Добірка наукової літератури з теми "Nonlinear lasers dynamics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nonlinear lasers dynamics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Nonlinear lasers dynamics"
Lu, Weiping, and Robert G. Harrison. "Nonlinear dynamics of Raman lasers." Physical Review A 43, no. 11 (June 1, 1991): 6358–67. http://dx.doi.org/10.1103/physreva.43.6358.
Повний текст джерелаGlorieux, Pierre, and Albert Le Floch. "Nonlinear polarization dynamics in anisotropic lasers." Optics Communications 79, no. 3-4 (October 1990): 229–34. http://dx.doi.org/10.1016/0030-4018(90)90041-q.
Повний текст джерелаSterian, Andreea Rodica. "Numerical Simulations on Nonlinear Dynamics in Lasers as Related High Energy Physics Phenomena." Advances in High Energy Physics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/516396.
Повний текст джерелаWang, Xiang-Hui, Zheng-Mao Wu, Zai-Fu Jiang, and Guang-Qiong Xia. "Nonlinear Dynamics of Two-State Quantum Dot Lasers under Optical Feedback." Photonics 8, no. 8 (July 27, 2021): 300. http://dx.doi.org/10.3390/photonics8080300.
Повний текст джерелаSytova, S. N. "Nonlinear Dynamics of Radiation in Multiple-Beam Vacuum Electronic Devices." Nonlinear Phenomena in Complex Systems 25, no. 4 (December 12, 2022): 359–67. http://dx.doi.org/10.33581/1561-4085-2022-25-4-359-367.
Повний текст джерелаPanajotov, Krassimir, Marc Sciamanna, Ignace Gatare, Mikel Arteaga, and Hugo Thienpont. "Nonlinear Dynamics of Vertical-Cavity Surface-Emitting Lasers." Advances in Optical Technologies 2011 (October 11, 2011): 1–16. http://dx.doi.org/10.1155/2011/469627.
Повний текст джерелаYan, Senlin. "Controlling two chaotic lasers via OD-DCF." ITM Web of Conferences 47 (2022): 03003. http://dx.doi.org/10.1051/itmconf/20224703003.
Повний текст джерелаJ. Ablowitz, Mark, Terry S. Haut, Theodoros P. Horikis, Sean D. Nixon, and Yi Zhu. "Nonlinear wave dynamics: From lasers to fluids." Discrete & Continuous Dynamical Systems - S 4, no. 5 (2011): 923–55. http://dx.doi.org/10.3934/dcdss.2011.4.923.
Повний текст джерелаLabukhin, Dmitry, Christopher A. Stolz, Nickolay A. Zakhleniuk, Rodney Loudon, and Michael J. Adams. "Nonlinear Dynamics of Multi-Section Tunable Lasers." IEEE Journal of Quantum Electronics 46, no. 5 (May 2010): 689–99. http://dx.doi.org/10.1109/jqe.2010.2046881.
Повний текст джерелаKravtsov, Nikolai V., and E. G. Lariontsev. "Nonlinear dynamics of solid-state ring lasers." Quantum Electronics 36, no. 3 (March 31, 2006): 192–221. http://dx.doi.org/10.1070/qe2006v036n03abeh013124.
Повний текст джерелаДисертації з теми "Nonlinear lasers dynamics"
Eriksson, Stefan. "Nonlinear dynamics of optically injected semiconductor lasers." Helsinki : University of Helsinki, 2002. http://ethesis.helsinki.fi/julkaisut/mat/fysik/vk/eriksson/.
Повний текст джерелаJiad, Khalid Mohammed. "Nonlinear dynamics of optically pumped laser." Thesis, Heriot-Watt University, 1993. http://hdl.handle.net/10399/1403.
Повний текст джерелаOlejniczak, Lukasz. "Polarization properties and nonlinear dynamics of quantum dot lasers." Thesis, Metz, 2011. http://www.theses.fr/2011METZ001S/document.
