Добірка наукової літератури з теми "Surface-Enhanced Spectroscopy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Surface-Enhanced Spectroscopy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Surface-Enhanced Spectroscopy":

1

Moskovits, Martin. "Surface-enhanced spectroscopy." Reviews of Modern Physics 57, no. 3 (July 1, 1985): 783–826. http://dx.doi.org/10.1103/revmodphys.57.783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

NISHINO, Tomoaki. "Surface-enhanced Raman Spectroscopy." Analytical Sciences 34, no. 9 (September 10, 2018): 1061–62. http://dx.doi.org/10.2116/analsci.highlights1809.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Garrell, Robin L. "Surface-enhanced Raman spectroscopy." Analytical Chemistry 61, no. 6 (March 15, 1989): 401A—411A. http://dx.doi.org/10.1021/ac00181a001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Haynes, Christy L., Adam D. McFarland, and Richard P. Van Duyne. "Surface-Enhanced Raman Spectroscopy." Analytical Chemistry 77, no. 17 (September 2005): 338 A—346 A. http://dx.doi.org/10.1021/ac053456d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stiles, Paul L., Jon A. Dieringer, Nilam C. Shah, and Richard P. Van Duyne. "Surface-Enhanced Raman Spectroscopy." Annual Review of Analytical Chemistry 1, no. 1 (July 2008): 601–26. http://dx.doi.org/10.1146/annurev.anchem.1.031207.112814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Aroca, Ricardo, and S. Rodriguez-Llorente. "Surface-enhanced vibrational spectroscopy." Journal of Molecular Structure 408-409 (June 1997): 17–22. http://dx.doi.org/10.1016/s0022-2860(96)09489-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Aroca, Ricardo F., Daniel J. Ross, and Concepción Domingo. "Surface-Enhanced Infrared Spectroscopy." Applied Spectroscopy 58, no. 11 (November 2004): 324A—338A. http://dx.doi.org/10.1366/0003702042475420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sur, Ujjal Kumar. "Surface-enhanced Raman spectroscopy." Resonance 15, no. 2 (February 2010): 154–64. http://dx.doi.org/10.1007/s12045-010-0016-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Popp, Jürgen, and Thomas Mayerhöfer. "Surface-enhanced Raman spectroscopy." Analytical and Bioanalytical Chemistry 394, no. 7 (June 10, 2009): 1717–18. http://dx.doi.org/10.1007/s00216-009-2864-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shupeng Liu, Shupeng Liu, Lianxin Li Lianxin Li, Zhenyi Chen Zhenyi Chen, Na Chen Na Chen, Zhangmin Dai Zhangmin Dai, Jing Huang Jing Huang, and Bo Lu Bo Lu. "Surface-enhanced Raman spectroscopy measurement of cancerous cells with optical fiber sensor." Chinese Optics Letters 12, s1 (2014): S13001–313003. http://dx.doi.org/10.3788/col201412.s13001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Surface-Enhanced Spectroscopy":

1

Zagdoun, Alexandre. "Dynamic Nuclear Polarisation Surface Enhanced NMR Spectroscopy." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2014. http://tel.archives-ouvertes.fr/tel-01065554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Since its discovery in the 1950's, DNP has been a topic of significant interest in magnetic resonance. DNP is the transfer of polarization between single electrons and nuclei, driven by micro-wave irradiation. Since its renaissance at high field in the 90's, due to the introduction of gyrotrons as high-power, high-frequency microwave sources most application of this technique have been samples of biological interest in frozen solution. The long standing interest of our group in the characterization of surface species such as supported catalysts on silica lead us to apply this technique to the study of surfaces. The goal of this thesis is the development of this method, dubbed DNP Surface Enhanced NMR Spectroscopy. To that end, we first introduce new polarizing agents, soluble in organic solvents. The influence of the electron relaxation times on the DNP enhancements is demonstrated and efficient tailored polarizing agents are introduced. The optimization of the sample preparation to obtain optimal sensitivity is also discussed, as well as the interaction between the radical and the surface. These developments made it possible to apply the technique to many functionalized materials, with some examples developed in this manuscript. Finally, the issue of DNP on polarization conductors is discussed, and we show how microcrystals can be efficiently polarized using DNP.
2

