Добірка наукової літератури з теми "Plastic packaging waste"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Plastic packaging waste".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Plastic packaging waste":

1

Celauro, Clara, Rosalia Teresi, Francesco Graziano, Francesco Paolo La Mantia, and Antonio Protopapa. "Preliminary Evaluation of Plasmix Compound from Plastics Packaging Waste for Reuse in Bituminous Pavements." Sustainability 13, no. 4 (February 19, 2021): 2258. http://dx.doi.org/10.3390/su13042258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Finding an appropriate technical solution for reusing waste plastics is crucial for creating a circular plastic economy. Although mechanical recycling is the best option for recycling post-consumer plastics, some heterogeneous mixed plastics cannot be recycled to produce secondary material due to their very low properties. In this case, alternative routes should be considered in order to limit their disposal as much as possible. Therefore, in order to solve the environmental problems in the landfills of plastic waste recycling, and to improve the mechanical performance of bitumen for road pavement, the reuse of these post-consumer plastic wastes are preliminarily evaluated for the modification of bitumen for road use. The field of polymers used so far and widely studied concerns virgin materials, or highly homogeneous materials, in case of recycled plastics. In this work, a highly heterogeneous mixed plastic—Plasmix—from the separate collection in Italy, is used as a bitumen modifier for road construction. The research focused on the dry (into the mixture) and wet (into the binder) addition of different content of the Plasmix compound, with the aim of assessing the feasibility of the modification itself. Results of the mechanical tests carried out prove an increase in performance and that there is a potential of the addition of the Plasmix compound both for binder and mixture modifications.
2

Ncube, Lindani Koketso, Albert Uchenna Ude, Enoch Nifise Ogunmuyiwa, Rozli Zulkifli, and Isaac Nongwe Beas. "An Overview of Plastic Waste Generation and Management in Food Packaging Industries." Recycling 6, no. 1 (February 12, 2021): 12. http://dx.doi.org/10.3390/recycling6010012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Over the years, the world was not paying strict attention to the impact of rapid growth in plastic use. This has led to unprecedented amounts of mixed types of plastic waste entering the environment unmanaged. Packaging plastics account for half of the global total plastic waste. This paper seeks to give an overview of the use, disposal, and regulation of food packaging plastics. Demand for food packaging is on the rise as a result of increasing global demand for food due to population growth. Most of the food packaging are used on-the-go and are single use plastics that are disposed of within a short space of time. The bulk of this plastic waste has found its way into the environment contaminating land, water and the food chain. The food industry is encouraged to reduce, reuse and recycle packaging materials. A wholistic approach to waste management will need to involve all stakeholders working to achieve a circular economy. A robust approach to prevent pollution today rather than handling the waste in the future should be adopted especially in Africa where there is high population growth.
3

Lok, Bianca, Andrea Buettner, Philipp Denk, Eva Ortner, and Tanja Fell. "Exploring Odor Minimization in Post-Consumer Plastic Packaging Waste through the Use of Probiotic Bacteria." Sustainability 12, no. 22 (November 12, 2020): 9432. http://dx.doi.org/10.3390/su12229432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plastic packaging represents a large proportion of the plastic consumption throughout the world. The negative environmental impact associated with plastic packaging waste can be in part abated by recycling plastics, and increasing numbers of regulatory frameworks are being adopted towards this goal. Despite recent advances in modern recycling technologies, the production of high-quality polyolefin recyclates remains a challenge. Among other functional requirements, odor plays a crucial role in the acceptance of recycled packaging. This presents a challenge, as odor contamination in plastic packaging waste can stem from diverse sources, such as spoilage processes, and strongly depends on the quality of the post-consumer input material. The present study addressed this issue by exploring potential odor abatement of malodors in packaging waste through the use of probiotic bacteria. Specifically, probiotics were added to a mixed post-consumer plastic packaging waste fraction, which was subsequently evaluated using human sensory and gas chromatography–olfactometric analyses. A comparison of treated with untreated plastic waste fractions revealed significant sensory differences. Further structural elucidation of the causative odorants confirmed a reduction in malodorous microbial metabolites, although complete odor removal was not achieved. However, this environmentally friendly approach may represent an essential step towards overcoming the odor burden in post-consumer plastic packaging recyclates.
4

Prajapati, Ravindra, Kirtika Kohli, Samir K. Maity, and Brajendra K. Sharma. "Potential Chemicals from Plastic Wastes." Molecules 26, no. 11 (May 26, 2021): 3175. http://dx.doi.org/10.3390/molecules26113175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plastic is referred to as a “material of every application”. From the packaging and automotive industries to the medical apparatus and computer electronics sectors, plastic materials are fulfilling demands efficiently. These plastics usually end up in landfills and incinerators, creating plastic waste pollution. According to the Environmental Protection Agency (EPA), in 2015, 9.1% of the plastic materials generated in the U.S. municipal solid waste stream was recycled, 15.5% was combusted for energy, and 75.4% was sent to landfills. If we can produce high-value chemicals from plastic wastes, a range of various product portfolios can be created. This will help to transform chemical industries, especially the petrochemical and plastic sectors. In turn, we can manage plastic waste pollution, reduce the consumption of virgin petroleum, and protect human health and the environment. This review provides a description of chemicals that can be produced from different plastic wastes and the research challenges involved in plastic waste to chemical production. This review also provides a brief overview of the state-of-the-art processes to help future system designers in the plastic waste to chemicals area.
5

Hadengganan, Munzir, and Djoko Sihono Gabriel. "Places and Causes of Mismanaged Plastic Materials in the Life Cycle of Flexible Plastic Packaging Based on Mechanical Recycling Context." Key Engineering Materials 888 (June 9, 2021): 129–38. http://dx.doi.org/10.4028/www.scientific.net/kem.888.129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plastic waste has become a big issue in the world for its large amount of plastic waste in the sea. Most of the plastic waste is plastic packaging which consists of flexible and rigid plastic packaging. This research discusses flexible plastic packaging. Until now, most researches on the loss of plastic materials discuss how to manage plastic waste disposal once it has been used by community: only a few discuss production cycle: while none of them discusses flexible plastic packaging area. This research aims to examine the number of mismanaged materials throughout flexible plastic packaging life cycle using a combination of Material Flow Analysis (MFA) and Life Cycle Analysis (LCA). Based on the literature review, interviews and observations conducted by the author to all stakeholders in the life cycle of flexible plastic packaging, mismanagement of plastic material occurred in each cycle, mostly caused by quality degradation of flexible plastic that could cause plastic waste was not acceptable in the mechanical recycle. The results of this study show that: (1) mismanaged material occurred in all cycles throughout the life cycles of flexible plastic packaging, (2) quality degradation is the main caused of mismanaged material in several cycles, and (3) the mismanaged materials in the life cycle of flexible plastic packaging were 98.29%.
6

Eşkin Uzun, Seniye, Volkan Enç, and Fatih Hoşoğlu. "Atık Kompozit İçecek Kartonları Geri Dönüşüm Yöntemleri /." Journal of History Culture and Art Research 1, no. 4 (January 5, 2013): 345. http://dx.doi.org/10.7596/taksad.v1i4.60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Kağıt, plastik ve alüminyum malzeme katmanlarından oluşan kompozit kartonlar özellikle sıvı gıdaların muhafazası için tercih edilen bir ambalaj türüdür. İlk olarak süt için tasarlanan ve geliştirilen kompozit kartonlar, günümüzde sütün yanı sıra pek çok gıda ve içeceğin ambalajlanmasında yaygın olarak kullanılmaktadır. Kullanım sürecini tamamladıktan sonra atık halini alan kompozit içecek kartonlarının geri dönüşümünde ise ciddi sıkıntılar bulunmaktadır. Özellikle ülkemizde bu tür atıkların geri dönüşümünün sağlanması sınırlı olarak yapılmakta, bu atıkların büyük bir kısmı depolama alanlarına gönderilmektedir. Bu nedenle bu atıkların yönetimine yönelik öncelikli bilimsel çalışmaların yapılarak, uygun yönetim alternatiflerinin uygulamaya aktarılması ihtiyacı doğmuştur. Bu çalışmada, atık kompozit içecek kartonlarının değerlendirme yöntemleri ve süreçleri araştırılarak bu yöntemler sonucunda elde edilen ürünler ile kullanım alanlarının belirlenmesi amaçlanmıştır. Recycling Methods of Composite Beverage Carton Waste Composite cartons which consist of paper, plastic and aluminum, are used in packaging of drinks. However composite cartons are designed and developed for the milk packaging, now days it has been widely used in packaging of many food and drink. There are serious problems in recycling of composite cartons. Since recycling of packaging wastes is limited in Turkey, most of the packaging waste is been landfilled. Therefore, primarily there has been a need to scientific studies done about the management of packaging wastes and implementation of appropriate packaging waste management alternatives. In this study, detailed and technical data about recycling of composite beverage cartons has been obtained from the previous studies, printed - digital databases, company, Environmental Agency and web pages. The project about the Management of Packaging Wastes has been carried out in coordination with ISTAC Co. in 26 districts in İstanbul. Every step including public training to acceptance of packaging waste to recycling facility has been observed. Many analyses are done to determine the amount and character of waste. Technical reports are presented about the results of the technical visits to waste collecting-separation and recycling facilities. The data presented in the study is obtained from the project about Management of Packaging Wastes which is done between in 2005-2012. Wafer board production is the simplest and cheapest recycling method of packaging wastes where the separation of components cannot be done by handling. First step of recycling of packaging waste is the recovery of %75 paper by hidropulper method. An extra recovery process should be done for recycling of aluminum and plastic. Many technologies such as pyrolysis, gasification and plasma are been investigated as alternative recycling methods for recycling of packaging wastes. Since there have been some regulations regarding the certification of packaging waste management. Even the amount of the packaging waste is less than %1 of the solid waste, an assessment for packaging wastes has been vital. However recycling of packaging waste has started with wafer production by using simple physical processes, now days many complex methods are developed. Unfortunately none of the new Technologies has been used in Turkey. With the adaption of appropriate technologies to our country and new investments as a result of investigation of new Technologies will provide an economical benefit while reducing the environmental impact. This study aims to create awareness for composite packaging waste in following researches and studies
7

Nakatani, Jun, Tamon Maruyama, and Yuichi Moriguchi. "Revealing the intersectoral material flow of plastic containers and packaging in Japan." Proceedings of the National Academy of Sciences 117, no. 33 (August 3, 2020): 19844–53. http://dx.doi.org/10.1073/pnas.2001379117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Japanese government developed a strategy for plastics and laid out ambitious targets including the reduction of 25% for single-use plastic waste and the reuse/recycling of 60% for plastic containers and packaging by 2030. However, the current usage situation of single-use plastics including containers and packaging, which should be a basis of the strategy, is unclear. Here, we identify the nationwide material flow of plastics in Japan based on input–output tables. Of the domestic plastic demand of 8.4 Mt in 2015, 1.6 and 2.5 Mt were estimated to be for containers and packaging comprising household and industry inflows, respectively, through the purchase/procurement of products, services, and raw materials. Considering the current amount of recycling collected from households (1.0 Mt) and industries (0.3 to 0.4 Mt), the reuse/recycling target has already been achieved if the goal is limited to household container and packaging waste, as is the focus of Japan’s recycling law. Conversely, the results indicate that it will be extremely difficult to reach the target collectively with industries. Therefore, it is essential that efforts be made throughout the entire supply chain. Food containers and packaging that flowed into the food-processing and food service sectors accounted for 15% of the inflow of containers and packaging into industries. Thus, the key to achieving the reuse/recycling target will comprise the collection of plastic food packaging from not only households but also the food industry. Furthermore, the collection of flexible plastic films used between industry sectors will put the target within reach.
8

Takenaka, Nozomi, Aya Tominaga, Hiroshi Sekiguchi, Ryoko Nakano, Eiichi Takatori, and Shigeru Yao. "Creation of Advanced Recycle Process to Waste Container and Packaging Plastic — Polypropylene Sorted Recycle Plastic Case —." Nihon Reoroji Gakkaishi 45, no. 3 (2017): 139–43. http://dx.doi.org/10.1678/rheology.45.139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Alias, S., M. A. Azizan, N. S. Mohd-Nazry, C. C. Tay, N. H. Abd-Aziz, and N. A. M. Bashar. "Tensile Properties of Liner Fabricated from the Recycled Food Packaging Plastic Waste." Journal of Advanced Research in Dynamical and Control Systems 11, no. 12-SPECIAL ISSUE (December 31, 2019): 646–57. http://dx.doi.org/10.5373/jardcs/v11sp12/20193261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lopez-Urionabarrenechea, A., I. de Marco, B. M. Caballero, M. F. Laresgoiti, and A. Adrados. "Catalytic stepwise pyrolysis of packaging plastic waste." Journal of Analytical and Applied Pyrolysis 96 (July 2012): 54–62. http://dx.doi.org/10.1016/j.jaap.2012.03.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Plastic packaging waste":

1

Solis, Martyna. "Potential of chemical recyclingto improve the recycling of plastic waste." Thesis, KTH, Energi och klimatstudier, ECS, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Chemical recycling can improve the plastic recycling rates and reduce the level of CO2 from fossil plasticsproduction. Thus, it is seen as an attractive technology in the action towards meeting the emission, circulareconomy and recycling targets. In the Swedish context, it could help reach the carbon neutrality goal by2045. This thesis aims to investigate the potential of chemical recycling in the Swedish plastic recyclingsystem with Brista waste-to-energy plant in Stockholm as a case study. The thesis describes different stagesof current Swedish plastic recycling system and quantifies material losses at every stage. The recycling rateof plastic packaging in the household waste stream in Stockholm was found to be lower than 7%.Remaining 93% is sent for energy recovery through incineration. The feasibility of implementing differentchemical recycling technologies is analysed together with the Technology Readiness Level (TRL). Theresults showed that there are three technologies with the highest TRL of 9: thermal cracking (pyrolysis),catalytic cracking and conventional gasification. The important parameters when implementing chemicalrecycling in an existing facility are discussed and used for the feasibility analysis of implementing thesethree technologies in Brista facility. It is not obvious which technology is the best one for this application.Gasification is proven for the production of intermediates (oil or syngas) which can be used for newplastic production, however, the scale of Brista facility is not large enough for a gasification plant to befeasible. Pyrolysis and catalytic cracking could be used at a smaller scale, but they have not contributed tothe production of new plastics so far, thus, both technologies would require further research and tests ona pilot scale before moving to commercial operation. The findings from this study have to be followed byan in-depth analysis of real data, from pilot or commercial projects, which is currently unavailable.The major challenges to implement chemical recycling of waste plastics in Sweden are of economic andpolitical nature. The key point in successful deployment of chemical recycling is the development ofa business model which would ensure that all actors along the plastic recycling chain benefit economicallyfrom the solution. For the Brista 2 plant case, the challenges include Stockholm Exergi’s insufficientexpertise to perform chemical recycling independently, uncertain feedstock purity requirements andchallenging market situation.
Kemisk återvinning har potentialen att öka återvinningsgraden av plastförpackningar och minska därmedminska klimatpåverkan från fossila plastprodukter. Således ses den som en möjlig teknik för att mötautsläpps- och återvinningsmål samt införandet av en cirkulär ekonomi. I ett svenskt sammanhang kan detbidra till att nå målet om netto noll utsläpp 2045. Denna uppsats syftar till att undersöka potentialen förkemisk återvinning i det svenska återvinningssystemet för plast, med det avfallseldade Bristaverket somfallstudie. Avhandlingen beskriver ingående led i den nuvarande svenska plaståtervinningssystem ochkvantifierar materialförluster i alla steg. Återvinningsgraden för plastförpackningar i hushållsavfalleti Stockholm visar sig vara lägre än 7%. Återstående 93% skickas för energiåtervinning genom förbränning.Analysen av olika teknologier för kemisk återvinnings genomförs med hjälp av Technology ReadinessLevel (TRL). Resultatet visar att det fanns tre teknologier med högsta TRL på 9: termisk krackning(pyrolys), katalytisk krackning och konventionell förgasning. Viktiga parametrar för kemisk återvinningkopplat till en befintlig anläggning diskuteras och används för genomförbarhetsanalys av de tre valdateknologierna genom en fallstudie vid Bristaanläggningen. Det är inte uppenbart vilken teknik som är denbästa för denna applikation. Förgasning är bevisat framgångsrik för produktion av intermediära produkter(olja eller syngas) som kan användas för ny plastproduktion, men Bristaanläggningens storlek är för litenför att en förgasningsanläggning ska varamotiverad. Pyrolys och katalytisk krackning kan användasi mindre applikationer, men de har hittills inte lyckats bidra till framställning av ny plast. Därför skullebåda teknikerna kräva ytterligare forskning och test på pilotskala innan de skalas upp till kommersiell drift.Resultaten från denna studie måste följas av en djupgående analys av verklig data, från pilotprojekt ellerkommersiella projekt, som för närvarande inte är tillgänglig.De stora utmaningarna för att genomföra kemisk återvinning av plastavfall i Sverige är av ekonomisk ochpolitisk karaktär. Nyckeln till framgångsrik spridning av kemisk återvinning är utvecklingen av enaffärsmodell som säkerställer att alla aktörer längs plaståtervinningskedjan kan dra ekonomiskt fördel avlösningen. För en anläggning i Brista finns utmaningar i form av Stockholm Exergis otillräckliga expertisinom området kemisk återvinning, osäkra råvarukrav och en utmanande marknadssituation.
2

Braglia, Michele. "Assessment of circular economy indicators in a multi-criteria approach along the plastic packaging value chain." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The awareness on raw material scarcity and environmental issues has globally stimulated interest into the re-design of products, processes or services, maximizing prevention, reuse and recycling rates. Within this context, plastic represents a key material. In particular, plastic packaging is a priority issue, accounting for the 40% of the European converters demand and about 60% of post-consumer plastic waste. Nowadays, less than 30% of collected plastic waste is recycled, while landfilling and incineration rates of plastic waste remain high, approximately 27% and 41% respectively. The EU Commission is currently hardly working on this issue: the recent EU Plastic Strategy sets very ambitious goals for plastics sustainability. This background topic is the key point of the master thesis. The study starts with mapping the best practices on plastic recycling and prevention, following the entire plastic packaging value chain. Adopting a multi-criteria perspective, legislative, economic and technical, technological and environmental framework of good practices and criticalities is outlined, in order to assess the current state of innovation on circular economy for plastics. The overview on levers and barriers for plastic circularity allows to design a new set of circular economy indicators suitable to be applied on plastic packaging sector. As good practices, eco-design principles are adopted in order to delineate an assessment tool able to identify plastic packaging sustainability and circularity. Moreover, the compliance with the regulatory framework and possible economic advantages are verified. Therefore, the final goal of the study is to identify practical suggestions which can be converted into a set of indicators for measuring plastic packaging circularity, delineating criticalities and possible improvements for boosting the sustainable transition of the entire sector.
3

Badía, Valiente José David. "Strategies and analytical procedures for a sustainable plastic waste management. An application to poly (ethylene terephthalate) and polylactide in the packaging sector." Doctoral thesis, Editorial Universitat Politècnica de València, 2011. http://hdl.handle.net/10251/12890.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
El propósito de esta tesis doctoral fue evaluar la influencia de los diferentes procesos de gestión de residuos, tales como la valorización material, energética y biológica de dos poliésteres clave de la industria del embalaje: el actual no-renovable poli (tereftalato de etileno) (PET) y el potencial candidato para sustituirlo en un futuro próximo, la polilactida (PLA) de base renovable. Se utilizaron diversas plantas piloto para simular las condiciones de la degradación sufrida por PET y PLA en el reciclado mecánico, la pirólisis, la combustión y el enterramiento en suelo. Los cambios fueron monitorizados por calorimetría diferencial de barrido (DSC), análisis dinámico-mecánico-térmico (DMTA), análisis termogravimétrico (TGA), espectrometría infrarroja con transformada de Fourier (FTIR), espectroscopia de correlación 2D-IR para el análisis de gases (EGA), espectrometría de masas MALDI-TOF, microscopía electrónica de barrido (SEM), índice de fluidez de masa fundida (MFR), ensayos de tracción e impacto Charpy y viscosimetría. Se han propuesto, desarrollado y aplicado diversas estrategias y procedimientos analíticos para establecer parámetros fiables para ser utilizados como indicadores de la degradación y por tanto controlar la influencia de cada proceso de valorización en la calidad del material. El comportamiento de PET y PLA reciclados mecánicamente se evaluó en base a sus propiedades químicas, microestructurales, mecánicas y térmicas. Se observó una pérdida general de prestaciones de PET y PLA reprocesado una vez y dos veces, respectivamente. Además, las propiedades de los materiales reciclados de PLA fueron mejores en términos relativos a los productos reciclados de PET. Las descomposiciones térmica y termo-oxidativa causadas por los procesos de pirolisis y combustión se evaluaron sobre la estabilidad térmica, gases emitidos y cinéticas de descomposición. Se destaca el uso de la combustión controlada para ambos polímeros, ya que se necesita menos energía para iniciar la descomposición, y la mezcla de gases que se desprenden es más homogénea.
Badía Valiente, JD. (2011). Strategies and analytical procedures for a sustainable plastic waste management. An application to poly (ethylene terephthalate) and polylactide in the packaging sector [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/12890
Palancia
4

Sjölin, Linnea. "Hushållens källsortering av plastförpackningar : En ekonometrisk analys av svenska kommuner." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Insamlingen av använda plastförpackningar varierar mellan de svenska kommunerna. Tidigare studier har undersökt de regionala skillnaderna utifrån antagandet att faktorerna bakom insamlingen av återvinningsbara material har samma inverkan på graden av insamling oberoende av storleken på kommunerna. Syftet med denna uppsats är att undersöka vilka faktorer som kan bidra till att förklara insamlingen av plastförpackningar bland svenska kommuner, samt att analysera om betydelsen av dessa faktorer skiljer sig åt mellan större och mindre kommuner. Med hjälp av data från 242 kommuner för åren 2011–2015 delades Sveriges kommuner upp i större respektive mindre kommuner (enligt SKR:s klassificering). Genom regressionsanalys (OLS) av ovan nämnda paneldataset går det att jämföra och identifiera skillnader. Resultaten visar att det finns skillnader i bakomliggande faktorer till insamlingen av plastförpackningar. Specifikt framkommer att i båda fallen är insamlingen av plastförpackningar (i kilogram per invånare) högre i kommuner med relativt sett lägre ekonomisk standard samt högre medelålder. Det finns dock även viktiga skillnader mellan större och mindre kommuner, inte minst i form av att policyvariabler tenderar att ha mer framträdande effekter på källsorteringen i mindre kommuner jämfört med större. Mindre kommuner som infört viktbaserade avgifter samt har ett högt antal återvinningsstationer per invånare har en statistiskt signifikant högre källsortering. Motsvarande policyeffekter kunde inte uppvisas för de större kommunerna.
5

Olsson, Fredrika. "The Potential of Reducing Carbon Footprint Through Improved Sorting." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Almost five million tonnes of household waste was generated in Sweden in 2018, half of which was residual waste sent for incineration with energy recovery. For materials that can not be recycled or biologically treated, incineration with energy recovery is considered a preferred management option. The issue is that the fraction for residual waste contains considerable amounts of wrongly sorted materials, such as food waste and plastic packaging, which can be recycled or biologically treated, thus causing a smaller environmental impact. To quantify the composition and waste quantities of the wrongly sorted materials a waste composition analysis of the residual waste from four community bins in Västmanland county was conducted. The analysis revealed that about two-thirds of the waste was wrongly sorted and only one-third was actual residual waste. Life cycle analysis was subsequently used to calculate the carbon footprint of the wrongly sorted food waste and plastic packaging waste as well as the carbon footprint from optimal sorting and treatment of the materials. The investigation concluded that for food waste, anaerobic digestion caused a smaller climate impact than incineration with energy recovery and for plastic packaging, recycling generated a smaller climate impact than incineration with energy recovery. The size of the carbon footprint for the different management methods was in line with the priority order given in the waste hierarchy, stated in Swedish legislation.  However, the size of the potential climate savings partly depended on the choices made in the life cycle analysis where the most sensitive parameters were related to external production of heat, polymer resin and vehicle fuel. If the potential climate savings is extrapolated for VafabMiljö's entire collecting area, the total climate savings per year would be 8 263 tonnes of carbon dioxide equivalents per year for food waste and 2 070 tonnes of carbon dioxide equivalents per year for plastic packaging waste. This would be equivalent to driving 1 250 laps around the Earth with a car every year or flying 14 900 times Sweden–Thailand back and forth every year.
Nästan fem miljoner ton hushållsavfall genererades i Sverige under 2018, varav ungefär hälften skickades till energiåtervinning. För avfall som inte kan materialåtervinnas eller behandlas biologiskt anses energiåtervinning vara den bästa metoden för avfallshantering. Problemet är att stora mängder återvinningsbart material såsom matavfall och plastförpackningar felaktigt hamnar i restavfallet när det istället hade kunnat återvinnas och på så sätt medfört en mindre miljöpåverkan. För att kvantifiera samansättning och avfallsmängder av det felaktigt sorterade materialet, gjordes en plockanalys på restavfallet från fyra miljöbodar i Västmanland. Analysen visade att ungefär två tredjedelar av materialet var felaktigt sorterat och endast en tredjedel utgjordes av övrigt restavfall. Livscykelanalys användes därefter för att beräkna klimatavtrycket för det felaktigt sorterade matavfallet och för plastförpackningarna som återfanns i restavfallet såväl som klimatavtrycket för optimal sortering och hantering av materialen. Ordningen i avfallshierarkin visade sig stämma väl överens med klimatavtrycket från de olika behandlingsmetoderna i det undersökta området. För matavfall innebar rötning en lägre klimatpåverkan än energiåtervinning och för plastförpackningar medförde materialåtervinning en lägre klimatpåverkan än energiåtervinning. Storleken på besparingarna av växthusgaser berodde dock till viss del på val av inparametrar och de faktorer som främst påverkade var alternativ produktion av värme, plastråvara och drivmedel. Om resultaten extrapoleras över hela VafabMiljös upphämtningsområde så skulle de totala klimatbesparingarna för matavfall vara 8 263 ton koldioxidekvivalenter per år och för plastförpackningar 2 070 ton koldioxidekvivalenter per år. Dessa besparingar är jämförbara med bilkörning motsvarande 1 250 varv runt jorden varje år eller 14 900 tur- och returresor med flyg Sverige–Thailand varje år.
6

Blackstock, Ross. "Pre-treatment processing of household plastic packaging waste." Thesis, 2016. http://hdl.handle.net/10539/22329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfilment of the requirements for the degree of Masters in Engineering. Johannesburg, 2016
The purpose of this investigation was to investigate whether or not it would be possible to separate blow moulded and injection moulded waste plastics using two techniques; air classification and ballistic separation. Air classification and ballistic separation are two techniques that separate different types of material according to size, shape and density. Previous research, together with new measurements, has suggested that blow mould plastics tend to be thinner in terms of wall thickness than injection moulded plastics meaning that air classification could be used to separate each type of plastic. The material used for the study was supplied by a Romanian recycler and was a mixture of High Density Polyethylene and polypropylene. Two additional samples, one Polyethylene rich and the other polypropylene rich, were also included in the research. The first part of the study involved measuring different characteristics of the material to determine how to go about performing the different air classification experiments. The second part of the study focused on separating the different material samples using different air classifier systems and a ballistic separation system. The third part of the study focused on processing the samples from part 2 (air classification) into test specimens for further mechanical and melt flow property measurements. After measuring the mechanical and melt flow properties of the different samples it was found that air classification did not substantially improve the mechanical or melt flow properties of the material. The study did, however, show that there is a strong correlation between polymer type and melt flow properties. High Density polypropylene is generally used for blow mould applications whereas polypropylene is generally used for injection mould applications. Separating the material according to polymer type therefore means that the material is, to an extent, also sorted according to melt flow properties.
MT2017
7

Angi, Gülşah. "Plastics packaging waste management and regulations Turkey versus Europe." Master's thesis, 2019. http://hdl.handle.net/10400.1/13997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plastics are used almost everywhere and making our lives much easier thanks to their multiple functionalities. However, due to inadequate production and recycling methods, millions tons of plastic litter are ending up in the earth and oceans every year. The European Union is taking necessary actions to make an impact and to be able to overcome that problem. In 2015, the EU Commission adopted an ‘Action Plan’ for a circular economy of plastics. In 2017, the EU Commission declared another goal of ensuring all plastic packagings will be recyclable by 2030. In comparison to the EU, as a big contributor of plastics waste in the region, Turkey’s actions were also wondered and so, Turkish plastics waste management system and related regulations have been examined, as well as the European Union’s. Primarily, it has been investigated that the current Turkish waste management regulations are mostly compatible with the European Union ones, as Turkey is adapting its regulations according to the EU requirements. The significant difference between the examined Turkish and the EU regulations was the recycling target ratios for plastic packagings. While Turkish regulation on management of packaging waste was obliged to recyclate min 54% (until 2020) of the plastic packaging waste, the mandatory ratio according to the EU’s packaging waste directive was only 22.5% (until 2025). According to the latest data reached, Turkey was recycling 54% of its total plastic packaging waste occurred in 2017 which was equal to the given target. On the other hand, the EU was recycling 40.8% of its total plastic packaging waste occurred in 2016 and that was much higher than their given target ratio. By considering only the recent ‘plastic packagings waste’ recycling ratios, it can be interpreted that Turkey’s recycling performance is better than the EU average. However, considering both current Turkish and the EU’s plastics waste management practices and results, even though there are good plans for the future, it can be concluded that their recent systems are not sustainable and not adequate enough to solve plastics waste problem in our territory everlastingly.
Os plásticos são usados em quase todo o lado e facilitam muito a nossa vida graças às suas múltiplas funcionalidades. No entanto, devido a métodos inadequados de produção e reciclagem, milhões de toneladas de resíduos plásticos acabam na terra e nos oceanos cada ano. A União Europeia está a tomar as medidas necessárias conseguir superar esse problema. Em 2015, a Comissão Europeis adotou um "Plano de Ação" para uma economia circular de plásticos. Em 2017, a Comissão Europeia declarou outra meta: garantir que todas as embalagens de plástico sejam recicláveis até 2030. Em comparação com a UE, sendo a Turquia um grande contribuinte de resíduos plásticos na região, as suas ações também foram questionadas, sendo que tanto o sistema turco de gestão de resíduos de plástico como os regulamentos afins foram examinados, assim como os da União Europeia. Primeiramente, verificou-se que os atuais regulamentos turcos de gestão de resíduos são em grande parte compatíveis com os da União Europeia, já que a Turquia está adaptando suas regulamentações de acordo com os requisitos da UE. A diferença significativa entre as regulamentações turcas examinadas e as regulamentações da UE foi o objetivo relativo à taxa de reciclagem para embalagens de plástico. Embora a regulamentação turca sobre a gestão de resíduos de embalagens tenha como meta reciclar 54% (até 2020) dos resíduos de embalagens de plástico, de acordo com a diretiva de resíduos de embalagens, as exigências da UE eram de apenas 22,5% (até 2025). De acordo com os últimos dados obtidos, a Turquia reciclou 54% de seu total de resíduos de embalagens de plástico em 2017, o que foi igual à meta estabelecida. Por outro lado, a UE reciclou 40,8% do seu total de resíduos de embalagens plásticas em 2016 e foi muito superior à meta estabelecida. Ao considerar apenas as taxas de reciclagem de resíduos de embalagens de plástico, pode interpretar-se que o desempenho de reciclagem da Turquia é melhor que o média da UE. No entanto, considerando as atuais práticas e resultados da gestão de resíduos de plástico tanto da Turquia como da UE, embora exista um bom plano para o futuro, pode concluir-se que os seus sistemas atuais não são sustentáveis nem suficientes para resolver o problema dos resíduos de plástico no nosso território para sempre.

Книги з теми "Plastic packaging waste":

1

Ogilvie, S. M. Aspects of plastic packaging waste management. Stevenage: Warren Spring Laboratory, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Simmons, Brian. Recycling of plastics packaging: An update : a literature review. Leatherhead, Sussex, UK: Pira International, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kenkyūjo, Mitsubishi Sōgō. Heisei 20-nendo shigen junkan suishin chōsa itakuhi (yōki hōsō risaikuru suishin chōsa) : yōki hōsō shiyō gōrika chōsa : hōkokusho. [Tokyo]: Mitsubishi Sōgō Kenkyūjo, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fearncombe, John. Guide for recyclers of plastics packaging in Illinois. Springfield, IL (325 W. Adams, Room 300, Springfield 62704-1892): The Office, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chapman, Gillian. Art from packaging: With projects using cardboard, plastics, foil, and tape. Austin, Tex: Raintree Steck-Vaughn, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sangyōshō, Japan Keizai, and Mitsubishi UFJ Risāchi & Konsarutingu., eds. Yōki hōsō risaikuru suishin chōsa ( PET botoru no kokusai junkan jittai chōsa) hōkokusho: Heisei 18-nendo kankyō mondai taisaku chōsa tō itakuhi. [Tokyo]: Mitsubishi UFJ Risāchi & Konsarutingu, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Service, Ontario Legislative Research, ed. Degradable plastics, packaging and waste management. [Toronto]: Ontario Legislative Library, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chapman, Gillian, and Pam Robson. Art from Packaging (Salvaged). Wayland Pub Ltd, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sullivan, Frost &. European Market for Plastics in Packaging: Enviromental Debate Over Waste Disposal Characteristics Industry. John Day Company, Incorporated, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chapman, Gillian, and Pam Robson. Making Art with Packaging (Everyday Art). PowerKids Press, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Plastic packaging waste":

1

Okuwaki, A., T. Yoshioka, M. Asai, H. Tachibana, K. Wakai, and K. Tada. "The Liquefaction of Plastic Containers and Packaging in Japan." In Feedstock Recycling and Pyrolysis of Waste Plastics, 663–708. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470021543.ch26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Feil, Alexander, and Thomas Pretz. "Mechanical recycling of packaging waste." In Plastic Waste and Recycling, 283–319. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-817880-5.00011-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Horrocks, J. A(Tony). "RECYCLING OF PLASTIC FIBRE AND PACKAGING WASTE." In Recycling Textile and Plastic Waste, 61–76. Elsevier, 1996. http://dx.doi.org/10.1533/9780857093004.2.61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kol, Rita, Martijn Roosen, Sibel Ügdüler, Kevin M. Van Geem, Kim Ragaert, Dimitris S. Achilias, and Steven De Meester. "Recent Advances in Pre-Treatment of Plastic Packaging Waste." In Current Topics in Recycling [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99385.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There is an urgent need to close the loop of plastic waste. One of the main challenges towards plastic packaging waste recycling is the presence of a variety of contaminants. These contaminants include organic residues, additives, labels, inks and also other plastic types that can be present in the waste stream due to missorting or in multimaterial structures (e.g. multilayer films in packaging). In this context, pre-treatment processes are a promising route to tackle the difficulties that are encountered in mechanical and chemical recycling due to these contaminants. This chapter gives better insight on the already existing pre-treatment techniques and on the advances that are being developed and/or optimized in order to achieve closed-loop recycling. Some of these advanced pre-treatments include chemical washing to remove inks (deinking), extraction methods to remove undesired plastic additives and dissolution-based pre-treatments, such as delamination and dissolution-precipitation techniques.
5

Arvanitoyannis, Ioannis S. "Waste Management for Polymers in Food Packaging Industries." In Plastic Films in Food Packaging, 249–310. Elsevier, 2013. http://dx.doi.org/10.1016/b978-1-4557-3112-1.00014-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Akram, N. "Degradable Plastic Recycling." In Degradation of Plastics, 81–94. m, 2021. http://dx.doi.org/10.21741/9781644901335-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The public demand of plastics for food, drinks, consumable and packaging is increasing enormously all over the world. Due to limited available plastic resources, it is challenging to meet the stipulation of the massive population. The contribution of the synthetic plastic industry is encouraging to cope with these challenges. However, it is not only restricted towards production, but the degradation of its waste is also equally arduous and even more complicated to a large extent. A useful solution to this problem is recycling instead of degradation. In order to optimize the utility of recycling, various techniques are in progress. Plastic recycling is an acceptable technique to keep the economy in circulation. Moreover, it is an effective way to reduce the environmental pollution and to promote green environment.
7

Hameed, Mehvish, Rouf Ahmad Bhat, Dig Vijay Singh, and Mohammad Aneesul Mehmood. "White Pollution." In Practice, Progress, and Proficiency in Sustainability, 52–81. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0031-6.ch004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plastic derived from the petrochemical industry with a high molecular weight constitutes about 9-13% of total solid waste. Since the industrial revolution, the use of plastic has increased manifold without improving its adequate management as a waste. Most of the plastic waste produced in the world is mainly from packaging industry followed by building and construction. Plastic is a non-degradable deadly pollutant to degrade environmental quality and are known to remain in water and soil for years without making any change in their structure. Due to enormous generation, open burning of plastic is also preferred due to the lack of resource in the developing countries thus releasing toxic gases thereby causing air pollution. Plastic disturbs the balance of the environment by acting as physical barrier leading to the drainage of the drains, degrading soil properties, and are often ingested by the organisms ultimately leading to their death. Thus, it becomes more important to manage the plastic pollution keeping in view its detrimental impacts on the environment.
8

Buzková, Romana. "The European Union’s Budget: Focus on Own Resources Post-2020." In European Financial Law in Times of Crisis of the European Union, 87–96. Ludovika Egyetemi Kiadó, 2019. http://dx.doi.org/10.36250/00749.08.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper provides an overview of the European Union’s revenue system, focusing on own resources and their possible reform. It further analyses the European Commission’s proposal of the next multiannual financial framework post-2020 and its financing. The next MFF proposal introduces, in addition to the traditional resources, a basket of new own resources (based on the Common Consolidated Corporate Tax Base, the European Union Emissions Trading System and plastic packaging waste that is not recycled).
9

Lazim, Yusriah, Abdul Baith Abu Hanafi, Mohd Syazwan Adura, Siti Afifah Muda, Lily Suhaila Yacob, and Ahmad Marzio Mohd Yusof. "Modifications of Biodegradable Thermoplastic Starch (TPS) From Sago Starch via Cross-Linking Method." In Advances in Environmental Engineering and Green Technologies, 77–91. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1374-3.ch004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The increasing amount of synthetic plastic waste has contributed to environmental problems worldwide. As an alternative to synthetic plastics, thermoplastic starch (TPS) has been used for many applications, especially packaging application, since TPS provides good biodegradation and ease of disposal and reducing the consumption of petroleum. However, TPS tends to experience loss in mechanical properties and stability due to retrogradation of the starch. Modification of starch is often carried out to overcome this shortcoming in TPS. TPS can be made of various type of starch from various plant sources such as corn, cassava, rice, and potato. Sago starch is a plant-based starch that originates from the sago palm tree. The chapter aims to give a short literature overview on the sago starch, issues related to starch and thermoplastic starch, modification of sago starch via crosslinking method, properties of crosslinked sago starch, and limitation and opportunities of modification of sago starch via crosslinking method.
10

"Challenges in the Separation of Plastics from Packaging Waste." In Separating Pro-Environment Technologies for Waste Treatment, Soil and Sediments Remediation, edited by M. T. Carvalho, 30–42. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/9781608054725112010005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Plastic packaging waste":

1

Muhammad, A., A. R. Rashidi, A. Roslan, and S. A. Idris. "Development of bio based plastic materials for packaging from soybeans waste." In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McDonald, John. "Citrus Packaging and the Environment." In ASME 1990 Citrus Engineering Conference. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/cec1990-3602.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Say the word “environment” today, and most likely you will generate some sort of a response. It’s one of our society’s hot issues and we have seen Washington, from President Bush on down, and many of our states and cities jumping on the environmental issue because there are real problems that need to be solved and, in addition, it appears to be good politics. Solid waste is part of the environmental issue and packaging is part of solid waste. So, I would like to take you through how we, at Continental Can, are looking at this. We are one of the leading packaging producers with seven domestic divisions producing aluminum cans, steel and bi-metal cans, PET plastic bottles, extrusion blow molded plastic bottles from HDPE, PP, PVC, with multilayers and multimaterial barriers, and thermo formed microwave trays and tubs and aseptic cups mostly made from plastic multimaterial barrier sheet which we extrude. Continental also annually produces over 6 billion metal vacuum “twist off” closures, some plastic closures and our Bondware division produces paper and plastic coated paper containers mostly or fast food outlets. Paper published with permission.
3

Gegeckienė, Laura, and Ingrida Venytė. "Eco-friendly material for packaging." In 10th International Symposium on Graphic Engineering and Design. University of Novi Sad, Faculty of technical sciences, Department of graphic engineering and design,, 2020. http://dx.doi.org/10.24867/grid-2020-p34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
: At the moment there exists a predominant prevalence of the combined packaging (i. e. cardboard is covered with polyethylene) in the food packaging market, which provides the necessary barrier properties for a packaged product. However, there also exist a great number of problems regarding the issue such as packaging sorting, recycling, waste management, and economic losses. According to the latest data, 65 enterprises in Lithuania are currently working in the recycling industry. They can recycle different types of packaging. The issue of ecology is highly relevant in the printing industry. It is not a secret that the global population is growing rapidly. As the demand for food and non-food product packaging increases, the production volume increases accordingly. In the future, it is expected that the volume of packaging production will increase accordingly. MMK cardboard can be called a revolution in the industry of packaging. Until now, packaging which has direct contact with food must be laminated with films such as PE. Plastic waste is one of the most common types of waste that takes a very long time to decompose. Normally, plastic packaging can take up to several hundred years to decompose in landfills, while cardboard is easily recyclable and takes up to half a year to biodegrade. The aim of this research is to investigate the physical and mechanical properties and characteristics (in order to offer analog materials in the perspective) of the new materials with the necessary properties and compared to the properties of the most using materials.
4

Usachev, Ivan, and Dmitry Solomin. "GLOBAL TRENDS IN BIODEGRADABLE POLYMERS." In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b2/v3/35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recently, the rapid and almost uncontrollable growth in the consumption of synthetic plastics in many sectors of the economy, especially in the field of packaging, has been a serious concern. Plastic containers are used for packaging food products, medicines, electronic devices, liquids, including those with a higher hazard class, etc. [1]. According to the German Nova-Institute, the global plastic production in 2020 has reached almost 400 Mill. Tons. At the same time, the volume of biodegradable plastics obtained from renewable resources amounted to only 3.5 million tons, i.e., about 1% of the total volume production [2]. Considering that only 25% of plastic waste is recycled, the growing consumption of polymer products is forcing manufacturers to develop biodegradable polymer compositions [3]. The problem has economic and environmental aspects since it is interconnected with the growing need to protect the environment and reduce the cost of raw materials for the production of various products.
5

Beyerlein, Dagmar, and Lee Hornberger. "Using Computer Simulation to Validate and Optimize the Design of an Innovative Electronic Packaging Concept." In ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/cie-14654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Reducing integrated circuit (IC) plastic packaging production costs by improving the transfer mold and leadframe designs is a costly and time-consuming process. Rather than building mold and leadframe prototypes to perform empirical studies, this research describes how C-MOLD, a microchip encapsulation simulation software application, was used to validate and optimize an innovative mold and leadframe design that has the potential to reduce raw material waste associated with packaging by more than 59%. Estimates indicate that the proposed design will cut annual production costs by more than $600,000.
6

Jayanty, Sri Satya Kanaka Nagendra, William J. Sawaya, and Michael D. Johnson. "Sustainable Distribution Design: Contrasting Disposable, Recyclable, and Reusable Strategies for Packaging Materials Using a Total Cost Analysis With an Illustration of Milk Distribution." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Engineers, policy makers, and managers have shown increasing interest in increasing the sustainability of products over their complete lifecycles and also from the ‘cradle to grave’ or from production to the disposal of each specific product. However, a significant amount of material is disposed of in landfills rather than being reused in some form. A sizeable proportion of the products being dumped in landfills consist of packaging materials for consumable products. Technological advances in plastics, packaging, cleaning, logistics, and new environmental awareness and understanding may have altered the cost structures surrounding the lifecycle use and disposal costs of many materials and products resulting in different cost-benefit trade-offs. An explicit and well-informed economic analysis of reusing certain containers might change current practices and results in significantly less waste disposal in landfills and in less consumption of resources for manufacturing packaging materials. This work presents a method for calculating the costs associated with a complete process of implementing a system to reuse plastic containers for food products. Specifically, the different relative costs of using a container and then either disposing of it in a landfill, recycling the material, or reconditioning the container for reuse and then reusing it are compared explicitly. Specific numbers and values are calculated for the case of plastic milk bottles to demonstrate the complicated interactions and the feasibility of such a strategy.
7

Castro, Alexandra, Cândida Vilarinho, Jorge Araújo, and Joana Carvalho. "Recovery of Paper Fibers From TetraPak® Packaging: Material and Energetic Valorization of the Remaining Fraction." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, a methodology was developed for the treatment/valorization of all the constituent fractions of TetraPak ®, proposing pyrolysis technology for the recycling of plastic and aluminum fraction, resulting in the recovery process of the paper fibers. In percentage these three elements are distributed approximately as follows: 70% of cardboard (kraft paper), 25% of low-density polyethylene (LDPE) and 5% of aluminum foil [1, 2, 3, 4]. It was developed an integrated and innovative methodology that starts with the recovery of the paper fibers, which must reintegrate the production cycle of the packaging company. Followed by the valorization of the remaining fraction, this fraction consists in plastic and aluminum, and is valorized through a pyrolysis process. The pyrolysis process is an irreversible chemical modification of compounds by the action of heat and in the absence of oxygen. This technology are used for energy recovery, which causes thermal degradation of the compounds in anoxic environment, and is therefore considered an environmentally friendly technology and it is considered one of the alternative routes for treatment of waste TetraPak ® packaging [4]. The pyrolysis tests were carried out in laboratory reactor at different temperatures (between 300 and 500°C). At the end of this process the aluminum was recovered and it was produced a synthesis gas with added value. This produced gas was constituted by CO, H2, CO2 e CH4 with maximum values recorded of 5000, 3200 e 7.5 ppm e 40%, respectively. The laboratory test were confirmed by the analysis of the thermal behavior by DTA/TGA and it was confirmed that the temperature of 500°C is the most indicated for energetic valorization of the aluminum, paper and plastic fraction.
8

Garofalo, E., M. Claro, P. Scarfato, L. Di Maio, and L. Incarnato. "Upgrading of recycled plastics obtained from flexible packaging waste by adding nanosilicates." In THE SECOND ICRANET CÉSAR LATTES MEETING: Supernovae, Neutron Stars and Black Holes. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4937331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Saefudin, Agus, Henita Rahmayanti, Diana Vivanti Sigit, and Agung Purwanto. "Household waste management perspectives in Indonesia: A case study of polymer plastics packaging waste in Kampong Melayu, East Jakarta." In THE 2ND SCIENCE AND MATHEMATICS INTERNATIONAL CONFERENCE (SMIC 2020): Transforming Research and Education of Science and Mathematics in the Digital Age. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0045370.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Askarieh, M. M., A. W. Harris, and S. J. Wisbey. "The Potential Impact of Oil and Other Non-Aqueous Phase Liquids (NAPLs) on the Long-Term Management of Radioactive Wastes." In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The presence of non-aqueous phase liquids (NAPLs) in radioactive wastes has the potential to adversely affect their long-term management. The buoyancy of light NAPLs can represent a separate pathway for their migration from a waste management facility, such as a deep repository, to the accessible environment. Their inherent toxicity and potential burden of radionuclides need to be addressed. Nirex is currently developing an understanding of the behaviour of NAPLs and exploring the means of mitigating any adverse impact. NAPLs such as oils and solvents are present in existing wastes, but NAPLs can also be generated by degradation of some solid organic materials, such as plastics. Wastes arising in the United Kingdom that may contain NAPLs include liquids and sludges contaminated with oils, and waste items containing trapped oil, for example gearboxes and pumps. The reference inventory being assessed by Nirex also contains significant quantities of organic materials which can be considered to be potential precursors to the generation of NAPLs. A programme of work has been instigated by Nirex to develop a better understanding of the behaviour of NAPLs. The programme includes the following aspects: understanding the mechanisms by which NAPLs might be produced and existing NAPLs degraded and destroyed: • consideration of the containment that could be offered by packaging of wastes containing NAPLs; • investigating the extent to which radionuclides may be entrained in NAPLs; • understanding the migration of NAPLs in the near-field and in geological systems; • the impact of NAPLs on the surface properties of repository backfill and the geosphere; • development of assessment tools to quantify the potential risk due to NAPLs. This paper will describe the scope of this programme of work, and will provide examples from the ongoing programme to demonstrate that suitable long-term waste management solutions can be developed for NAPL containing wastes.

Звіти організацій з теми "Plastic packaging waste":

1

Fråne, Anna, Åsa Stenmarck, Søren Løkke, Malin zu Castell Rüdenhausen, Hanne L. Raadal, and Margareta Wahlström. Guidelines to increased collection of plastic packaging waste from households. Nordic Council of Ministers, February 2015. http://dx.doi.org/10.6027/anp2015-712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brooks, Amy, Jenna Jambeck, and Eliana Mozo-Reyes. Plastic Waste Management and Leakage in Latin America and the Caribbean. Inter-American Development Bank, November 2020. http://dx.doi.org/10.18235/0002873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As of 2017, 8.3 billion metric tons of plastic had been produced worldwide. Since about 40% is used in things that are thrown away relatively quickly (packaging and single use items), 6.4 billion metric tons had already become discarded materials needing to be managed. Only 9% of these discarded materials were recycled globally. The annual estimate of plastic entering our oceans globally is 5 to 13 million metric tons (MMT) per year. Latin America and the Caribbean (LAC) has an extensive populated coast, 119,000 km of coastline and over 205 million people living within 50 km of that coastline. Waste management infrastructure is still under development in many countries. Economic growth without fully developed infrastructure can lead to increased plastic leakage. This report focuses on municipal solid waste as a source of plastic input into the environment in LAC. The reports estimates that total plastic waste available to enter the ocean in LAC in 2020 was 3.7 MMT . Under business-as-usual projections, the report anticipates that the regional quantity available to enter the oceans in 2030 will be 4.1 MMT and 4.4 MMT in 2050.

До бібліографії