Статті в журналах з теми "Transmission electron"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Transmission electron.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Transmission electron".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

KONNO, Mitsuru, Toshie YAGUCHI, and Takahito HASHIMOTO. "Transmission Electron Microscop and Scanning Transmission Electron Microscope." Journal of the Japan Society of Colour Material 79, no. 4 (2006): 147–51. http://dx.doi.org/10.4011/shikizai1937.79.147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Moldovan, G., X. Li, P. Wilshaw, and AI Kirkland. "Counting Electrons in Transmission Electron Microscopes." Microscopy and Microanalysis 14, S2 (August 2008): 912–13. http://dx.doi.org/10.1017/s1431927608084912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shindo, Daisuke. "Transmission Electron Microscope." Materia Japan 44, no. 11 (2005): 932–35. http://dx.doi.org/10.2320/materia.44.932.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yase, Kiyoshi. "Transmission Electron Microscopy." Kobunshi 43, no. 2 (1994): 94–97. http://dx.doi.org/10.1295/kobunshi.43.94.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bendersky, L. A., and F. W. Gayle. "Electron diffraction using transmission electron microscopy." Journal of Research of the National Institute of Standards and Technology 106, no. 6 (November 2001): 997. http://dx.doi.org/10.6028/jres.106.051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lichte, Hannes. "Electron Holography Improving Transmission Electron Microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 1 (August 12, 1990): 208–9. http://dx.doi.org/10.1017/s0424820100179798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Generally, the electron object wave o(r) is modulated both in amplitude and phase. In the image plane of an ideal imaging system we would expect to find an image wave b(r) that is modulated in exactly the same way, i. e. b(r) =o(r). If, however, there are aberrations, the image wave instead reads as b(r) =o(r) * FT(WTF) i. e. the convolution of the object wave with the Fourier transform of the wave transfer function WTF . Taking into account chromatic aberration, illumination divergence and the wave aberration of the objective lens, one finds WTF(R) = Echrom(R)Ediv(R).exp(iX(R)) . The envelope functions Echrom(R) and Ediv(R) damp the image wave, whereas the effect of the wave aberration X(R) is to disorder amplitude and phase according to real and imaginary part of exp(iX(R)) , as is schematically sketched in fig. 1.Since in ordinary electron microscopy only the amplitude of the image wave can be recorded by the intensity of the image, the wave aberration has to be chosen such that the object component of interest (phase or amplitude) is directed into the image amplitude. Using an aberration free objective lens, for X=0 one sees the object amplitude, for X= π/2 (“Zernike phase contrast”) the object phase. For a real objective lens, however, the wave aberration is given by X(R) = 2π (.25 Csλ3R4 + 0.5ΔzλR2), Cs meaning the coefficient of spherical aberration and Δz defocusing. Consequently, the transfer functions sin X(R) and cos(X(R)) strongly depend on R such that amplitude and phase of the image wave represent only fragments of the object which, fortunately, supplement each other. However, recording only the amplitude gives rise to the fundamental problems, restricting resolution and interpretability of ordinary electron images:
7

Brydson, R., A. Brown, L. G. Benning, and K. Livi. "Analytical Transmission Electron Microscopy." Reviews in Mineralogy and Geochemistry 78, no. 1 (January 1, 2014): 219–69. http://dx.doi.org/10.2138/rmg.2014.78.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Doyama, Masao, Yoshiaki Kogure, Miyoshi Inoue, Yoshihiko Hayashi, Toshimasa Yoshiie, Toshikazu Kurihara, Ryuichiro Oshima, and Katsushige Tsuno. "Transmission Positron-Electron Microscopes." Materials Science Forum 445-446 (January 2004): 471–73. http://dx.doi.org/10.4028/www.scientific.net/msf.445-446.471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ischenko, A. A., Yu I. Tarasov, E. A. Ryabov, S. A. Aseyev, and L. Schäfer. "ULTRAFAST TRANSMISSION ELECTRON MICROSCOPY." Fine Chemical Technologies 12, no. 1 (February 28, 2017): 5–25. http://dx.doi.org/10.32362/2410-6593-2017-12-1-5-25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ultrafast laser spectral and electron diffraction methods complement each other and open up new possibilities in chemistry and physics to light up atomic and molecular motions involved in the primary processes governing structural transitions. Since the 1980s, scientific laboratories in the world have begun to develop a new field of research aimed at this goal. “Atomic-molecular movies” will allow visualizing coherent dynamics of nuclei in molecules and fast processes in chemical reactions in real time. Modern femtosecond and picosecond laser sources have made it possible to significantly change the traditional approaches using continuous electron beams, to create ultrabright pulsed photoelectron sources, to catch ultrafast processes in the matter initiated by ultrashort laser pulses and to achieve high spatio-temporal resolution in research. There are several research laboratories all over the world experimenting or planning to experiment with ultrafast electron diffraction and possessing electron microscopes adapted to operate with ultrashort electron beams. It should be emphasized that creating a new-generation electron microscope is of crucial importance, because successful realization of this project demonstrates the potential of leading national research centers and their ability to work at the forefront of modern science.
10

Urban, K. "Picometer Transmission Electron Microscopy." Microscopy and Microanalysis 17, S2 (July 2011): 1314–15. http://dx.doi.org/10.1017/s1431927611007446.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Midgley, P., M. Gass, I. Arslan, J. Tong, T. Yates, A. Hungria, R. Dunin-Borkowski, M. Weyland, and J. Thomas. "Scanning Transmission Electron Tomography." Microscopy and Microanalysis 12, S02 (July 31, 2006): 1348–49. http://dx.doi.org/10.1017/s143192760606836x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Sigle, Wilfried. "ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY." Annual Review of Materials Research 35, no. 1 (August 4, 2005): 239–314. http://dx.doi.org/10.1146/annurev.matsci.35.102303.091623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

BROWN, L. M. "Scanning transmission electron microscopy." Le Journal de Physique IV 03, no. C7 (November 1993): C7–2073—C7–2080. http://dx.doi.org/10.1051/jp4:19937331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Winey, Mark, Janet B. Meehl, Eileen T. O'Toole, and Thomas H. Giddings. "Conventional transmission electron microscopy." Molecular Biology of the Cell 25, no. 3 (February 2014): 319–23. http://dx.doi.org/10.1091/mbc.e12-12-0863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Researchers have used transmission electron microscopy (TEM) to make contributions to cell biology for well over 50 years, and TEM continues to be an important technology in our field. We briefly present for the neophyte the components of a TEM-based study, beginning with sample preparation through imaging of the samples. We point out the limitations of TEM and issues to be considered during experimental design. Advanced electron microscopy techniques are listed as well. Finally, we point potential new users of TEM to resources to help launch their project.
15

Synek, S., and L. Pac. "Transmission electron microscopy of the vitreous body tissue in chronic hemophthalmos." Veterinární Medicína 50, No. 3 (March 28, 2012): 136–38. http://dx.doi.org/10.17221/5606-vetmed.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Haemolytic products arising in chronic hemophthalmos cause cellular infiltration, necrosis of the vitreous structure, and fibrous membrane formation. In this process, retinal pigment epithelium plays an important role for its antioxidant properties and the capability to phagocyte the decay products.
16

Begum, Ashrafi, Paul A. Broady, and Brian A. Fineran. "Hot fixation for transmission electron microscopy: applications to coccoid xanthophycean algae." Algological Studies/Archiv für Hydrobiologie, Supplement Volumes 112 (May 1, 2004): 177–84. http://dx.doi.org/10.1127/1864-1318/2004/0112-0177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Feuer, Helmut, Lothar Schröpfer, Hartmut Fuess, and David A. Jefferson. "High resolution transmission electron microscope study of exsolution in synthetic pigeonite." European Journal of Mineralogy 1, no. 4 (August 31, 1989): 507–16. http://dx.doi.org/10.1127/ejm/1/4/0507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Amouric, Marc, and Juan Olives. "Illitization of smectite as seen by high-resolution transmission electron microscopy." European Journal of Mineralogy 3, no. 5 (October 2, 1991): 831–36. http://dx.doi.org/10.1127/ejm/3/5/0831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Doyama, Masao, M. Inoue, Y. Kogure, Y. Hayashi, T. Yoshiie, T. Kurihara, and K. Tsuno. "Remodeling design of commercial transmission electron microscopes to positron–electron transmission microscopes." Applied Surface Science 194, no. 1-4 (June 2002): 218–23. http://dx.doi.org/10.1016/s0169-4332(02)00107-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Moreno, M. S. "Electron Diffraction in the Transmission Electron Microscope." Micron 34, no. 1 (January 2003): 64. http://dx.doi.org/10.1016/s0968-4328(03)00002-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Goodhew, Peter. "Electron Diffraction in the Transmission Electron Microscope." Journal of Microscopy 204, no. 3 (December 2001): 263–64. http://dx.doi.org/10.1046/j.1365-2818.2001.00962.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Murooka, Y., N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura. "Transmission-electron diffraction by MeV electron pulses." Applied Physics Letters 98, no. 25 (June 20, 2011): 251903. http://dx.doi.org/10.1063/1.3602314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Geiss, Roy H., Katherine P. Rice, and Robert R. Keller. "Transmission EBSD in the Scanning Electron Microscope." Microscopy Today 21, no. 3 (May 2013): 16–20. http://dx.doi.org/10.1017/s1551929513000503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We demonstrate in this article an exciting new method for obtaining electron Kikuchi diffraction patterns in transmission from thin specimens in a scanning electron microscope (SEM) fitted with a conventional electron backscattered diffraction (EBSD) detector. We have labeled the method transmission EBSD (t-EBSD) because it uses off-the-shelf commercial EBSD equipment to capture the diffraction patterns and also to differentiate it from transmission Kikuchi diffraction available in the transmission electron microscope (TEM). Lateral spatial resolution of less than 10 nm has been demonstrated for particles and better than 5 nm for orientation mapping of thin films. The only new requirement is a specimen holder that allows the transmitted electrons diffracted from an electron transparent sample to intersect the EBSD detector. We briefly outline our development of the technique, followed by descriptions of sample preparation techniques and operating conditions. We then present examples of t-EBSD patterns from a variety of specimens, including particles of diameter <10 nm, wires of diameter <80 nm, and films with thicknesses from ~5 nm to 300 nm. Finally, we discuss the phenomenon in the context of Monte Carlo electron scattering simulations.
24

Magara, Hideyuki, Takeshi Tomita, Yukihito Kondo, Takafumi Sato, Zentaro Akase, and Daisuke Shindo. "Development of a secondary electron energy analyzer for a transmission electron microscope." Microscopy 67, no. 2 (January 23, 2018): 121–24. http://dx.doi.org/10.1093/jmicro/dfx126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.
25

Yao, Nan, and J. M. Cowley. "Acceleration voltage effect on electron surface channeling." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 530–31. http://dx.doi.org/10.1017/s0424820100154627.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In transmission electron microscopy (TEM), the usable thickness of specimens increases with the incident electron energy. Some Bloch wave calculations of electron channelling along the zone axis in the transmission case show that the energy level for the channelled electrons increases (negatively) with the incident electron energy due to the correction for relativistic effect. Similarly, for reflection electron diffraction geometry, the faster the incident electrons, the deeper they penetrate into the surface. The diffraction patterns are expected to approach steadily to that for a three-dimensional lattice similar to the case of an increase in the angle of the incident electron beam. The potential distribution seen by incident electrons in the reflection geometry for an ideally perfect crystal surface should be similar to that for planes or rows in the transmission of electrons through thin crystal samples although some modifications due to the surface potential barriers have to be taken into account.
26

Minakshi, Pankaj Kumar Modi, Shailesh Kumar Singh, Sushil Kumar, and Satyabrat Shastri. "Transmission probability of electrons traversing two dimensional electron gas." Bulletin of Pure & Applied Sciences- Physics 33d, no. 1and2 (2014): 25. http://dx.doi.org/10.5958/2320-3218.2014.00004.9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Müller, Wolfgang, Nicolas Friedrich Walte, and Nobuyoshi Miyajima. "Experimental deformation of ordered natural omphacite: a study by transmission electron microscopy." European Journal of Mineralogy 20, no. 5 (November 5, 2008): 835–44. http://dx.doi.org/10.1127/0935-1221/2008/0020-1851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Capitani, Giancarlo. "Bizarre artefacts in transmission electron microscopy preparation and observation of geological samples." European Journal of Mineralogy 31, no. 5-6 (December 20, 2019): 857–73. http://dx.doi.org/10.1127/ejm/2019/0031-2893.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Qian, W., and J. C. H. Spence. "Theory of transmission low-energy electron diffraction." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 696–97. http://dx.doi.org/10.1017/s0424820100149313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Interpretation of the images from a point source electron microscope requires a detailed analysis of transmission low energy electron diffraction. Here we present a general approach for solutions to the mixed Bragg-Laue case in transmission LEED (100-1000eV), based on the dynamical diffraction theory of Bethe. However, the validity of the dynamical diffraction theory to low energy electrons can be justified by its connection to the band theory for low energy crystal electrons.Assume that the incident beam forms a plane wave and the crystal is a thin slab. According to Bethe, the total electron wavefield within crystal can be written as a linear combination of Bloch waves (equation 1). The Bloch wave excitation coefficients b(j) can be determined by matching the boundary conditions, the wave amplitudes Cg(j) and the wave vectors k(j) for each Bloch wave can be obtained by solving the time independent Schrodinger equations (equation 2).
30

KANEKO, Kenji. "Three-dimensional Electron Tomography by Transmission Electron Microscopy." JOURNAL OF THE JAPAN WELDING SOCIETY 77, no. 2 (2008): 107–10. http://dx.doi.org/10.2207/jjws.77.107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Pustovalov, E. V., V. S. Plotnikov, B. N. Grudin, E. B. Modin, and O. V. Voitenko. "Electron tomography algorithms in scanning transmission electron microscopy." Bulletin of the Russian Academy of Sciences: Physics 77, no. 8 (August 2013): 995–98. http://dx.doi.org/10.3103/s1062873813080340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Geiger, Dorin, Hannes Lichte, Martin Linck, and Michael Lehmann. "Electron Holography with aCs-Corrected Transmission Electron Microscope." Microscopy and Microanalysis 14, no. 1 (December 21, 2007): 68–81. http://dx.doi.org/10.1017/s143192760808001x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cscorrectors have revolutionized transmission electron microscopy (TEM) in that they substantially improve point resolution and information limit. The object information is found sharply localized within 0.1 nm, and the intensity image can therefore be interpreted reliably on an atomic scale. However, for a conventional intensity image, the object exit wave can still not be detected completely in that the phase, and hence indispensable object information is missing. Therefore, for example, atomic electric-field distributions or magnetic domain structures cannot be accessed. Off-axis electron holography offers unique possibilities to recover completely the aberration-corrected object wave with uncorrected microscopes and hence we would not need aCs-corrected microscope for improved lateral resolution. However, the performance of holography is affected by aberrations of the recording TEM in that the signal/noise properties (“phase detection limit”) of the reconstructed wave are degraded. Therefore, we have realized off-axis electron holography with aCs-corrected TEM. The phase detection limit improves by a factor of four. A further advantage is the possibility of fine-tuning the residual aberrations bya posterioricorrection. Therefore, a combination of both methods, that is,Cscorrection and off-axis electron holography, opens new perspectives for complete TEM analysis on an atomic scale.
33

FENG, JIANGLIN, ANDREW P. SOMLYO, AVRIL V. SOMLYO, and ZHIFENG SHAO. "Automated electron tomography with scanning transmission electron microscopy." Journal of Microscopy 228, no. 3 (December 2007): 406–12. http://dx.doi.org/10.1111/j.1365-2818.2007.01859.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Ferreira, P. J., K. Mitsuishi, and E. A. Stach. "In Situ Transmission Electron Microscopy." MRS Bulletin 33, no. 2 (February 2008): 83–90. http://dx.doi.org/10.1557/mrs2008.20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe articles in this issue of MRS Bulletin provide a sample of what is novel and unique in the field of in situ transmission electron microscopy (TEM). The advent of improved cameras and continued developments in electron optics and stage designs have enabled scientists and engineers to enhance the capabilities of previous TEM analyses. Currently, novel in situ experiments observe and record the behavior of materials in various heating, cooling, straining, or growth environments. In situ TEM techniques are invaluable for understanding and characterizing dynamic microstructural changes. They can validate static TEM experiments and inspire new experimental approaches and new theories.
35

Gibson, J. M. "High Resolution Transmission Electron Microscopy." MRS Bulletin 16, no. 3 (March 1991): 27–33. http://dx.doi.org/10.1557/s0883769400057377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The transmission electron microscope (TEM) has had a major impact on materials science in the last five decades, despite the fact that it is necessary to prepare thin samples in order to use the technique. The primary reason for this effectiveness is the ability to access both real space and diffraction data in the same instrument, and to filter in one and observe the effect in the other. This is possible because of the wave nature of electrons and the existence of effective magnetic lenses for focusing. Abbe showed that any lens has the ability to Fourier transform its input wavefield in its focal plane, and to provide a second Fourier transform in the image plane. This is schematically shown in Figure 1. A crystalline object will diffract only in certain directions, with Bragg angles (θB) depending on the inverse of the interplanar spacing. The diffraction pattern is a series of spots in the Fourier, or focal, plane of the lens. A filter placed in the focal plane serves to limit the resolution by limiting the bandwidth of the image, but it also can serve to select certain parts of the Fourier spectrum in the image. The simplest examples of this, as used in optical microscopy, are bright-field and dark-field imaging. In the former the un-scattered beam is allowed to reach the image, in the latter it is not.
36

Grebennikov, V. I. "Electron transmission across ferromagnetic layers." Journal of Magnetism and Magnetic Materials 300, no. 1 (May 2006): e284-e287. http://dx.doi.org/10.1016/j.jmmm.2005.10.101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Muller, David A. "Practical Scanning Transmission Electron Microscopy." Microscopy and Microanalysis 10, S02 (August 2004): 116–17. http://dx.doi.org/10.1017/s1431927604883703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Itoh, Haruo, and Nobuaki Ikuta. "Electron Transmission Process through Gases." IEEJ Transactions on Fundamentals and Materials 118, no. 11 (1998): 1298–303. http://dx.doi.org/10.1541/ieejfms1990.118.11_1298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ernzerhof, Matthias, Hilke Bahmann, Francois Goyer, Min Zhuang, and Philippe Rocheleau. "Electron Transmission through Aromatic Molecules." Journal of Chemical Theory and Computation 2, no. 5 (July 4, 2006): 1291–97. http://dx.doi.org/10.1021/ct600087c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Wang, Z. L., P. Poncharal, and W. A. de Heer. "Nanomeasurements in Transmission Electron Microscopy." Microscopy and Microanalysis 6, no. 3 (May 2000): 224–30. http://dx.doi.org/10.1017/s1431927600000374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractNanomaterials have attracted a great deal of research interest recently. The small size of nanostructures constrains the applications of well-established testing and measurement techniques, thus new methods and approaches must be developed for quantitative measurement of the properties of individual nanostructures. This article reports our progress in using in situ transmission electron microscopy to measure the electrical, mechanical, and field-emission properties of individual carbon nanotubes whose microstructure is well-characterized. The bending modulus of a single carbon nanotube has been measured by an electric field-induced resonance effect. A nanobalance technique is demonstrated that can be applied to measure the mass of a tiny particle as light as 22 fg (1 fg = 10−15 g), the smallest balance in the world. Quantum conductance was observed in defect-free nanotubes, which led to the transport of a superhigh current density at room temperature without heat dissipation. Finally, the field-emission properties of a single carbon nanotube are observed, and the field-induced structural damage is reported.
41

Gulik-Krzywicki, Thaddée. "Freeze-fracture transmission electron microscopy." Current Opinion in Colloid & Interface Science 2, no. 2 (April 1997): 137–44. http://dx.doi.org/10.1016/s1359-0294(97)80017-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

FITZGERALD, M., R. MULCAHY, S. MURPHY, C. KEANE, D. COAKLEY, and T. SCOTT. "Transmission electron microscopy studies of." FEMS Immunology and Medical Microbiology 23, no. 1 (January 1999): 57–66. http://dx.doi.org/10.1016/s0928-8244(98)00121-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Stiles, M. D., and D. R. Hamann. "Electron transmission throughNiSi2-Si interfaces." Physical Review B 40, no. 2 (July 15, 1989): 1349–52. http://dx.doi.org/10.1103/physrevb.40.1349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

MATSUI, Yoshio. "High-resolution transmission electron microscopy." Hyomen Kagaku 10, no. 10 (1989): 719–25. http://dx.doi.org/10.1380/jsssj.10.719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Dömer, H., and O. Bostanjoglo. "High-speed transmission electron microscope." Review of Scientific Instruments 74, no. 10 (October 2003): 4369–72. http://dx.doi.org/10.1063/1.1611612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

KATO, Atsushi, Shinzo KOHJIYA, and Yuko IKEDA. "Three-Dimensional Electron Transmission Microscopy." Kobunshi 55, no. 8 (2006): 616–19. http://dx.doi.org/10.1295/kobunshi.55.616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Nakamura, Eiichi, Nico A. J. M. Sommerdijk, and Haimei Zheng. "Transmission Electron Microscopy for Chemists." Accounts of Chemical Research 50, no. 8 (August 15, 2017): 1795–96. http://dx.doi.org/10.1021/acs.accounts.7b00318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Stiles, M. D., and D. R. Hamann. "Ballistic electron transmission through interfaces." Physical Review B 38, no. 3 (July 15, 1988): 2021–37. http://dx.doi.org/10.1103/physrevb.38.2021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Crozier, PA, RW Carpenter, DJ Smith, and K. Weiss. "Teaching Advanced Transmission Electron Microscopy." Microscopy and Microanalysis 14, S2 (August 2008): 878–79. http://dx.doi.org/10.1017/s1431927608086418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Thomas, Edwin L. "Transmission electron microscopy of polymers." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 422–25. http://dx.doi.org/10.1017/s0424820100126901.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Transmission electron microscopy continues to play a major role in micro-structural characterization of polymers. Additionally, as evidenced by the special symposium on electron crystallography at this EMSA meeting, electron diffraction, as applied to polymer crystals, is also a vigorous area of research. Because many of the interesting morphological features of polymer systems are at and below the micron scale, TEM is a most fruitful technique. Applications range from simple assessment of dispersed phase particle size in blends to HREM molecular imaging of defects in crystals. Thus polymer scientists probe structures over about 4 orders of magnitude in size, and the versatility of the TEM in such endeavors is evident from its essentially ubiquitous appearance in all modern physical sciences laboratories.While there are a host of standard and advanced texts on the application of TEM to metals and to biology, there are only a few review papers on polymer microscopy and one just-published book.

До бібліографії