Повний текст джерелаIn this thesis we first show our experimental results on polarization instabilities in quantum dot (QD) lasers with vertical cavity, so called VCSELs. Their characteristics are different from what is typically observed in their QW counterparts: light that is linearly polarized close to lasing threshold becomes elliptically polarized as current is increased and then a wide region of polarization mode hopping between nonorthogonal, elliptically polarized modes sets on. Within this region the average dwell time decreases by eight orders of magnitude from seconds to nanoseconds. To our best knowledge this is the first observation of such a diversified dynamics of polarization mode hopping in a single VCSEL. We have also carried out theoretical studies of optically injected QD lasers accounting for the intradot carrier dynamics through the higher-energy excited states. We show that experimentally observed excitable pulses are complemented by self-pulsations resulting from the so-called bottleneck phenomenon. Finally, we have theoretically investigated optically injected QD laser lasing simultaneously from the ground and excited states. We show that although the external light is injected to the ground state mode alone, modulation of the relaxation time induced by injected signal can provide a gain switching mechanism leading to generation of picosecond pulses from the excited state
Bauer, Stefan. "Nonlinear dynamics of semiconductor lasers with active optical feedback." Doctoral thesis, [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973616423.
Повний текст джерелаChan, Sze-Chun. "Nonlinear dynamics of semiconductor lasers for microwave photonics applications." Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1472130221&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Повний текст джерелаKozyreff, Gregory. "Nonlinear aspects of the dynamics induced by dissipative light-matter interaction." Doctoral thesis, Universite Libre de Bruxelles, 2001. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211644.
Повний текст джерелаMotivé par de récentes expériences menées sur des lasers miniatures avec absorbant saturable, nous en avons repris la description théorique. Les nouvelles valeurs de paramètres suggérées par l'expérience nous ont amenés à découvrir de nouveaux comportements dynamiques pour ces systèmes. En particulier, nous avons décrit comment l'intensité délivrée par ces lasers devenait temporellement sinusoïdale, puis impulsionnelle sur un très petit intervalle de paramètres.
Par la connaissance acquise du laser à absorbant saturable, nous avons pu comprendre comment s'établissait un régime impulsionnel semblable dans un autre laser. Il s'agissait du laser multimode à pompage longitudinalement inhomogène. Il est apparu en effet qu'une partie du milieu emprisonné dans la cavité optique agissait à la manière d'un absorbant saturable, déstabilisant ainsi l'émission continue de ce laser. Nous avons également montré que, dans certaines circonstances, son état dynamique présentait des effets de mémoire. Une autre propriété importante de la dynamique du laser multimode a été mise en évidence: pour de petites perturbations, l'intensité totale présente un comportement plus régulier que les intensités modales prises séparément.
Ce type intrigant d'auto organisation fut rencontré plus tard, lorsque nous avons envisagé la dynamique d'un réseau de lasers à semi conducteur couplés par un feedback optique. Le retard accumulé par la lumière au cours de ce feedback est un paramètre essentiel du problème. Ce système important sur le plan technologique s'est révélé extrêmement riche sur le plan dynamique. Nous avons pu montrer que plus le retard était grand, plus les lasers avaient tendance à se synchroniser. Cela fut observé aussi bien en régime continu qu'en régime périodique ou chaotique. Par une telle synchronisation, la qualité du rayon optique émis par le réseau de lasers augmente spectaculairement, élargissant par là ses possibilités d'application.
Au début des années 1990, les physiciens commencèrent à étudier systématiquement les effets d'interférence quantique dans l'interaction lumière matière. Ceci faisait suite à l'annonce fracassante que de tels effets devaient permettre de construire des lasers sans inversion de population. Récemment, une série d'expériences a montré que de telles interférences quantiques étaient à l’œuvre dans le laser miniature LNP. Une partie de cette thèse y fut consacrée. Nous avons montré que le comportement dynamique observé résultait d'un renforcement quantique de l'absorption stimulée par les niveaux énergétiques inférieurs.
Nous avons poursuivi notre étude des effets d'interférence quantique sur un schéma électronucléaire. Nous avons montré que pour ce système, un rayon gamma peut être amplifié sans inversion de population. Ce résultat est très important, compte tenu du fait qu'une telle inversion est techniquement impossible à réaliser pour ces très hautes fréquences électromagnétiques, empêchant jusqu'ici la réalisation de lasers gamma. Afin d'atteindre l'amplification sans inversion, un rayonnement d'appoint dans le domaine optique s'avère nécessaire. Tenant compte de la décroissance de ce champ optique en cours de propagation, et donc de la diminution des effets quantiques associés, nous avons déterminé une distance optimale de propagation. Au-delà de cette distance, l'amplification se mue en absorption. Une telle information est dès lors cruciale sur le plan expérimental.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Alharthi, Sami S. "Nonlinear dynamics of solitary and optically-injected spin vertical-cavity lasers." Thesis, University of Essex, 2016. http://repository.essex.ac.uk/16632/.
Повний текст джерелаFarnum, Edward D. "Stability and dynamics of solitary waves in nonlinear optical materials /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/6766.
Повний текст джерелаCamacho, Lopez Santiago. "Spatio-temporal dynamics of nonlinear volume gratings for holographic laser oscillators." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311942.
Повний текст джерелаVirte, Martin. "Two-mode dynamics and switching in quantum dot lasers." Thesis, Supélec, 2014. http://www.theses.fr/2014SUPL0020/document.
Повний текст джерелаIn this thesis, I study the nonlinear dynamics induced by the competition between two modes in quantum dot laser systems.First, I focus on the competition between polarization modes that takes place in quantum dot vertical-cavity surface-emitting lasers (VCSELs). It is well-known that these devices can exhibit polarization instabilities leading to rich dynamical evolution. Recently, a new peculiar random-like hopping between two non-orthogonal elliptically polarized states has been highlighted in QD VCSELs. This behavior shows intriguing features which clearly call for a different interpretation. In this thesis, I show that the dynamical behavior reported experimentally can accurately be reproduced within the spin-flip model (SFM) framework. In particular, I demonstrate and confirm experimentally that the peculiar random-like hoppings are in fact deterministic low-dimensional chaotic fluctuations, i.e. ``Polarization Chaos''. I then make a proof-of-concept demonstration of a high-speed random bit generator based on polarization chaos, hence demonstrating that the chaotic dynamics uncovered is relevant for optical chaos-based applications.Secondly, I investigate the effects of an external optical feedback on quantum dot lasers emitting simultaneously from the ground and the excited states. I bring new light on the impact of optical feedback and the corresponding mechanisms and bifurcations. I highlight theoretically that optical feedback globally favors the ground state emission, but also that it can be used to switch from one mode to the other when changing the feedback rate and/or the time-delay. In addition, I experimentally report switching between the ground and excited states when varying the external cavity length at the micrometer scale, which supports the theoretical predictions
Книги з теми "Nonlinear lasers dynamics"
Calderón, Oscar, and J. M. Guerra. Trends in spatiotemporal dynamics in lasers: Instabilities, polarization dynamics, and spatial structures, 2005. Trivandrum, Kerala, India: Research Signpost, 2005.
Знайти повний текст джерелаŌtsuka, Kenju. Nonlinear dynamics in optical complex systems. Tokyo: KTK Scientific, 1999.
Знайти повний текст джерелаB, Abraham Neal, Khanin I͡A︡kov Izrailevich, Scientific Council for Coherent and Nonlinear Optics (Rossiĭskai͡a︡ akademii͡a︡ nauk), and Society of Photo-optical Instrumentation Engineers., eds. Nonlinear dynamics in lasers: Laser Optics '95 : 27 June-1 July 1995, St. Petersburg, Russia. Bellingham, Wash. USA: SPIE, 1996.
Знайти повний текст джерелаN, Drabovich Konstantin, Akadėmii͡a︡ navuk Belarusi, and Society of Photo-optical Instrumentation Engineers., eds. ICONO 2001: Nonlinear optical phenomena and Nonlinear dynamics of optical systems : 26 June-1 July 2001, Minsk, Belarus. Bellingham, Washington: SPIE, 2002.
Знайти повний текст джерелаL, Pesquera, and Bermejo F. J, eds. Dynamics of non-linear optical systems: Proceedings of the International Workshop, Santander, Spain, 24-27 October, 1988. Singapore: Teaneck, NJ, USA, 1989.
Знайти повний текст джерелаA, Shcheglov V., ed. Nonlinear and quantum optical phenomena in nonequilibrium media. New York: Nova Science, 1993.
Знайти повний текст джерелаN, Krokhin O., ed. Nonlinear theory of strong electromagnetic wave-plasma interactions. Commack, N.Y: Nova Science, 1995.
Знайти повний текст джерелаB, Abraham Neal, Melnikov Leonid A, and Saratovskiĭ gosudarstvennyĭ universitet im. N.G. Chernyshevskogo., eds. Nonlinear dynamics in lasers and optical systems: NDLOS '93 International Workshop : 27 June-4 July 1993, Moscow--Nizhny Novgorod. Bellingham, Wash., USA: SPIE--the International Society for Optical Engineering, 1994.
Знайти повний текст джерелаRowena, Ball, and Akhmediev Nail N, eds. Nonlinear dynamics: From lasers to butterflies : selected lectures from the 15th Canberra International Physics Summer School, Australian National University, 21 January-1 February 2002. River Edge, N.J: World Scientific, 2003.
Знайти повний текст джерелаЧастини книг з теми "Nonlinear lasers dynamics"
Wieczorek, Sebastian M. "Noise Synchronization and Stochastic Bifurcations in Lasers." In Nonlinear Laser Dynamics, 269–91. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch11.
Повний текст джерелаVladimirov, Andrei G., Dmitrii Rachinskii, and Matthias Wolfrum. "Modeling of Passively Mode-Locked Semiconductor Lasers." In Nonlinear Laser Dynamics, 183–216. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch8.
Повний текст джерелаAmann, Andreas. "Complex Networks Based on Coupled Two-Mode Lasers." In Nonlinear Laser Dynamics, 245–67. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch10.
Повний текст джерелаGonzalez, Cristina M., Miguel C. Soriano, M. Carme Torrent, Jordi Garcia-Ojalvo, and Ingo Fischer. "Dynamical and Synchronization Properties of Delay-Coupled Lasers." In Nonlinear Laser Dynamics, 217–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch9.
Повний текст джерелаShore, K. Alan. "Desultory Dynamics in Diode-Lasers: Drift, Diffusion, and Delay." In Nonlinear Laser Dynamics, 355–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch15.
Повний текст джерелаAckemann, Thorsten, Jesus Jimenez, Yoann Noblet, Neal Radwell, Guangyu Ren, Pavel V. Paulau, Craig McIntyre, Gian-Luca Oppo, Joshua P. Toomey, and Deborah M. Kane. "Dynamics and Interaction of Laser Cavity Solitonsin Broad-Area Semiconductor Lasers." In Nonlinear Optical Cavity Dynamics, 41–76. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527686476.ch3.
Повний текст джерелаBrunel, Marc, Marco Romanelli, and Marc Vallet. "Synchronization in Vectorial Solid-State Lasers." In Nonlinear Optical Cavity Dynamics, 317–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527686476.ch13.
Повний текст джерелаZamora-Munt, Jordi, and Cristina Masoller. "Exploiting Noise and Polarization Bistability in Vertical-Cavity Surface-Emitting Lasers for Fast Pulse Generation and Logic Operations." In Nonlinear Laser Dynamics, 35–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639823.ch2.
Повний текст джерелаAbraham, E., H. Adachihara, O. Hess, R. A. Indik, P. Jacobsen, J. V. Moloney, and P. Ru. "Optical Turbulence in Semiconductor Lasers." In Springer Series in Nonlinear Dynamics, 213–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77769-1_39.
Повний текст джерелаBabin, Sergey A., Evgeniy V. Podivilov, Denis S. Kharenko, Anastasia E. Bednyakova, Mikhail P. Fedoruk, Olga V. Shtyrina, Vladimir L. Kalashnikov, and Alexander A. Apolonski. "SRS-Driven Evolution of Dissipative Solitons in Fiber Lasers." In Nonlinear Optical Cavity Dynamics, 277–316. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527686476.ch12.
Повний текст джерелаТези доповідей конференцій з теми "Nonlinear lasers dynamics"
Cundiff, S. T., J. K. Wahlstrand, J. Willits, R. P. Smith, T. R. Schibli, and C. R. Menyuk. "Pulse Dynamics in Mode-Locked Lasers." In Nonlinear Photonics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/np.2007.ntha1.
Повний текст джерелаWu, Ming-Ju, Shin-Chiuan Chen, You-Peng Hong, and Yu-Shan Juan. "Nonlinear characteristics of semiconductor laser subject to optical incoherent feedback." In Semiconductor Lasers and Laser Dynamics, edited by Krassimir Panajotov, Marc Sciamanna, and Rainer Michalzik. SPIE, 2018. http://dx.doi.org/10.1117/12.2307589.
Повний текст джерелаKovalev, Anton V., Evgeny A. Viktorov, Andrei Vladimirov, Natalia Rebrova, and Guillaume Huyet. "Theoretical study of mode-locked lasers with nonlinear loop mirrors." In Semiconductor Lasers and Laser Dynamics, edited by Krassimir Panajotov, Marc Sciamanna, and Rainer Michalzik. SPIE, 2018. http://dx.doi.org/10.1117/12.2307620.
Повний текст джерелаOraevsky, Anatoly N. "Dynamics of single-mode lasers and dynamic chaos." In Nonlinear Dynamics of Laser and Optical Systems, edited by Valery V. Tuchin. SPIE, 1997. http://dx.doi.org/10.1117/12.276179.
Повний текст джерелаBale, Brandon G., Khanh Kieu, J. Nathan Kutz, and Frank Wise. "Transition Dynamics for Multi-Pulsing in Mode-Locked Lasers." In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.nwb8.
Повний текст джерелаErneux, Thomas. "Multiple time scale analysis of lasers." In Fundamental issues of nonlinear laser dynamics. AIP, 2000. http://dx.doi.org/10.1063/1.1337758.
Повний текст джерелаLi, Feng, Qian Li, Xinhuan Feng, and P. K. A. Wai. "Nonlinear dynamics in lasers with nonlinear loss." In The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/PACIFIC RIM). IEEE, 2009. http://dx.doi.org/10.1109/cleopr.2009.5292074.
Повний текст джерелаBale, B. G., S. Boscolo, J. N. Kutz, and S. K. Turitsyn. "Intra-cavity Dynamics in High Power Mode-locked Fiber Lasers." In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.ntua4.
Повний текст джерелаLenstra, Daan. "Theory of delayed optical feedback in lasers." In Fundamental issues of nonlinear laser dynamics. AIP, 2000. http://dx.doi.org/10.1063/1.1337760.
Повний текст джерелаMirasso, Claudio R. "Applications of semiconductor lasers to secure communications." In Fundamental issues of nonlinear laser dynamics. AIP, 2000. http://dx.doi.org/10.1063/1.1337761.
Повний текст джерелаЗвіти організацій з теми "Nonlinear lasers dynamics"
Raymer, M. G. Nonlinear dynamics of broad-band lasers. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/6559821.
Повний текст джерелаRaymer, M. G. Nonlinear dynamics of broad-band lasers. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/5383104.
Повний текст джерелаSimpson, T. B., and J. M. Liu. Nonlinear Optics and Dynamics in Semiconductor Lasers. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada297536.
Повний текст джерелаSucha, G., S. R. Bolton, and D. S. Chemla. Nonlinear dynamics of additive pulse modelocked lasers. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/106631.
Повний текст джерелаRaymer, M. G. Nonlinear dynamics of broad-band lasers. Final report, September 15, 1990--September 14, 1991. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/10143280.
Повний текст джерелаRoy, Rajarshi. Nonlinear Dynamics of Coupled Laser Systems. Fort Belvoir, VA: Defense Technical Information Center, October 1997. http://dx.doi.org/10.21236/ada330680.
Повний текст джерелаPellegrini, C. Laser acceleration and nonlinear beam dynamics. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/7068558.
Повний текст джерелаPellegrini, C. Laser acceleration and nonlinear beam dynamics. Final technical report. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10165566.
Повний текст джерела