Scherzer, Ryan D. "Degradation Resistant Surface Enhanced Raman Spectroscopy Substrates." UNF Digital Commons, 2017. http://digitalcommons.unf.edu/etd/760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Raman spectroscopy is employed by NASA, and many others, to detect trace amounts of substances. Unfortunately, the Raman signal is generally too weak to detect when very small, but non-trivial, amounts of molecules are present. One way around this weak signal is to use surface enhanced Raman spectroscopy (SERS). When used as substrates for SERS, metallic nanorods grown using physical vapor deposition (PVD) provide a large enhancement factor to the Raman signal, as much as 1012. However, Silver (Ag) nanorods that give high enhancement suffer from rapid degradation as a function of time and exposure to harsh environment. Exposure to harsh environments is an enormous issue for NASA; considering all environments experienced during space missions will be drastically different from Earth regarding atmosphere pressure, atmosphere composition, and environmental temperature. Au and Ag nanorods suffer from a thermochemical kinetic phenomenon where the surface atoms diffuse and cause the nanostructures to coalesce towards bulk structure. When in bulk, SERS enhancement is lost and the substrate becomes useless. A stable structure for SERS detection is designed through engineering the barriers to surface diffusion. Aluminum (Al) nanorods are forced to undergo surface diffusion through thermal annealing and form rough mounds with a stable terminating oxide layer. When Ag is deposited on top of this Al structure, it becomes kinetically bound and changes to physical structure become impeded. Using this paradigm, samples are grown with varied lengths of Ag and are then characterized using scanning electron microscopy (SEM) and Ultraviolet-Visible spectroscopy. The performance of the samples are then tested using SERS experiments for the detection of trace amounts of rhodamine 6G, a ‘gold standard’ analyte. Characterization shows the effectiveness of the Raman substrates remains stable up to 500°C. Transitioning to basic scientific investigation, next is to strive to isolate the individual impacts of chemical and physical changes to the Ag nanostructure and how they affect the Raman signal. Substrates are compared over the course of a month long experiment to determine the effects of vacuum storage and addressing the effects of chemical adsorbance. Additionally, this was attempted by comparing the signal degradation of Ag nanorods to that of Au, which is known to be chemically inert, allowing for the separation of chemical and physical effects. Although Ag and Au have similar melting points, Ag physically coarsened significantly more. FTIR also showed significant chemical contamination of the Ag, but not Au. A hypothesis is proposed for future investigations into the chemical changes and how they are coupled with and promote the physical changes in nanostructures. Overall, the novel SERS substrate engineered here may enable the detection of trace amounts of molecules in harsh environments and over long timescales. Conditions such as those found on space missions, where substrates will experience months or years of travel, high vacuum environments, and environments of extreme temperatures.
3

Xie, Yu-Tao. "Surface-enhanced hyper raman and surface-enhanced raman scattering : novel substrates, surface probing molecules and chemical applications /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202007%20XIE.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gant, Virgil Alexander. "Detection of integrins using surface enhanced raman spectroscopy." Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/2304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Integrins are transmembrane heterodimer protein receptors that mediate adherence to both the intracellular cytoskeleton and extracellular matrix. They play a major role in cellular adhesion and the breadth of their importance in biology is only recently being understood. The ability to detect concentrations of integrins on the cell surface, spatially resolve them, and study the dynamics of their behavior would be a significant advance in this field. Ultimately, the ability to detect dynamic changes of integrins on the surface of a cell maybe possible by developing a combined device such as an atomic force microscope (AFM) and surface enhanced Raman spectroscopy (SERS) system. However, the focus of this research is to first determine if integrins can be detected using SERS. Surface enhanced Raman spectroscopy (SERS) is technique used to detect the presence of analytes at the nanomolar level or below, through detection of inelastically scattered light. This thesis discusses the detection of integrins employing SERS as the detection modality. Integrins have been detected, in solution, using two silver colloids as the enhancing surface. Two silver colloid preparation methods are compared by ease of formulation and degree of enhancement in this thesis. Citrate and hydroxylamine hydrochloride (HA-HCl) reduced silver colloids were prepared through wet chemistry,compared using UV-Vis light spectroscopy, and tested for surface enhancement using adenine (a strong SERS active molecule), and two different integrins, (alpha)V(beta)3 and (alpha)5(beta)1. Results indicated that both colloids demonstrate SERS activity for varying concentrations of adenine as compared to standard non-enhanced Raman, however, only the citrate reduced colloid showed significant enhancement effect for the integrins.
5

Cunningham, Dale. "Fundamental studies of surface enhanced resonance Raman spectroscopy." Thesis, University of Strathclyde, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sockalingum, Dhruvananda. "Surface enhanced Raman spectroscopy in the near-infrared." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sharma, Narayan. "Solution Processable Surface Enhanced Raman Spectroscopy (SERS) Substrate." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1434375587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tsoutsi, Dionysia. "Inorganic Ions Sensing by surface-enhanced Raman scattering spectroscopy." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/288213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
En aquest projecte de tesi s'ha aconseguit desenvolupar un sistema de detecció, identificació i quantificació independent d'ions inorgànics. La detecció dels ions es basa en la diferent afinitat cap a diferents lligands orgànics mitjançant l'espectroscòpia de dispersió Raman augmentada per superfícies (surface-enhanced Raman scattering, SERS). En resum, com a substrat s'utilitzaran nanopartícules de plata o microesferes nanoestructurades que es prepararan mitjançant l'adsorció de nanopartícules d'or sobre la superfície de microesferes de sílice a partir del protocol de capa per capa i el seu posterior creixement epitaxial amb plata. Aquest últim pas es realitzarà a través de protocols desenvolupats en el nostre laboratori i té com a objectiu l'obtenció de superfícies plasmòniques discretes altament eficients en SERS. Els substrats es funcionalizaran posteriorment amb lligands orgànics tiolats amb alta afinitat per ions inorgànics (el fluoròfor orgànic, amino-MQAE i la terpiridina, pztpy-DTC). Com a pas següent, es realitzarà la detecció i quantificació simultània dels ions combinant, per a la seva detecció, espectroscòpia SERS. Els canvis espectrals SERS, en la manera de vibració dels lligands organics, estan correlacionats com a funció de la concentració de cada ió amb límits de detecció comparables als de diversos mètodes analítics convencionals.
En este proyecto de tesis se ha conseguido desarrollar un sistema de detección, identificación y cuantificación independiente de iones inorgánicos. La detección de los iones se basa en su diferente afinidad hacia diferentes ligandos orgánicos a través de la espectroscopia de dispersión Raman aumentada por superficies (surface-enhanced Raman scattering, SERS). En resumen, como sustrato se utilizarán nanopartículas de plata o microesferas nanoestructuradas que se prepararán mediante la adsorción de nanopartículas de oro sobre la superficie de microesferas de sílice mediante el protocolo de capa por capa y su posterior crecimiento epitaxial con plata. Este último paso se realizará mediante protocolos desarrollados en nuestro laboratorio y tiene como objetivo la obtención de superficies plasmónicas discretas altamente eficientes en SERS. Los sustratos se funcionalizarán posteriormente con ligandos orgánicos tiolados con alta afinidad por iones inorgánicos (el fluoróforo orgánico, amino-MQAE y la terpiridina, pztpy-DTC). Como paso siguiente, se realizará la detección y cuantificación simultánea de los iones combinando para su detección espectroscopia SERS. Los cambios espectrales SERS en el modo de vibración de los ligandos orgánicos están correlacionados como función de la concentración de cada ion con límites de detección comparables a los de varios métodos analíticos convencionales.
In this research project we successfully developed a novel sensing system for the identification and quantification of inorganic ions independently by means of surface-enhanced Raman scattering (SERS) spectroscopy. The detection of the ions is based on their different affinity toward various organic ligands. In summary, we use as SERS-active substrates, either silver nanoparticles or composite nanostructured particles prepared by adsorption of gold nanoparticles on the surface of silica microbeads, using layer-by-layer assembly protocol and the subsequent epitaxial overgrowth of silver. This last step is performed using protocols developed in our laboratory and aims to the fabrication of highly plasmonic surfaces for SERS experiments. Next, the substrates are functionalized with thiolated organic ligands with high affinity toward inorganic ions (amino-MQAE, an organic fluorophore, and pztpy-DTC, a terpyridine). As a further step, the simultaneous identification and quantification of the ions, using SERS spectroscopy, is performed. Vibrational changes in the SERS spectra of the organic ligands are correlated as a function of the concentration of each ion with limits of detection comparable to those of several conventional analytical methods.
9

Yang, Mingwei. "In Situ Arsenic Speciation using Surface-enhanced Raman Spectroscopy." FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3387.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Arsenic (As) undergoes extensive metabolism in biological systems involving numerous metabolites with varying toxicities. It is important to obtain reliable information on arsenic speciation for understanding toxicity and relevant modes of action. Currently, popular arsenic speciation techniques, such as chromatographic/electrophoretic separation following extraction of biological samples, may induce the alternation of arsenic species during sample preparation. The present study was aimed to develop novel arsenic speciation methods for biological matrices using surface-enhanced Raman spectroscopy (SERS), which, as a rapid and non-destructive photon scattering technique. The use of silver nanoparticles with different surface coating molecules as SERS substrates permits the measurement of four common arsenicals, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV). This speciation was successfully carried out using positively charged nanoparticles, and simultaneous detection of arsenicals was achieved. Secondly, arsenic speciation using coffee ring effect-based separation and SERS detection was explored on a silver nanofilm (AgNF), which was prepared by close packing of silver nanoparticles (AgNPs) on a glass substrate surface. Although arsenic separation using the conventional coffee ring effect is difficult because of the limited migration distance, a halo coffee ring was successfully developed through addition of surfactants, and was shown to be capable of arsenicals separation. The surfactants introduced in the sample solution reduce the surface tension of the droplet and generate strong capillary action. Consequently, solvent in the droplet migrated into the peripheral regions and the solvated arsenicals to migrated varying distances due to their differential affinity to AgNF, resulting in a separation of arsenicals in the peripheral region of the coffee ring. Finaly, a method combining experimental Raman spectra measurements and theoretical Raman spectra simulations was developed and employed to obtain Raman spectra of important and emerging arsenic metabolites. These arsenicals include monomethylarsonous acid (MMAIII), dimethylarsinous acid (DMAIII), dimethylmonothioarinic acid (DMMTAV), dimethyldithioarsinic acid (DMDTAV), S-(Dimethylarsenic) cysteine (DMAIIICys) and dimethylarsinous glutathione (DMAIIIGS). The fingerprint vibrational frequencies obtained here for various arsenicals, some of which have not reported previously, provide valuable information for future SERS detection of arsenicals.
10

Grytsyk, Natalia. "Development of the surface-enhanced infrared spectroscopic approach and surface-enhanced Raman spectroscopy coupled with electrochemistry to study reaction mechanism of membrane proteins." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF057/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse concerne le développement d’approches spectroscopiques infrarouge et Raman exaltées de surface: la spectroscopie infrarouge exaltée de surface (SEIRAS) combinée avec une cellule de perfusion et la spectroscopie Raman exaltée de surface (SERS) couplée avec l’électrochimie. Dans le cadre du premier projet, différentes protéines ont été étudiées : lactose perméase (LacY), complexe I et IM30. Nous avons déterminé le pKa de Glu325 dans LacY sauvage et dans différents mutants portant des mutations dans le centre actif de translocation des protons. Sauvage complexe I a été oxydé avec différents agents oxydants et réduit avec NADH. Spectres différentiels correspondants ont été analysés. Des changements conformationnels dans la protéine IM30, induits par la présence des ions Mg2+, ont été observés.Dans le cadre du deuxième projet, une cellule spectroélectrochimique contenant une grille d’or a été adaptée pour étudier des protéines redox actives. Cette grille d’or sert à la fois de substrat SERS et d’électrode de travail. Cyt c, Hb et Mb ont d'abord été utilisés pour valider la configuration, puis l'approche a été étendue pour étudier une protéine membranaire
This thesis concerns the development of surface-enhanced infrared and Raman spectroscopic approaches: surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with perfusion cell and surface-enhanced Raman spectroscopy (SERS) combined with electrochemistry. Within the first project different proteins were studied: Lactose Permease (LacY), complex I and IM30.The pKa of Glu325 in LacY WT and in different mutants carrying mutations in the proton translocation active center was determined. WT complex I was oxidized with different oxidizing agents and reduced with NADH. Corresponding redox-induced conformational changes were studied. The evidence was given that Mg2+ ions induce conformational changes in the protein IM30.Within the second project the spectroelectrochemical cell containing gold grid electrode was adopted for the studies of redox active proteins. This gold grid serves both as working electrode and as SERS active substrate. First Cyt c, Hb and Mb were used to validate the setup and then the approach was extended to study a membrane protein

Книги з теми "Surface-Enhanced Spectroscopy":

1

Aroca, Ricardo. Surface enhanced vibrational spectroscopy. Hoboken, NJ: Wiley, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aroca, Ricardo. Surface-Enhanced Vibrational Spectroscopy. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/9780470035641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Prochazka, Marek. Surface-Enhanced Raman Spectroscopy. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23992-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schlücker, Sebastian, ed. Surface Enhanced Raman Spectroscopy. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fasolato, Claudia. Surface Enhanced Raman Spectroscopy for Biophysical Applications. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03556-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schlücker, Sebastian. Surface enhanced Raman spectroscopy: Analytical, biophysical and life science applications. Weinheim: Wiley-VCH, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ru, Eric C. Le. Principles of surface-enhanced Raman spectroscopy: And related plasmonic effects. Amsterdam: Elsevier, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tsukuba Satellite Symposium on Single Molecule and Tip-Enhanced Raman Scattering (2006 Tsukuba Kenkyū Gakuen Toshi, Japan). SM-TERS 2006, Tsukuba Satellite Symposium on Single Molecule and Tip-enhanced Raman Scattering: Extended abstracts : August 17-19, 2006, AIST Tsukuba Center Auditorium, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan. Tsukuba, Japan: AIST, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Biswas, Nandita. Development of a Raman Spectrometer to study surface enhanced Raman Scattering. Mumbai: Bhabha Atomic Research Centre, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Notholt, Justus. Untersuchungen zum oberflächenverstärkten Ramaneffekt im System Silber-Pyridin. Gauting bei München: A.S. Intemann und Ch.C. Intemann, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Surface-Enhanced Spectroscopy":

1

Cialla-May, Dana, Anne März, and Jürgen Popp. "Surface-Enhanced Raman Spectroscopy." In Encyclopedia of Microfluidics and Nanofluidics, 3163–70. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1497.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weaver, M. J., P. Gao, D. Gosztola, M. L. Patterson, and M. A. Tadayyoni. "Surface-Enhanced Raman Spectroscopy." In ACS Symposium Series, 135–49. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0307.ch010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cialla-May, Dana, Anne März, and Jürgen Popp. "Surface-Enhanced Raman Spectroscopy." In Encyclopedia of Microfluidics and Nanofluidics, 1–9. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_1497-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Prochazka, Marek. "Basics of Surface-Enhanced Raman Scattering (SERS)." In Surface-Enhanced Raman Spectroscopy, 21–59. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Prochazka, Marek. "Introduction." In Surface-Enhanced Raman Spectroscopy, 1–6. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Prochazka, Marek. "Basics of Raman Scattering (RS) Spectroscopy." In Surface-Enhanced Raman Spectroscopy, 7–19. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Prochazka, Marek. "Bioanalytical SERS Applications." In Surface-Enhanced Raman Spectroscopy, 61–91. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Prochazka, Marek. "Biomolecular SERS Applications." In Surface-Enhanced Raman Spectroscopy, 93–125. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Prochazka, Marek. "SERS Investigations of Cells, Viruses and Microorganisms." In Surface-Enhanced Raman Spectroscopy, 127–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Prochazka, Marek. "Medical Applications of SERS." In Surface-Enhanced Raman Spectroscopy, 149–211. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Surface-Enhanced Spectroscopy":

1

Bennett, Chris, Jon P. Camden, P. M. Champion, and L. D. Ziegler. "Surface Enhanced Hyper Raman Spectroscopy (SEHRS)." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xu, Weiqing, Yu Liu, Shuping Xu, P. M. Champion, and L. D. Ziegler. "Surface-Enhanced Raman Scattering Excited by Propagating Surface Plasmons." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482786.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Farquharson, Stuart. "Urinalysis by surface-enhanced Raman spectroscopy." In HADRONS AND NUCLEI: First International Symposium. AIP, 2000. http://dx.doi.org/10.1063/1.1307159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Garrell, Robin L., Tonya M. Herne, Angela M. Ahern, and Eve L. Sullenberger. "Surface-enhanced Raman spectroscopy of peptides." In OE/LASE '90, 14-19 Jan., Los Angeles, CA, edited by Abraham Katzir. SPIE, 1990. http://dx.doi.org/10.1117/12.17604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Smyth, Ciarán A., Inam Mirza, James G. Lunney, and Eithne M. McCabe. "Surface-enhanced Raman spectroscopy of pterins." In SPIE BiOS, edited by Tuan Vo-Dinh and Joseph R. Lakowicz. SPIE, 2012. http://dx.doi.org/10.1117/12.906383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

McGlashen, Michael L., Kevin L. Davis, and Michael D. Morris. "Surface enhanced Raman spectroscopy of neurotransmitters." In ADVANCES IN LASER SCIENCE−IV. AIP, 1989. http://dx.doi.org/10.1063/1.38609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hubner, Jorg, Thomas Anhøj, Sarah Pedersen, Dan A. Zauner, Anders M. Jorgensen, Gabriella Blagoi, Ivan Talian, and Ole Hansen. "Surface enhanced Raman spectroscopy on chip." In Integrated Optoelectronic Devices 2008, edited by Christoph M. Greiner and Christoph A. Waechter. SPIE, 2008. http://dx.doi.org/10.1117/12.761076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kahraman, Mehmet, Ilknur Sur, Mustafa Culha, P. M. Champion, and L. D. Ziegler. "Surface-Enhanced Raman Scattering of Proteins." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Culha, Mustafa, P. M. Champion, and L. D. Ziegler. "Surface-Enhanced Raman Scattering of Microorganisms." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ren, Bin, Zheng Liu, Xiang Wang, Zhi-Lin Yang, Zhong-Qun Tian, P. M. Champion, and L. D. Ziegler. "Electromagnetic Coupling Effect for Surface-enhanced Raman Spectroscopy and Tip-enhanced Raman Spectroscopy." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Surface-Enhanced Spectroscopy":

1

Huser, T. R. Surface-Enhanced Raman Spectroscopy with High Spatial Resolution. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/15007309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

VanDuyne, Richard P. MURI Center for Multidimensional Surface-Enhanced Sensing and Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada475547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Velev, Orlin D., Eric W. Kaler, and Abraham M. Lenhoff. Characterization and Optimization of Novel Nanostructured Metallic Substrates for Surface Enhanced Raman Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, December 2001. http://dx.doi.org/10.21236/ada398973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alvarez, Rene, Alexander J. Burdette, Xiaomeng Wu, Christian Kotanen, Yiping Zhao, and Ralph A. Tripp. Rapid Identification of Bacterial Pathogens of Military Interest Using Surface-Enhanced Raman Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, June 2014. http://dx.doi.org/10.21236/ada605244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gao, Ping, and Michael J. Weaver. Surface-Enhanced Raman Spectroscopy as a Probe or Adsorbate-Surface Bonding: Benzene and Monosubstituted Benzenes Adsorbed at Gold Electrodes. Fort Belvoir, VA: Defense Technical Information Center, August 1985. http://dx.doi.org/10.21236/ada159978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sheng, Dai, and B. Gu. A New Method for In-situ Characterization of Important Actinides and Technetium Compounds via Fiberoptic Surface Enhanced Raman Spectroscopy (SERS). Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/893264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dai, Sheng, and B. Gu. A New Method for In-situ Characterization of Important Actinides and Technetium Compounds via Fiberoptic Surface Enhanced Raman Spectroscopy (SERS). Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/834955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dai, Sheng, and B. Gu. A New Method for In-situ Characterization of Important Actinides and Technetium Compounds via Fiberoptic Surface Enhanced Raman Spectroscopy (SERS). Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/839076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dai, Sheng, and B. Gu. A New Method for In-situ Characterization of Important Actinides and Technetium Compounds via Fiberoptic Surface Enhanced Raman Spectroscopy (SERS). Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/834954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tsai, W. H., and F. J. Boerio. Characterization of Interphases Between PMDA/4-BDAF Polyimides and Silver Substrates Using Surface-Enhanced Raman Scattering and Reflection- Absorption Infrared Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, March 1990. http://dx.doi.org/10.21236/ada233531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії