Добірка наукової літератури з теми "Phase arrays"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Phase arrays".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Phase arrays":

1

Zhang, Yong, Jing Jing Xue, Zhen Sen Wu, and Yu Shi Zhang. "Phase-Only Beam Optimization for GaAs Optical Waveguide Phase Array." Advanced Materials Research 571 (September 2012): 316–19. http://dx.doi.org/10.4028/www.scientific.net/amr.571.316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Optical waveguide phased arrays have highlighted advantages than other electro-optical material optical arrays in scanning angle, response speed etc. For diffraction fields of uniform waveguide have strong side-lobes, which have influence on scanning performance of phased arrays. So side-lobes compression is one of the main issues for optical waveguide phased array device development. Based on photoelectric effect, the relations of voltage and phase are analysised. Phase-only array beam control using a Genetic Algorithm, an efficiency-optimized scheme, for uniform optical waveguide array with process errors is proposed. Phase distributions are arranged as randomly increasing distributions and random distributions. The results show phase-only optical waveguide arrays control, without the reconstruction of devices, has fine side-lobes compression effects with -9.89[dB] side-lobes intensity ratio. So the performance of scanning beams gets well improved.
2

An, Zhi Juan, Yan Dong Zhang, and Liang Xu. "Research on the Phase Center of Uniform Linear Array." Advanced Materials Research 1049-1050 (October 2014): 2037–40. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.2037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Accurate estimation of array’s phase center is of great importance in navigation, tracking and other aircraft and aerospace systems. In this paper first the effect of reference point on the phase pattern of a uniform linear array is studied and the phase center of the array is estimated. Then the effect of beamsteering on the location of phase center in phased arrays is theoretically analyzed, finally numerical simulations are carried out and the results are in good agreement with the theoretical analysis.
3

Wu, Jinping, Wenxiao Qiao, Xiaohua Che, Xiaodong Ju, Junqiang Lu, and Wenhe Wu. "Experimental study on the radiation characteristics of downhole acoustic phased combined arc array transmitter." GEOPHYSICS 78, no. 1 (January 1, 2013): D1—D9. http://dx.doi.org/10.1190/geo2012-0114.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new kind of acoustic phased combined arc array transmitter with controllable directivity presented can be used in 3D acoustic image logging. The phased combined arc array is composed of numerous phased arc arrays placed equally along an axis. Each phased arc array contains several array elements arranged around a circumference. The phased combined arc array is considered as the combination of phased arc arrays and linear phased arrays. A directional radiation acoustic beam in the space is generated by simultaneously controlling the phase delay of excitation signals exerted on array elements located in the circumferential and axial directions. To investigate the radiation characteristics, an acoustic transmitter comprising four eight-element phased arc arrays was assembled to conduct physical simulation experiments in a water tank. Experimental results show that the main lobe width of the horizontal radiation energy narrows significantly by exerting phase delayed excitation signals on array elements of phased arc arrays. Adjusting the delay time of excitation signals applied on neighboring-phased arc arrays allows the main lobe direction of the vertical radiation energy to be steered and facilitates the change in the main lobe width of the vertical radiation energy. The phased combined arc array is characterized by controllable horizontal directivity, vertical directivity, and main lobe width of the radiated acoustic beam. More importantly, the acoustic phased combined arc array transmitter is applicable to 3D acoustic image logging, which is helpful in the enhancement of the reliability and accuracy of complex reservoir exploration.
4

Nouh, Mostafa. "Multichannel frequency-selective beaming in time-modulated electroacoustic phased arrays." Journal of the Acoustical Society of America 151, no. 4 (April 2022): A155. http://dx.doi.org/10.1121/10.0010954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Acoustic phased arrays have been a cornerstone of non-destructive evaluation, sonar communications, and medical imaging for years. Conventional arrays work by imparting a static phase gradient across a set of acoustic transceivers to steer a self-created wavefront in a desired direction. In a reception mode, they abide by basic reciprocity principles and exhibit the strongest gain for waves incident from the same direction to which they transmit. This talk sheds light on a class of dynamic phased arrays which is capable of (a) generating multiple scattered harmonics of a single-frequency voltage input which simultaneously propagate in different directional lanes and (b) exhibiting non-identical TX/RX patterns. We will show that such lanes emerge in the form of artificially-synthesized directional channels each with a distinct frequency signature that can be predicted a priori. To achieve this, we devise a class of phase shifters, which augment the array elements with a dynamic phase modulation using an array of piezo-wafer discs bonded to an elastic medium. The scattered beams propagate simultaneously in the transmitted wave field but can be visualized using an FFT of the time-transient measurements via laser Doppler vibrometry. The experimental realization illustrates the array’s ability to guide incident waves within tunable frequency channels that are commensurate with the modulation rate and along the intended directions.
5

Li, Shuaizhao, Zhongjun Yu, Qiang Zhang, and Yunhua Luo. "An Improved Power-Only Measurement Strategy for Calibrating Phased Array Antennas." International Journal of Antennas and Propagation 2022 (August 12, 2022): 1–10. http://dx.doi.org/10.1155/2022/4696818.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An improved power-only measurement method is proposed to calibrate phased arrays, which is aimed at solving two remaining problems: little contribution of one antenna element’s phase shifting to the whole array’s power and the ambiguity of solutions. The method includes four steps. Firstly, the random distributed phase of each element is adjusted to guarantee that it is −90° to +90° relative to the reference element. Secondly, the proper number of the elements shifting their phases together is approximately determined. Then, an invertible matrix is formed from the standard Hadamard matrix to split the array into different groups, which applies to an arbitrary number of elements; Finally, the array gets calibrated with an existing method. Numerical simulations and experiments are conducted to validate the effectiveness of the proposed method.
6

Yue, Jian, Anqi Cui, Fei Wang, Lei Han, Jinguo Dai, Xiangyi Sun, Hang Lin, Chunxue Wang, Changming Chen, and Daming Zhang. "Design of Monolithic 2D Optical Phased Arrays Heterogeneously Integrated with On-Chip Laser Arrays Based on SOI Photonic Platform." Micromachines 13, no. 12 (November 30, 2022): 2117. http://dx.doi.org/10.3390/mi13122117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this work, heterogeneous integration of both two-dimensional (2D) optical phased arrays (OPAs) and on-chip laser arrays based on a silicon photonic platform is proposed. The tunable multi-quantum-well (MQW) laser arrays, active switching/shifting arrays, and grating antenna arrays are used in the OPA module to realize 2D spatial beam scanning. The 2D OPA chip is composed of four main parts: (1) tunable MQW laser array emitting light signals in the range of 1480–1600 nm wavelengths; (2) electro-optic (EO) switch array for selecting the desired signal light from the on-chip laser array; (3) EO phase-shifter array for holding a fixed phase difference for the uniform amplitude of specific optical signal; and (4) Bragg waveguide grating antenna array for controlling beamforming. By optimizing the overall performances of the 2D OPA chip, a large steering range of 88.4° × 18° is realized by tuning both the phase and the wavelength for each antenna. In contrast to the traditional thermo-optic LIDAR chip with an external light source, the overall footprint of the 2D OPA chip can be limited to 8 mm × 3 mm, and the modulation rate can be 2.5 ps. The ultra-compact 2D OPA assembling with on-chip tunable laser arrays using hybrid integration could result in the application of a high-density, high-speed, and high-precision lidar system in the future.
7

Bushkin, S. S., S. A. Golovin, and N. N. Soroka. "Development of small-sized phased antenna arrays on ferrite phase shifters for unmanned aerial vehicles." Journal of «Almaz – Antey» Air and Defence Corporation, no. 1 (March 30, 2020): 19–25. http://dx.doi.org/10.38013/2542-0542-2020-1-19-25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, an approach to the development of small-sized phased antenna arrays on ferrite phase shifters is considered. The paper presents examples of predicting the radiation characteristics of phased antenna arrays and processing their measured characteristics using mathematical models. On the basis of a phased array antenna for an unmanned aerial vehicle, the influence of the design features of such an antenna on its radiation characteristics is shown. The radiation characteristics of a phased array antenna for an unmanned aerial vehicle developed at V. V. Tikhomirov Scientific Research Institute of Instrument Design are presented.
8

Micek, Piotr, and Dariusz Grzybek. "Experimental Analysis of the Arrays of Macro Fiber Composite Patches for Rotational Piezoelectric Energy Harvesting from a Shaft." Energies 14, no. 16 (August 7, 2021): 4815. http://dx.doi.org/10.3390/en14164815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Four arrays of three MFC patches, glued onto a rotating shaft, were compared in laboratory research. The first array was based on a delta circuit and equipped with one three-phase rectifier; the second array was based on a star circuit and equipped with one three-phase rectifier; the third array was based on parallel connection and equipped with three full-bridge rectifiers; and the fourth array was based on a series connection and equipped with three full-bridge rectifiers. The array based on a delta circuit generated the highest value of maximal electric power in comparison to the rest of arrays. It was experimentally observed that the arrays based on delta or star circuits of MFC patches and equipped with one three-phase rectifier generated a higher value of maximal power than arrays based on the connections of three full-bridge rectifiers, connected in parallel or in series. The array based on parallel connection generated the highest maximal value of current in comparison to rest of arrays for low values of load resistance (from 10 kΩ to 40 kΩ depending on the experiment). For higher values of load resistance arrays based on delta circuits and star circuits generated higher values of current than the array based on parallel connection.
9

Mytsenko, I., and O. Roenko. "QUICK-ACTING, CONTROLLABLE PHASE SHIFTER FOR PHASE ANGLE ADJUSTMENT IN RADIO SIGNALS." RADIO PHYSICS AND RADIO ASTRONOMY 27, no. 3 (2022): 213–18. http://dx.doi.org/10.15407/rpra27.03.213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Subject and Purpose. The phase shifters intended for controlling the phase of radio signals are widely used in ultra-high frequency technology, communication systems, radar, and a variety of measuring and special-purpose radio equipment. Designers of phased array antennas face the need of providing for broad beam scanning angles and high antenna gains, which leads to the necessity of greatly increasing the number of array elements, each of which is to be controlled by a phase shifter. Therefore, the development and creation of quick-acting phase shifters is an urgent task. The purpose of this work is to develop high-speed, controllable phase shifters for performing phase angle adjustments and thus provide, at an acceptable cost, for desirable parameters of phased antenna arrays, frequency stabilizing systems of magnetrons, etc. Methods and Methodology. The functional diagram of the proposed quick-acting, controllable phase shifter has been analyzed mathematically and modelled numerically. Results. The controllable phase shifter can be successfully implemented through the use of two parallel-connected resonators at the input of a specific receiver. Analysis of the signal amplitude and phase at the output of the phase shifter in dependence on the values at the input confirms the possibility of adjusting the phase of the output signal over a wide range of angles. Conclusions. A design concept of quick-acting, controllable phase shifters for producing adjustable phase angles has been developed. The device can be employed in phased antenna arrays or frequency stabilizing systems as a means of improving their operation parameters and reducing their cost at that.
10

Bell, Jason P., Jonathan Jedwab, Mahdad Khatirinejad, and Kai-Uwe Schmidt. "Three-Phase Barker Arrays." Journal of Combinatorial Designs 23, no. 2 (October 20, 2013): 45–59. http://dx.doi.org/10.1002/jcd.21377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Phase arrays":

1

Colley, Alan David. "Phase-locking of CO2 waveguide laser arrays." Thesis, Heriot-Watt University, 1991. http://hdl.handle.net/10399/848.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Soo, C. B. "Phase locked loop analysts for steerable antenna arrays." Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The purpose of this work was to produce novel Phase Locked Loops (PLL) architectures for antenna array applications. The operational characteristics of these PLLs architectures are presented and are analysed theoretically. The first type ofPLL ar.c. hitecture presented is called the Phase Conjugating Locked Loops (PCLL). Three different topologies for this type are designed to provide the phase conjugation operation necessary for retrodirective antenna array action. PCLL .Type 1 operates under the circumstance that input radio frequency roRF is different . from the VCO output frequency rovco while Type 2 and 3 operate when both ofthese frequencies are equal to each other. I I The second type of PLL architecture, which is called the Variable Phase Locked Loop (VPLL), is designed to operate in transmit only operation as a spatial phase shifter. The beamforming operation of a VPLL based antenna array is obtained by baseband tuning ofthe VCO voltage. The last type of PLL architecture studied, the Phase Buffering Locked Loop (PBLL), is suitable for self-tracking receive only operation. The embodiment of this PLL is architecturally similar to that of PCLL Type 1 with the exception that a down' converter mixer is included after the VCO and an inverter is inserted before the VCO. For each of the PLL architectures comprehensive derivations of the output phase noise jitter noise equations including the effects of the non-linearity and non-idealistic mixer characteristics is presented. These RMS phase noise jitter equations are utilised in order to evaluate the steady state error of each PLL topology. Following the investigation of noise performance, the stability of PLL architectures is examined. Bode Plot and Polar Plot have been deployed to facilitate the investigation. The final investigation concentrates on the impact of multiple signals on PBLL self-tracking receiver antenna array.
3

Buckley, David. "Phase-locked, multiple ridge waveguide, semiconductor laser arrays." Thesis, University of Bath, 1992. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Merlano, Duncan Juan Carlos. "Phase synchronization scheme for very long baseline coherent arrays." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/96673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Precise phase synchronization of clock or local oscillator signals over distributed systems is a recurring requirement in the design of a wide range of systems, with applications in telecommunications and, for example, in phased arrays. Addressing this requirement is a challenging task when the distance between the subsystems is large in terms of the wavelength and, in particular, when this electrical distance is time-varying. Carrier phase synchronization is the most important challenge in order to implement distributed beamforming systems and to optimize their power efficiency. At the same time, phase synchronization is crucial for the implementation of distributed (bistatic / multistatic) radar systems. In the last decades different techniques for remote phase synchronization have been proposed. In 1968 Thompson discussed, compared and classified the available techniques for reducing propagation induced phase fluctuations in frequency distribution systems and presented the principle of round trip stabilization systems. These phase synchronization schemes are Phase Locked Loops (PLL) in which the phase offset is measured directly for the signal which travels along the two-way path, and a direct feedback action closes the loop. The most important challenge for the design of these systems is the implementation of a method for the discrimination between the waves that travel in opposite directions in the transmission channel. One approach that has been proposed in previous works to fulfill this requirement is the use of different frequencies. This Ph.D. thesis dissertation presents a new scheme for remote carrier phase synchronization in which a set of tones with similar frequencies are simultaneously used to synchronize two separated stations. In the proposed scheme, the bandwidth required by the set of tones traveling along the loop can be reduced wherewith the phase fluctuations generated by the dispersive effects of the medium can be drastically reduced. The proposed scheme was prototyped and tested in the laboratory, with satisfactory results, and a possible application of the phase synchronization prototype has been evaluated. In order to show the excellent behavior of the phase synchronization prototype a simple distance measurement experiment has been carried out. In that experiment the variations of a distance are obtained from the variations of a measured phase using the synchronization prototype.
5

Harris, Edward Belden. "A study of phase-locking in Josephson junction arrays /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu148795015360062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kao, Tsung-Yu. "Surface-emitting distributed feedback terahertz quantum-cascade phase-locked laser arrays." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 111-114).
A new approach to achieve high-power, symmetric beam-pattern, single-mode THz emission from metal-metal waveguide quantum-cascade laser is proposed and implemented. Several surface-emitting distributed feedback terahertz lasers are coupled through the connection phase sectors between them. Through carefully choosing the length of phase sectors, each laser will be in-phase locked with each other and thus create a tighter beam-pattern along the phased-array direction. A clear proof of phase-locking phenomenon has been observed and the array can be operated in either in-phase or out-of-phase mode at different phase sector length. The phase sector can also be individually biased to provide another frequency tuning mechanism through gain-induced optical index change. A frequency tuning range of 1:5 GHz out of 3:9 THz was measured. Moreover, an electronically controlled "beam steering" device is also proposed based on the result of this work. This thesis focuses on the design, fabrication and measurement of the surface-emitting distributed feedback terahertz quantum-cascade phase-locked laser arrays.
by Tsung-Yu Kao.
S.M.
7

Herold, F. W., and J. A. Kaiser. "ELIMINATION OF SIDELOBE RESPONSE." International Foundation for Telemetering, 1998. http://hdl.handle.net/10150/607377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California
Conventional phased arrays nominally sum the signals received by the elements prior to detection. By multiplying rather than summing signals received from pairs of elements, i.e., interferometer pairs, a set of Spatial Frequencies (SFs) is obtained. Obtaining the SFs requires employment of a multiple local oscillator technique. When summed, these spatial frequencies produce a single lobed (voltage) radiation pattern which, when passed through a biased detector, removes all sidelobes from the response at a small loss of desired signal power.
8

Chesworth, Andrew Alexander. "Mode control in thin slab, diode pumped solid state lasers." Thesis, Heriot-Watt University, 1998. http://hdl.handle.net/10399/649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chu, Min. "Phase-shifting techniques for wireless multiple-antenna transmitter applications /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/6002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zarei, Hossein. "RF variable phase shifters for multiple smart antenna transceivers /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Phase arrays":

1

Yamada, Tesshi, Satoshi S. Nishizuka, Gordon B. Mills, and Lance A. Liotta, eds. Reverse Phase Protein Arrays. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9755-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Visser, Hubregt. Array and Phased Array Antenna Basics. New York: John Wiley & Sons, Ltd., 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

IEEE, International Symposium on Phased Array Systems and Technology (1996 Boston Mass ). 1996 IEEE International Symposium on Phased Array Systems and Technology, 15-18 October 1996, Boston, Massachusetts: Revolutionary developments in phased arrays. New York: Institute of Electrical and Electronics Engineers, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schmerr, Lester W. Fundamentals of Ultrasonic Phased Arrays. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-07272-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hansen, Robert C. Phased array antennas. 2nd ed. Hoboken, N.J: Wiley, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

C, Hansen Robert. Phased array antennas. 2nd ed. Hoboken, N.J: Wiley, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

C, Hansen Robert. Phased array antennas. 2nd ed. Hoboken, N.J: Wiley, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

C, Hansen Robert. Phased array antennas. New York: Wiley-InterScience, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

C, Hansen Robert. Phased array antennas. 2nd ed. Hoboken, N.J: Wiley, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bhattacharyya, Arun K. Phased Array Antennas. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471769126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Phase arrays":

1

Yu, Yikun, Peter G. M. Baltus, and Arthur H. M. van Roermund. "RF Phase Shifters for Phased Arrays." In Integrated 60GHz RF Beamforming in CMOS, 37–46. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0662-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Davis, Justin B., Sydney Andes, and Virginia Espina. "Reverse Phase Protein Arrays." In Methods in Molecular Biology, 103–22. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-1064-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yuan, Yulin, Xia Hong, Zuan-Tao Lin, Hongting Wang, Mikala Heon, and Tianfu Wu. "Protein Arrays III: Reverse-Phase Protein Arrays." In Methods in Molecular Biology, 279–89. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7231-9_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Solgaard, Olav. "Micromirror Arrays – Amplitude and Phase." In Photonic Microsystems, 1–42. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68351-5_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ferraro, F. R., F. Fusi-Pecci, and V. Testa. "The RGB-Phase Transition in Magellanic Clouds Globular Clusters." In Infrared Astronomy with Arrays, 127–28. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1070-9_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gausepohl, Heinrich, and Christian Behn. "Automated Synthesis of Solid-Phase Bound Peptides." In Peptide Arrays on Membrane Supports, 55–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-09229-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Koch, Joachim, Michael Mahler, and Martin Blüthner. "Epitope Mapping of Antibodies with Solid-Phase Oligopeptides." In Peptide Arrays on Membrane Supports, 69–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-09229-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zoby, M. R. G., S. Navarro-Martinez, A. Kronenburg, and A. J. Marquis. "Gas-Phase Mixing in Droplet Arrays." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 409–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14139-3_50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mahler, Michael, Martin Blüthner, and Joachim Koch. "Affinity Purification and Competition Assays Using Solid-Phase Oligopeptides." In Peptide Arrays on Membrane Supports, 107–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-09229-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Macleod, Kenneth G., Bryan Serrels, and Neil O. Carragher. "Reverse Phase Protein Arrays and Drug Discovery." In Methods in Molecular Biology, 153–69. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7201-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Phase arrays":

1

Clark, Stuart E. "Phase error compensation in optical phased arrays." In OE/LASE '94, edited by Hugo Weichel and Lewis F. DeSandre. SPIE, 1994. http://dx.doi.org/10.1117/12.177686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chance, Britton. "Multielement phased arrays for phase modulation imaging." In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, edited by Britton Chance and Robert R. Alfano. SPIE, 1993. http://dx.doi.org/10.1117/12.154653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Luh, H. "Quantities of phase shifters in phased arrays." In 2008 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2008. http://dx.doi.org/10.1109/aps.2008.4619098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Goldobin, I. S., Nickolay N. Evtikhiev, Andrei G. Plyavenek, and Sergei D. Yakubovich. "Phase-locked integrated arrays of injection lasers." In High-Power Multibeam Lasers and Their Phase Locking, edited by Fedor V. Lebedev and Anatoly P. Napartovich. SPIE, 1993. http://dx.doi.org/10.1117/12.160393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Martynyuk, A. E., and J. Rodriguez-Zamudio. "Polarization Phase Shifters and Spiraphase-Type Phased Arrays." In 2007 International Kharkiv Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW). IEEE, 2007. http://dx.doi.org/10.1109/msmw.2007.4294777.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pereira, Ricardo A. M., and Nuno Borges Carvalho. "Phase Adjustment for Beamforming Arbitrarily-Shaped Phased Arrays." In 2022 52nd European Microwave Conference (EuMC). IEEE, 2022. http://dx.doi.org/10.23919/eumc54642.2022.9924476.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Napartovich, Anatoly P. "Problems of phase locking in optically coupled laser arrays." In High-Power Multibeam Lasers and Their Phase Locking, edited by Fedor V. Lebedev and Anatoly P. Napartovich. SPIE, 1993. http://dx.doi.org/10.1117/12.160396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dokolin, V. M., G. A. Krislsmov, and A. I. Tchizhov. "Phase shifters in receivers of active phase arrays." In 2005 15th International Crimean Conference Microwave and Telecommunication Technology. IEEE, 2005. http://dx.doi.org/10.1109/crmico.2005.1564842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kloos, G. "On quasi-phase-conjugated arrays." In Photonics Europe, edited by Christophe Gorecki, Anand K. Asundi, and Wolfgang Osten. SPIE, 2008. http://dx.doi.org/10.1117/12.781360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Buttazzoni, G., and R. Vescovo. "Phase-Only reconfigurable aperiodic arrays." In 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2017. http://dx.doi.org/10.1109/iceaa.2017.8065362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Phase arrays":

1

Edward C. Kern. Ballast-mounted PV arrays: Phase 2 final report. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/764761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nathan S. Lewis. Vapor Phase Detection Using Chemi-Resistor Sensor Arrays. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/10465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Warren, M. E., G. R. Hadley, K. L. Lear, P. L. Gourley, G. A. Vawter, J. C. Zolper, T. M. Brennan, and B. E. Hammons. Phase-locked arrays of vertical-cavity surface-emitting lasers. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10163743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gopinath, Juliet T. Phase and Frequency Control of Laser Arrays for Pulse Synthesis. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ad1013214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grate, Jay W., and D. A. Nelson. Sorptive Polymers and Photopatterned Films for Gas Phase Chemical Microsensors and Arrays. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/15010066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Coleman, Jeffrey O., and W. M. Dorsey. Phase-only Beam Broadening in Large Transmit Arrays Using Complex-Weight Gradient Descent. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada603307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Peters, Timothy J. Application of a Conjugate Gradient Method to the Synthesis of Phase-Only Planar Arrays. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/ada233756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Peters, Frank H. Low Power Vertical Cavity Laser Arrays with Integrated Microlenses for Free Space Interconnects. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada304597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shimko, Martin A. High-Efficiency, Ultra-High Pressure Electrolysis With Direct Linkage to PV Arrays - Phase II SBIR Final Report. Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/962737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kamrath, Matthew, Vladimir Ostashev, D. Wilson, Michael White, Carl Hart, and Anthony Finn. Vertical and slanted sound propagation in the near-ground atmosphere : amplitude and phase fluctuations. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Sound propagation along vertical and slanted paths through the near-ground atmosphere impacts detection and localization of low-altitude sound sources, such as small unmanned aerial vehicles, from ground-based microphone arrays. This article experimentally investigates the amplitude and phase fluctuations of acoustic signals propagating along such paths. The experiment involved nine microphones on three horizontal booms mounted at different heights to a 135-m meteorological tower at the National Wind Technology Center (Boulder, CO). A ground-based loudspeaker was placed at the base of the tower for vertical propagation or 56m from the base of the tower for slanted propagation. Phasor scatterplots qualitatively characterize the amplitude and phase fluctuations of the received signals during different meteorological regimes. The measurements are also compared to a theory describing the log-amplitude and phase variances based on the spectrum of shear and buoyancy driven turbulence near the ground. Generally, the theory correctly predicts the measured log-amplitude variances, which are affected primarily by small-scale, isotropic turbulent eddies. However, the theory overpredicts the measured phase variances, which are affected primarily by large-scale, anisotropic, buoyantly driven eddies. Ground blocking of these large eddies likely explains the overprediction.

До бібліографії