized states has been highlighted in QD VCSELs. This behavior shows intriguing features which clearly call for a different interpretation. In this thesis, I show that the dynamical behavior reported experimentally can accurately be reproduced within the spin-flip model (SFM) framework. In particular, I demonstrate and confirm experimentally that the peculiar random-like hoppings are in fact deterministic low-dimensional chaotic fluctuations, i.e. ``Polarization Chaos''. I then make a proof-of-concept demonstration of a high-speed random bit generator based on polarization chaos, hence demonstrating that the chaotic dynamics uncovered is relevant for optical chaos-based applications.Secondly, I investigate the effects of an external optical feedback on quantum dot lasers emitting simultaneously from the ground and the excited states. I bring new light on the impact of optical feedback and the corresponding mechanisms and bifurcations. I highlight theoretically that optical feedback globally favors the ground state emission, but also that it can be used to switch from one mode to the other when changing the feedback rate and/or the time-delay. In addition, I experimentally report switching between the ground and excited states when varying the external cavity length at the micrometer scale, which supports the theoretical predictions

Книги з теми "Nonlinear lasers dynamics":

1

Weiss, C. O. Dynamics of lasers. Weinheim [Germany]: VCH, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Calderón, Oscar, and J. M. Guerra. Trends in spatiotemporal dynamics in lasers: Instabilities, polarization dynamics, and spatial structures, 2005. Trivandrum, Kerala, India: Research Signpost, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ōtsuka, Kenju. Nonlinear dynamics in optical complex systems. Tokyo: KTK Scientific, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Laser Optics '95 (1995 Saint Petersburg, Russia). Nonlinear dynamics in lasers: Laser Optics '95 : 27 June-1 July 1995, St. Petersburg, Russia. Edited by Abraham Neal B, Khanin I͡A︡kov Izrailevich, Scientific Council for Coherent and Nonlinear Optics (Rossiĭskai͡a︡ akademii͡a︡ nauk), and Society of Photo-optical Instrumentation Engineers. Bellingham, Wash. USA: SPIE, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

ICONO 2001 (2001 Minsk, Belarus). ICONO 2001: Nonlinear optical phenomena and Nonlinear dynamics of optical systems : 26 June-1 July 2001, Minsk, Belarus. Edited by Drabovich Konstantin N, Akadėmii͡a︡ navuk Belarusi, and Society of Photo-optical Instrumentation Engineers. Bellingham, Washington: SPIE, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

International, Workshop Dynamics of Non-linear Optical Systems (2nd 1988 Santander Spain). Dynamics of non-linear optical systems: Proceedings of the International Workshop, Santander, Spain, 24-27 October, 1988. Singapore: Teaneck, NJ, USA, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

A, Shcheglov V., ed. Nonlinear and quantum optical phenomena in nonequilibrium media. New York: Nova Science, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

N, Krokhin O., ed. Nonlinear theory of strong electromagnetic wave-plasma interactions. Commack, N.Y: Nova Science, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

NDLOS '93 International Workshop (1993 Alexander Suvorov). Nonlinear dynamics in lasers and optical systems: NDLOS '93 International Workshop : 27 June-4 July 1993, Moscow--Nizhny Novgorod. Edited by Abraham Neal B, Melnikov Leonid A, and Saratovskiĭ gosudarstvennyĭ universitet im. N.G. Chernyshevskogo. Bellingham, Wash., USA: SPIE--the International Society for Optical Engineering, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Canberra International Physics Summer School (15th 2002 Australian National University). Nonlinear dynamics: From lasers to butterflies : selected lectures from the 15th Canberra International Physics Summer School, Australian National University, 21 January-1 February 2002. Edited by Ball Rowena and Akhmediev Nail N. River Edge, N.J: World Scientific, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Nonlinear lasers dynamics":

1

Wieczorek, Sebastian M. "Noise Synchronization and Stochastic Bifurcations in Lasers." In Nonlinear Laser Dynamics, 269–91. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vladimirov, Andrei G., Dmitrii Rachinskii, and Matthias Wolfrum. "Modeling of Passively Mode-Locked Semiconductor Lasers." In Nonlinear Laser Dynamics, 183–216. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Amann, Andreas. "Complex Networks Based on Coupled Two-Mode Lasers." In Nonlinear Laser Dynamics, 245–67. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gonzalez, Cristina M., Miguel C. Soriano, M. Carme Torrent, Jordi Garcia-Ojalvo, and Ingo Fischer. "Dynamical and Synchronization Properties of Delay-Coupled Lasers." In Nonlinear Laser Dynamics, 217–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shore, K. Alan. "Desultory Dynamics in Diode-Lasers: Drift, Diffusion, and Delay." In Nonlinear Laser Dynamics, 355–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ackemann, Thorsten, Jesus Jimenez, Yoann Noblet, Neal Radwell, Guangyu Ren, Pavel V. Paulau, Craig McIntyre, Gian-Luca Oppo, Joshua P. Toomey, and Deborah M. Kane. "Dynamics and Interaction of Laser Cavity Solitonsin Broad-Area Semiconductor Lasers." In Nonlinear Optical Cavity Dynamics, 41–76. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527686476.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Brunel, Marc, Marco Romanelli, and Marc Vallet. "Synchronization in Vectorial Solid-State Lasers." In Nonlinear Optical Cavity Dynamics, 317–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527686476.ch13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zamora-Munt, Jordi, and Cristina Masoller. "Exploiting Noise and Polarization Bistability in Vertical-Cavity Surface-Emitting Lasers for Fast Pulse Generation and Logic Operations." In Nonlinear Laser Dynamics, 35–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Abraham, E., H. Adachihara, O. Hess, R. A. Indik, P. Jacobsen, J. V. Moloney, and P. Ru. "Optical Turbulence in Semiconductor Lasers." In Springer Series in Nonlinear Dynamics, 213–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77769-1_39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Babin, Sergey A., Evgeniy V. Podivilov, Denis S. Kharenko, Anastasia E. Bednyakova, Mikhail P. Fedoruk, Olga V. Shtyrina, Vladimir L. Kalashnikov, and Alexander A. Apolonski. "SRS-Driven Evolution of Dissipative Solitons in Fiber Lasers." In Nonlinear Optical Cavity Dynamics, 277–316. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527686476.ch12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Nonlinear lasers dynamics":

1

Cundiff, S. T., J. K. Wahlstrand, J. Willits, R. P. Smith, T. R. Schibli, and C. R. Menyuk. "Pulse Dynamics in Mode-Locked Lasers." In Nonlinear Photonics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/np.2007.ntha1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Ming-Ju, Shin-Chiuan Chen, You-Peng Hong, and Yu-Shan Juan. "Nonlinear characteristics of semiconductor laser subject to optical incoherent feedback." In Semiconductor Lasers and Laser Dynamics, edited by Krassimir Panajotov, Marc Sciamanna, and Rainer Michalzik. SPIE, 2018. http://dx.doi.org/10.1117/12.2307589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kovalev, Anton V., Evgeny A. Viktorov, Andrei Vladimirov, Natalia Rebrova, and Guillaume Huyet. "Theoretical study of mode-locked lasers with nonlinear loop mirrors." In Semiconductor Lasers and Laser Dynamics, edited by Krassimir Panajotov, Marc Sciamanna, and Rainer Michalzik. SPIE, 2018. http://dx.doi.org/10.1117/12.2307620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Oraevsky, Anatoly N. "Dynamics of single-mode lasers and dynamic chaos." In Nonlinear Dynamics of Laser and Optical Systems, edited by Valery V. Tuchin. SPIE, 1997. http://dx.doi.org/10.1117/12.276179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bale, Brandon G., Khanh Kieu, J. Nathan Kutz, and Frank Wise. "Transition Dynamics for Multi-Pulsing in Mode-Locked Lasers." In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.nwb8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Erneux, Thomas. "Multiple time scale analysis of lasers." In Fundamental issues of nonlinear laser dynamics. AIP, 2000. http://dx.doi.org/10.1063/1.1337758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Feng, Qian Li, Xinhuan Feng, and P. K. A. Wai. "Nonlinear dynamics in lasers with nonlinear loss." In The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/PACIFIC RIM). IEEE, 2009. http://dx.doi.org/10.1109/cleopr.2009.5292074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bale, B. G., S. Boscolo, J. N. Kutz, and S. K. Turitsyn. "Intra-cavity Dynamics in High Power Mode-locked Fiber Lasers." In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.ntua4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lenstra, Daan. "Theory of delayed optical feedback in lasers." In Fundamental issues of nonlinear laser dynamics. AIP, 2000. http://dx.doi.org/10.1063/1.1337760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mirasso, Claudio R. "Applications of semiconductor lasers to secure communications." In Fundamental issues of nonlinear laser dynamics. AIP, 2000. http://dx.doi.org/10.1063/1.1337761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Nonlinear lasers dynamics":

1

Raymer, M. G. Nonlinear dynamics of broad-band lasers. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/6559821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Raymer, M. G. Nonlinear dynamics of broad-band lasers. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/5383104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Simpson, T. B., and J. M. Liu. Nonlinear Optics and Dynamics in Semiconductor Lasers. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada297536.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sucha, G., S. R. Bolton, and D. S. Chemla. Nonlinear dynamics of additive pulse modelocked lasers. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/106631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Raymer, M. G. Nonlinear dynamics of broad-band lasers. Final report, September 15, 1990--September 14, 1991. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/10143280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Roy, Rajarshi. Nonlinear Dynamics of Coupled Laser Systems. Fort Belvoir, VA: Defense Technical Information Center, October 1997. http://dx.doi.org/10.21236/ada330680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pellegrini, C. Laser acceleration and nonlinear beam dynamics. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/7068558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pellegrini, C. Laser acceleration and nonlinear beam dynamics. Final technical report. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10165566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії