To see the other types of publications on this topic, follow the link: Супутникові навігаційні системи.

Dissertations / Theses on the topic 'Супутникові навігаційні системи'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 21 dissertations / theses for your research on the topic 'Супутникові навігаційні системи.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Волков, О. Є., М. М. Комар, Д. О. Волошенюк, and О. Ю. Господарчук. "Інтелектуальна інформаційна технологія автономної навігації безпілотного літального апарату." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Конін, Валерій Вікторвич, Valeriy Konin, Олексій Сергійович Погурельський, Olexiy Pogurelskiy, Тетяна Леонідівна Малютенко, Tetiana Maliutenko, Ірина Анатоліївна Приходько, Irina Pryhodko, Олексій Петрович Сушич, and Alexey Sushich. "Дистанційне дослідження глобальних навігаційних супутникових систем." Thesis, Національний авіаційний університет, 2021. https://er.nau.edu.ua/handle/NAU/53573.

Full text
Abstract:
Список літератури 1. Конин В. В., Погурельский А. С., Малютенко Т. Л., Приходько И. А. Компоненты GNSS в среде MаtLab // MatLab та комп'ютерні обчислення в освіті, науці та інженерії : тези доповідей Загальноукраїнськой конференції – Національний авіаційний університет. –Київ, 2019. – С. 29–30.. 2. NovAtel connect [Електронний ресурс] // GPS & GNSS Equipment, Products & Solutions | NovAtel. – Режим доступу: https://novatel.com/products/firmware-options-pc-software/novatel-connect (дата звернення: 09.02.2021). – Назва з екрана. 3. NovAtel Convert [Електронний ресурс] // GPS & GNSS Equipment, Products & Solutions | NovAtel. – Режим доступу: https://novatel.com/products/firmware-options-pc-software/novatel-convert (дата звернення: 23.02.2021). – Назва з екрана. 4. Конин В., Конина Л. Спутниковые системы навигации / Учебное пособие [Електронний ресурс] // er.nau.edu.ua. – Режим доступу: http://er.nau.edu.ua/handle/NAU/25225 (дата звернення: 02.02.2021). – Назва з екрана. 5. Крисіко А., Митник О. Отримання даних QZSS для оцінки якості навігаційного сигналу // Політ. Сучасні проблеми науки : тези доповідей ХХІ Міжнародної науково-практичної конференції здобувачів вищої освіти і молодих уч. . – Національний авіаційний університет. – Київ, 14 квіт. 2021 р. – Київ, 2021. – С. 86. 6. Іщенко О.М. Експериментальні характеристики ефемерид, корекції іоносфери, тропосфери і часу системи QZSS // Політ. Сучасні проблеми науки: тези доповідей ХХІ Міжнародної науково-практичної конференції здобувачів вищої освіти і молодих уч. . – Національний авіаційний університет. – Київ, 14 квіт. 2021 р. – Київ, 2021. – С. 82. 7. Максименко Н.В. Метод зглажування псевдовідстаней з використанням експериментальних даних системи QZSS // Політ. Сучасні проблеми науки: тези доповідей ХХІ Міжнародної науково-практичної конференції здобувачів вищої освіти і молодих уч. – Національний авіаційний університет. – Київ, 14 квіт. 2021 р. – Київ, 2021. – С. 90-91.
Глобальні навігаційні супутникові системи (GNSS) широко впроваджуються в сферу транспорту, сільського господарства, геодезію та інші сфери діяльності людини. На сьогоднішній день повністю функціонують GPS та GLONASS, продовжують свій розвиток GALILEO та BeiDou. Для функціонування цих супутникових систем необхідно також забезпечувати якісну підготовку спеціалістів по впровадженню та моніторингу глобальних навігаційних супутникових систем. Щоб забезпечити якісну підготовку спеціалістів для обслуговування систем GNSS необхідно як теоретичне навчання, так і закріплення практичних навичок при роботі з навігаційною апаратурою. Зважаючи на пандемію, яка охопила увесь світ, технічним закладам освіти необхідно впроваджувати нові методи навчання та підготовки спеціалістів.
Національний авіаційний університет
APA, Harvard, Vancouver, ISO, and other styles
3

Кондратюк, Василь Михайлович, and Vasyl M. Kondratiuk. "Методи і алгоритми прецизійного визначення місцеположення рухомих об’єктів за сигналами глобальних навігаційних супутникових систем." Thesis, Національний авіаційний університет, 2021. https://er.nau.edu.ua/handle/NAU/49720.

Full text
Abstract:
Дисертаційна робота присвячена застосуванню глобальних навігаційних супутникових систем (ГНСС) для вирішення актуальних наукових завдань: прецизійного визначення місцеположення рухомих об’єктів за допомогою обробки кодових і фазових ГНСС-спостережень без ускладненої процедури розв’язання фазової неоднозначності. В дисертації вирішено науково-технічну задачу розробки методів і алгоритмів прецизійного визначення місцеположення рухомих об’єктів за допомогою обробки кодових і фазових ГНСС-спостережень без ускладненої процедури розв’язання фазової неоднозначності. Удосконалено метод обробки кодових і фазових ГНСС спостережень, що вирішує задачу згладжування/фільтрації кодових спостережень з використанням безперервних фазових спостережень в режимі кінематичного позиціонування, який, на відміну від відомих, враховує вплив накручування фази несучої (“wind ефект), який проявляється при зміні напрямку руху, еволюціях, обертаннях об’єктів. Даний метод забезпечує підвищення точності оцінки координат рухомих об’єктів до дециметрового рівня. В процесі наукових досліджень отримав розвиток метод комбінованого диференціального сумісного кодово фазового рішення навігаційної задачі з одночасною оцінкою початкових фазових неоднозначностей (як континуальних змінних) та без безпосереднього здійснення операцій згладжування/фільтрації. Метод є найбільш ефективним для спільної обробки спостережень GPS+ГЛОНАСС так як враховує особливості частотного розносу спектрів випромінюваних сигналів ГЛОНАС, що забезпечує дециметровий рівень точності. Вперше розроблено метод сумісної обробки кодових і фазових ГНСС-спостережень, що вирішує задачу точного кінематичного позиціонування, який, на відміну від відомих методів, дозволяє усунути варіаційні складові похибки рішення, суттєво зменшення вплив стрибків оцінок кодово-фазових рішень, обумовлених зміною робочого сузір’я супутників ГНСС, та, в середньому, у 2 рази зменшити похибки позиціонування по відношенню до «згладженого» рішення і в 3–4 рази по відношенню до DGPS рішень. Розроблена методика оцінки фактичної точності координатних визначень з використанням диференціальної коригувальної інформації, що дозволяє провести верифікацію ГНСС-устаткування користувача для двох режимів роботи: для нерухомого приймача – статичний режим та для мобільного приймача – кінематичний режим.
The dissertation is devoted to the application of global navigation satellite systems (GNSS) to solve relevant scientific problems: precision position determination of moving objects by processing the carrier phase and code GNSS observations without a complicated procedure of the carrier phase ambiguity resolution. The dissertation solves the scientific and technical problem of developing methods and algorithms for precision position determination of moving objects by processing the carrier-phase and code GNSS observations without a complicated procedure of the carrier-phase ambiguity resolution. The method for processing carrier-phase and code GNSS observations has been improved that solves the task of smoothing/filtering of code observations using continuous carrier-phase observations in the mode of kinematic positioning, which in a contrast to other known methods takes into account the influence of carrier phase contribution (“wind-up”-effect), which is manifested during change of motion direction, evolution and rotations of moving objects. This method ensures accuracy of moving objects coordinates determination increase up to decimeter level. In the process of scientific research, the method of combined differential compatible code and carrier-phase solution of the navigation problem was developed with simultaneous estimation of initial carrier-phase ambiguities (as continuous variables) and without direct smoothing / filtering operations. The method is the most effective for the joint processing of GPS + GLONASS observations as it takes into account the peculiarities of the frequency distribution of the spectrums of the emitted GLONASS signals, which provides a decimeter level of accuracy. For the first time, a method of joint processing the carrier-phase and code GNSS observations was developed, which solves the problem of accurate kinematic positioning, which, unlike known methods, allows eliminating variational components of solution error, significantly reducing the impact of estimates of code-phase solutions due to changes in the working constellation of GNSS satellites, and, on average, 2 times reducing the positioning errors with regard to the "smoothed" solution and 3–4 times with regard to DGPS solutions. A method for estimating the actual accuracy of coordinate determinations using differential correction information has been developed, which allows to make verification of the user’s GNSS equipment for two operating modes: for a fixed receiver – static mode and for a mobile receiver – kinematic mode.
APA, Harvard, Vancouver, ISO, and other styles
4

Косарєв, О. В., and Григорій Валентинович Заверуха. "Можливості навігаційної апаратури споживачів супутникових навігаційних систем СН-3003М "БАЗАЛЬТ"." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/45092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Швець, Валеріян Анатолійович, and Тетяна Вікторівна Мелешко. "Заходи захисту навігаційної інформації в мережевих супутникових системах." Thesis, К.:НАУ, 2019. http://er.nau.edu.ua/handle/NAU/38556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Савицький, Владислав Ігоревич. "Оцінка точності супутникової системи Beidou." Thesis, Національний авіаційний університет, 2020. http://er.nau.edu.ua/handle/NAU/41860.

Full text
Abstract:
Робота публікується згідно наказу ректора від 21.01.2020 р. №008/од "Про перевірку кваліфікаційних робіт на академічний плагіат 2019-2020р.р. навчальному році" . Керівник проекту: доцент, к. т. н. Погурельський Олексій Сергійович
Після початку розгортання супутникових систем в 60-х роках минулого століття людство вступило в епоху супутникових технологій, яка продовжує успішно розвиватися і на далі. На сьогоднішній день існує 4 глобальні супутникові системи, які перебувають на різних стадіях розвитку. Кожна з цих систем складається не тільки з космічного сегменту, а має також наземні станції моніторингу та управління, які розташовані по всій поверхні Землі, що робіть реалізацію та обслуговування доволі складним та дорогим. Тому, розробку таких систем могли собі дозволити тільки потужні країни з сильною економікою. Сполучені Штати Америки розробили систему GPS, Російська Федерація, правонаступниця Радянському Союзу, продовжує модернізувати систему ГЛОНАСС, свої системи почали розгортати Європейський союз (система GALILEO) та Китайська Народна Республіка (система BeiDou). Основною метою супутникових навігаційних систем є забезпечення потреб у високоточному визначенні місцеположення як для цивільних, так і для військових користувачів. Для підвищення точності визначень позиціонування в подальшому були розроблені космічні та наземні функціональні доповнення. Зважаючи на мирові тенденції розвитку супутникових технологій Китайська Народна Республіка поставила за мету розробити власну незалежну супутникову систему, яка б на першому етапі забезпечувала потреби власних користувачів навігаційної інформації, а в подальшому мала б і глобальне покриття. Також китайська навігаційна супутникова система має працювати з усіма існуючими навігаційними супутниковими системами.
APA, Harvard, Vancouver, ISO, and other styles
7

Чернюк, Євген Олегович. "Оцінка точності супутникової системи GALILEO." Thesis, Національний авіаційний університет, 2020. http://er.nau.edu.ua/handle/NAU/41857.

Full text
Abstract:
Робота публікується згідно наказу ректора від 21.01.2020 р. №008/од "Про перевірку кваліфікаційних робіт на академічний плагіат 2019-2020р.р. навчальному році" . Керівник проекту: доцент, к. т. н. Погурельський Олексій Сергійович
Станом на початок 2020 року в світі функціонує 4 глобальних навігаційні супутникові системи. Кожна з них є реалізацією складної в технічному і затратної в фінансовому плані задачі. Глобальна супутникова навігаційна система це не лише сузір’я супутників але і складна наземна інфраструктура розподілених по земній поверхні станцій моніторингу та спостереження, прийому та завантаження спеціальної службової інформації, головний та резервний центри управління. Через цю складність реалізувати перші системи вдалося потужним країнам, чий військовий бюджет осилив цей тягар: Сполученим Штатам Америки (система GPS), Радянському Союзу на початковому етапі і Російській Федерації на завершальному (система ГЛОНАСС), а також Китайській Народній Республіці (система BeiDou). [2, 3, 11] Спільним у створенні цих систем була мета – забезпечення потреб військової сфери у високоточному глобальному сервісу позиціонування та наведення. Широке розповсюдження технологій супутникової навігації в цивільній сфері було лише похідною від тих можливостей які забезпечили розгорнуті системи військовим. Розвиток і основні віхи в становленні систем глобального позиціонування були пов’язані з політичним протистоянням на світовій арені. Як наслідок, на сьогоднішній день можна констатувати факт наявності надзвичайно зручних і ефективних засобів для глобального позиціонування, які при цьому не надають жодних гарантій цивільним користувачам на наявність і доступність своїх сигналів і сервісів у майбутньому. [4, 11, 12] Створення і розгортання глобальної навігаційної супутникової системи повністю цивільного призначення значно відрізняє на цьому тлі європейський проект Galileo. Він пройшов складний шлях від ідеї і загальної концепції до свого нинішнього етапу, коли система стоїть на порозі повноцінного функціонування з досягнутою номінальною кількістю космічних апаратів. Орієнтована на потреби цивільних і перш за все авіаційних користувачів, система Galileo забезпечуватиме доступ до сигналів високоточної навігації на комерційній основі зі збереженням безкоштовних відкритих сервісів. [5,19] Поточна стадія функціонування системи Galileo дозволяє планувати і виконувати комплексні дослідження її характеристик в режимі одно системної обробки даних та у сполучені з даними від інших існуючих систем. Завдяки організації довготривалого моніторингу з’являється можливість відслідковувати еволюційні зміни, які відбуватимуться в системі разом з нарощуванням кількості супутників на орбіті. Ці задачі можуть бути продовженням результатів одержаних в цій роботі, присвяченій оцінці точності глобальної навігаційної супутникової системи Galileo.
APA, Harvard, Vancouver, ISO, and other styles
8

В, Лобурь Д. "Моніторинг характеристик супутникових навінаційних систем." Thesis, Київ, Національний авіаційний університет, 2009. http://er.nau.edu.ua/handle/NAU/18783.

Full text
Abstract:
Навігаційний сервіс GNSS, який надається користувачам, полягає у розповсюдженні навігаційних сигналів супутників GPS, ГЛОНАСС, GALILEO, BEIDOU і диференціальної корегувальної інформації, яка формується функціональними доповненнями супутникових навігаційних систем, як широкозонними (WAAS, EGNOS, Skyfix), так і регіональними (SAPOS, CORS, AGNES, СКНЗУ). Важливо відмітити, що від виду послуг, які надаються користувачам, залежить склад контрольованих параметрів якості навігаційного забезпечення.
APA, Harvard, Vancouver, ISO, and other styles
9

Ульянчико, Микола Ігорович. "Моделі та методи оцінки характеристик точності супутникових навігаційних систем." Thesis, Національний авіаційний університет, 2020. http://er.nau.edu.ua/handle/NAU/41858.

Full text
Abstract:
Робота публікується згідно наказу ректора від 21.01.2020 р. №008/од "Про перевірку кваліфікаційних робіт на академічний плагіат 2019-2020р.р. навчальному році" . Керівник проекту: професор, д.т.н. Конін Валерій Вікторович
Супутникові навігаційні системи знаходять все більш широке застосування у всіх галузях людської діяльності, у тому числі і у авіації. Сьогодні фактично кожен, хто вирушає у подорож незнайомою місцевістю, не уявляє пересування без супутникового навігатора. А що вже говорити про те, що супутникові навігатори використовуються на транспорті, зокрема у космічному, повітряному, морському, річковому та наземному. І про те, що вона застосовується у геодезії, картографії, океанографії, геофізиці, землевпорядкуванні, геології, при видобутку корисних копалин, риболовлі, а також екології. Уперше концепція використання глобальної супутникової системи позиціонування була розроблена на початку 70-х років. Останні 15 років технології використання супутникових навігаційних систем в навігації і геодезії постійно розвивалися. На даний час у космосі працюють супутникові навігаційні системи: ГЛОНАСС (Росія), GPS (США), у перспективі – GALILEO (Європейська космічна агенція). Ці системи широко й успішно використовуються у морській навігації, в авіації, для моніторингу автомобільного транспорту, а, також, у геодезії, будівництві, моніторингу переміщень земної кори. Користувачі ГНСС за допомогою супутникових навігаційних приймачів приймають сигнали від навігаційних космічних апаратів і визначають своє місцезнаходження. Використання супутникових технологій у системі керування повітряним рухом характеризують сучасну тенденцію розвитку засобів навігації. Точність визначення вектора місцезнаходження повітряного судна у супутникових радіонавігаційних системах (СРНС) на порядок і більше перевищує точність, що реалізується у радіонавігаційних системах з наземним базуванням опорних станцій. В супутникових радіонавігаційних системах вектор стану повітряного судна містить розширений набір навігаційних параметрів, який включає в себе вектор координат і зсуву бортової шкали часу повітряного судна відносно шкали часу навігаційної системи і вектора швидкості їх зміни. Цей набір параметрів дозволяє вирішувати різноманітні навігаційні задачі, забезпечуючи користувачів тримірною маршрутною навігацією.
APA, Harvard, Vancouver, ISO, and other styles
10

Дребот, Катерина Володимирівна. "Вплив стану іоносфери на навігаційні визначення за даними ГНСС." Thesis, Національний авіаційний університет, 2020. http://er.nau.edu.ua/handle/NAU/41863.

Full text
Abstract:
Робота публікується згідно наказу ректора від 21.01.2020 р. №008/од "Про перевірку кваліфікаційних робіт на академічний плагіат 2019-2020р.р. навчальному році" . Керівник проекту: доцент, к. т. н. Погурельський Олексій Сергійович
Визначення координат за допомогою даних від Глобальної Навігаційної Супутникової Системи (ГНСС) можливе наземними, морськими та авіаційними користувачами які безпосередньо розташовані на земній поверхні або на незначних відстанях від неї (наприклад на висоті польоту літака, аеростата). При цьому навігаційні сигнали, які необхідні користувачам, випромінюються супутниками, що розташовані в космосі на відстані порядку 20 000 км. Середовище в якому розповсюджуються електромагнітні коливання на шляху від супутника до користувача є неоднорідним і для більшої частини являє собою майже вакуум (в космічному просторі), а на останніх 1,5 – 1 тис. км (початок верхніх шарів атмосфери) характеризується наявністю вільних носіїв зарядів, частинок пилу, вологи, непостійністю температури і щільності. Разом ці наведені фактори спричиняють певні зміни параметрів сигналу, починаючи з таких як рівень потужності (рівень сигнал/завада) до швидкості розповсюдження радіо сигналів в просторі. Можна констатувати, що має місце вплив шарів атмосфери на параметри радіонавігаційних сигналів. І це безумовно впливає на якість навігаційних визначень. Для зменшення впливу атмосферних похибок в ГНСС застосовують ряд методів, які пов’язанні з визначенням поточних параметрів стану атмосфери та подальшим застосуванням відповідних коригуючих коефіцієнтів. Найбільша увага приділяється іоносфері – шару атмосфери, який характеризується високою концентрацією вільних носіїв зарядів, яка в свою чергу залежить від ряду зовнішніх факторів. В дипломній роботі систематизовано наукові знання про іоносферу. Оцінено характер її впливу на вимірювання, які здійснюються користувачами ГНСС. Виконано моніторинг стану іоносфери впродовж 3х місяців 2019 року із застосуванням даних, доступних на спеціалізованих ресурсах. Проведено експериментальну оцінку впливу стану іоносфери на якість навігаційних визначень.
APA, Harvard, Vancouver, ISO, and other styles
11

Зубань, Юрій Олександрович, Юрий Александрович Зубань, Yurii Oleksandrovych Zuban, Євгеній Віталійович Крючко, Евгений Витальевич Крючко, and Yevhenii Vitaliiovych Kriuchko. "Проблеми розробки та побудови системи супутникової навігації." Thesis, Вид-во СумДУ, 2009. http://essuir.sumdu.edu.ua/handle/123456789/4387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Конін, Валерій Вікторович, and Ігор Володимирович Павловський. "Модель для дослідження статистичних характеристик супутникової навігаційної системи безпілотного літального апарату." Thesis, Національний авіаційний університет, 2021. https://er.nau.edu.ua/handle/NAU/53459.

Full text
Abstract:
Список використаних джерел 1. Конин В. В. Системы спутниковой радионавигации : монография / Валерий Викторович Конин, Владимир Петрович Харченко. – Киев : Холтех, 2010. – 520 с.
Основною функцією супутникової навігаційної системи (СНР) безпілотного літального апарату (БПЛА) є визначення координат, швидкості та часу. Легкі БПЛА із злітною масою кілька десятків кг та дальністю польоту до 50 км можуть функціонувати в умовах сильно пересіченої місцевості та складної завадової обстановки. При визначенні координат по сигналах навігаційних супутників головним параметром у вирішенні навігаційної задачі є дальність (псевдодальність) кожного супутника у зоні видимості.
Національний авіаційний університет
APA, Harvard, Vancouver, ISO, and other styles
13

Швець, Валеріян Анатолійович, and Володимир Петрович Харченко. "Цілісність і доступність навігаційних даних в мережевих супутникових системах." Thesis, Харьків.: ХНУПС ім. І. Кожедуба, 2018. http://er.nau.edu.ua/handle/NAU/33611.

Full text
Abstract:
Авторами пропонується оригінальні рішення по просторової фільтрації на основі: - виключення інформації про опорний сигнал з суміші "сигнал+перешкода"; - застосування методу "імпульсної характеристики просторового фільтра" ААС. Пропоновані методи не вимагають апріорних даних про сигнал і перешкоду і підвищують якісні характеристики приймачів ГНСС.
APA, Harvard, Vancouver, ISO, and other styles
14

Швець, Валеріян Анатолійович, and Тетяна Вікторівна Мелешко. "Напрями забезпечення доступності і цілісності інформації глобальних навігаційних супутникових систем." Thesis, RS Global Sp. z O.O. Warsaw, Poland, 2020. http://er.nau.edu.ua/handle/NAU/41256.

Full text
Abstract:
Based on the analysis of reports and literature on the vulnerability of global navigation satellite systems, the robot presents a developed threat model and an intruder model for navigation information. Using the developed models, organizational and technical measures to protect information are determined. Directions for improving consumer equipment to jamming are given. Organizational measures for protecting against jamming are described.
APA, Harvard, Vancouver, ISO, and other styles
15

Єрмаков, Антон Юрійович. "Оцінка точності глобальних навігаційних супутникових систем в умовах обмеженої доступності." Thesis, Національний авіаційний університет, 2020. http://er.nau.edu.ua/handle/NAU/41862.

Full text
Abstract:
Робота публікується згідно наказу ректора від 21.01.2020 р. №008/од "Про перевірку кваліфікаційних робіт на академічний плагіат 2019-2020р.р. навчальному році" . Керівник проекту: доцент, к.т. н. Погурельський Олексій Сергійович
На сьогоднішній день у світі існують такі навігаційні системи. Загалом у небесній сфері знаходиться близько 140 супутників. GPS - належить міністерству оборони США. Цей факт, на думку деяких держав, є її головним недоліком. Пристрої, що підтримують навігацію по GPS, є найпоширенішими в світі. Також відома під більш раннім назвою NAVSTAR. Всього у складі GPS на даний момент 32 космічні апарати, 31 з яких використовуються за цільовим призначенням, і 1 тимчасово виведений на техобслуговування.[1, 2, 10] ГЛОНАСС - належить міністерству оборони РФ. Розробка системи офіційно почалася в 1976 р, повне розгортання системи завершилося в 1995р. Після 1996 року супутникова угруповання скорочувалася і до 2002 року прийшла в занепад. Була відновлена до кінця 2011 р. В даний час використовується 23 супутника. До 2025 року передбачається глибока модернізація системи.[3, 10, 11] Beidou - розгортаєма Китаєм місцева супутникова система навігації, заснована на геостаціонарних супутниках. Реалізація програми почалася в 2000 році. Перший супутник вийшов на орбіту в 2007 р. До червня 2020 року планується запустити ще два супутники на геостаціонарну орбіту, і система «Бейдоу» запрацює як глобальна. Galileo - європейська система. Останній запуск вивів на орбіту чотири супутники в липні 2018. У 2020 планується запустити ще 2 супутника і повністю розгорнути супутникове угруповання. Quasi-Zenith Satellite System - проект регіональної системи синхронізації часу і одна з систем диференціальної корекції для GPS, сигнали якої будуть доступні в Японії. QZSS призначена для мобільних додатків, для надання послуг зв'язку (відео, аудіо та інші дані) і глобального позиціонування. Перший супутник системи був запущений в 2010 році, три інших були запущені в 2017 році. Офіційна повноцінна експлуатація системи з чотирьох супутників була розпочата 1 листопада 2018 року. У перспективі до 2024 року розмір супутникового угруповання планується довести до 7 супутників, і 1 резервного.[4, 18] IRNSS (англ. Indian Regional Navigation Satellite System) - індійська регіональна супутникова система навігації. IRNSS передбачає визначення координат місцезнаходження об'єкта з точністю близько 20 метрів для регіону Індійського океану (близько 1500 км навколо Індії) і менше 10 метрів - безпосередньо по Індії і територіям суміжних держав, охоплених даною системою навігації. Послуга буде надаватися в двох варіантах: стандартний (Special Positioning Service) - для всіх цивільних користувачів; і службовий, з більш точними даними (Precision Service) - для авторизованих користувачів (в тому числі для військових цілей).
APA, Harvard, Vancouver, ISO, and other styles
16

Конін, Валерій Вікторович, and Олексій Ігорович Безпаленко. "Модель супутниковой навігаційної системи для безпілотного літального апарату в умовах обмеженої доступності." Thesis, Національний авіаційний університет, 2021. https://er.nau.edu.ua/handle/NAU/53458.

Full text
Abstract:
Список використаних джерел 1. Конин В. В. Системы спутниковой радионавигации : монография / Валерий Викторович Конин, Владимир Петрович Харченко. – Киев : Холтех, 2010. – 520 с.
Наводиться модель супутникової навігаційної системи, що дозволяє оцінювати точність визначення координат за будь-якого розташування навігаційних супутників щодо безпілотного літального апарату. Даються результати моделювання оцінки позиції із застосуванням GPS та ГЛОНАСС.
Національний авіаційний університет
APA, Harvard, Vancouver, ISO, and other styles
17

Куценко, Олександр Вікторович, and Oleksandr V. Kutsenko. "Методи диференційної навігації повітряних суден за сигналами глобальних навігаційних супутникових систем." Thesis, Національний авіаційний університет, 2021. https://er.nau.edu.ua/handle/NAU/52287.

Full text
Abstract:
Дисертаційна робота присвячена вирішенню актуальної науково-технічної задачі розробки методів диференційної навігації повітряних суден за сигналами глобальних навігаційних супутникових систем, що має важливе значення для підвищення безпеки польотів. Метою дисертаційної роботи є розробка і експериментальне дослідження нових і удосконалених методів диференційної навігації повітряних суден за сигналами multi-GNSS, при виконанні операцій: маневру в зоні аеродрому, здійснення заходу на посадку з вертикальним скеровуванням і по категорії. В дисертаційній роботі проведений аналіз документів провідних організацій та наукових публікацій в авіаційній і космічній галузях. За цими даними можна стверджувати, що авіаційний транспорт відіграє провідну роль у забезпеченні стійкості економічного та соціального розвитку. Ключовим елементом, який забезпечує ефективність і надійність експлуатації авіаційного транспорту є аеронавігаційне забезпечення, зокрема його радіонавігаційна складова. Особливе значення приділяється розробці супутникових систем посадки. Розглянута прийнята ICAO класифікація заходів на посадку, і проведений аналіз існуючих категорійних систем посадки за приладами. Наданий опис вимог які висуваються до супутникової системи посадки.Аналіз показав, що актуальною науковою задачею є розробка методів диференційної навігації повітряних суден за сигналами глобальних навігаційних супутникових систем, що має важливе значення для підвищення безпеки польотів. В дисертаційній роботі розглянутий фінальний сегмент заходу на посадку та локальна топоцентрична Декартова система координат XYV пов’язана з злітно-посадковою смугою. Розглянуто похибки які виникають в системі посадки за приладами по сигналам кількох навігаційних супутникових систем. Представлено існуючі і розроблені моделі які дозволяють зменшити вплив даних похибок. Зокрема розроблену модель залишкової тропосферної затримки після здійснення диференційної корекції псевдовідстані ключовою особливістю якої є можливість застосування за відсутності метеорологічних даних. Надана модель корекції псевдовідстані і псевдошвиткості які розраховуються за даними отриманими з кількох наземних навігаційних приймачів, з метою передачі в бортову підсистему системи посадки. В дисертаційній роботі представлені існуючі і розроблені методи виявлення збоїв в наземній підсистемі системи посадки, визначення вкладу наземної підсистеми в похибку скоректованої псевдовідстані, оцінювання точності і цілісності визначення координат, в кінематичному режимі для різних комбінацій супутникових систем.В дисертаційній роботі описаний розроблений апаратно-програмний комплекс що реалізує створені методи і моделі і дозволяє в умовах напівнатурного моделювання досліджувати точність та цілісність навігаційного рішення при виконанні запланованої операції: маневру в зоні аеродрому, здійснення за-ходу на посадку з вертикальним скеровуванням і по категорії з використанням різних комбінацій сигналів супутникових систем: GPS, GLONASS, GALILEO і BeiDou. Надані результати льотних випробувань розробленого апаратно-програмного комплексу. Експериментальний політ являв собою відпрацювання лінійної траєкторії, що імітує фінальну ділянку заходу на посадку і проліт над злітно посадковою смугою. За результатами випробувань отримані такі дані: оцінка вкладу наземної підсистеми в похибку визначення псевдовідстані протягом проведення експерименту; для супутникової навігаційної системи при виконанні запланованої операції: маневру в зоні аеродрому, здійснення за-ходу на посадку з вертикальним скеровуванням і по категорії з використанням різних комбінацій сигналів супутникових систем: GPS, GLONASS, GALILEO і BeiDou отримані еліпсоїди похибок навігаційної системи та, відсоток хибної дієздатності та хибної недієздатності системи.
The dissertation is devoted to the solution of the actual scientific and technical problem: aircraft differential navigation methods development with the use of global navigation satellite systems signals. That is important for increasing the safety of flights. The aim of the dissertation is the develop and experimentally study new and improved methods of aircraft differential navigation with the use multi-GNSS signals for performing operations: a maneuver in the aerodrome area, landing approach with vertical guidance and categorical. The dissertation analyzes the documents of leading organizations and scientific publications in the aviation and space industries. According to these data, it can be argued that air transport plays a leading role in ensuring the sustainability of economic and social development. A key element that ensures the efficiency and reliability of air transport operations is air navigation support, in particular its radio navigation component. Special attention is paid to the development of satellite landing systems. The ICAO classification of landing approaches is considered, and the analysis of existing categorical systems of instrumental landing is presented. A requirements description for the satellite landing system is provided. The analysis showed that the actual scientific task is aircraft differential navigation methods development with the use of global navigation satellite systems signals, which is important for improving flight safety. In the dissertation, the final approach segment and the local Cartesian coordinate system XYV connected with the runway are considered. The errors arising in the instrumental aircraft landing system with the use of several satellite systems signals are considered. Presented existing and developed models that reduce the impact of these errors. In particular, the developed model of residual tropospheric delay after the differential correction of the pseudorange. A key feature of which is the possibility of application in case of meteorological data absence. Given a model of pseudorange and pseudorate correction witch calculated from data obtained from several ground-based receivers, and transmit to the landing system onboard subsystem.The dissertation presents existing and developed methods for detecting failures in the landing system ground subsystem, determining the contribution of the ground subsystem to the error of the corrected pseudorange, estimating the accuracy and integrity of coordinate determination in a kinematic mode for different combinations of satellite systems. The dissertation describes the developed hardware and software complex that implements created methods and models and allows navigation solution accuracy and integrity hardware in the loop simulation research, for performing operations: a maneuver in the aerodrome area, landing approach with vertical guidance and categorical, using different signals combinations from satellite systems: GPS, GLONASS, GALILEO and BeiDou. Presented flight test results of the developed hardware and software complex. The experimental flight has a linear trajectory that simulates the landing final approach segment and the flight over the runway. According to the test results, the following data were obtained: ground subsystem contribution estimation to the pseudorange error during the experiment; for satellite navigation system during the planned operation: maneuver in the aerodrome area, landing approach with vertical guidance and categorical using different signals combinations from satellite systems: GPS, GLONASS, GALILEO and BeiDou, navigation system error ellipsoids and the percentage false system capacity and false system incapacity were obtained.
APA, Harvard, Vancouver, ISO, and other styles
18

Фролова, І. С. "Коли карта не в силах допомогти, є сигнал GPS." Thesis, Видавництво СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/14005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Сосонка, Ірина Іванівна. "Аналіз та оцінка якості часових серій координат референцних GNSS-станцій України." Diss., Національний університет "Львівська політехніка", 2021. https://ena.lpnu.ua/handle/ntb/56750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Швець, Валеріян Анатолійович, and Тетяна Вікторівна Мелешко. "Методика оцінки рівня електричного поля небезпечних сигналів в заходах захисту інформації глобальних навігаційних супутникових систем." Thesis, RS Global Sp. z O.O. Warsaw, Poland, 2020. http://er.nau.edu.ua/handle/NAU/41954.

Full text
Abstract:
У статті подано аналіз джерел, які обґрунтовують необхідність захисту інформації в GNSS. Одним із напрямків захисту інформації є організаційні заходи у вигляді моніторингу електромагнітного середовища у місці розташування споживачів GNSS. Наведено метод оцінки рівня небезпечних сигналів. Представлені практичні результати застосування запропонованої методики.
APA, Harvard, Vancouver, ISO, and other styles
21

Хоптар, Аліна Андріївна. "Томографія тропосфери на основі опрацювання даних мульти-GNSS спостережень." Diss., Національний університет "Львівська політехніка", 2020. https://ena.lpnu.ua/handle/ntb/56060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography