Academic literature on the topic '3D design'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3D design.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "3D design"

1

Gupta, Harshna, Gaurav Chaudhary, and Krishna Mohan Singh Devendra Kumar Ashish Malik. "Enclosure Design for 3D Printing." International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (June 30, 2018): 618–23. http://dx.doi.org/10.31142/ijtsrd13023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Young-Hun. "The Study on 3D Design Basic Education using 3D Software - Based on Rowena Reed Kostellow’s 3D Design Practice." Cartoon and Animation Studies 52 (September 30, 2018): 49–71. http://dx.doi.org/10.7230/koscas.2018.52.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

龚, 晨靓. "Research on the Application of 3D Technology in Digital Illustration." Design 08, no. 04 (2023): 2411–17. http://dx.doi.org/10.12677/design.2023.84292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

谢, 淳钰. "The Material Characteristics of 3D Printing Technology Applied to Furniture Hardware." Design 06, no. 03 (2021): 46–51. http://dx.doi.org/10.12677/design.2021.63008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

余, 子文. "Optimization of 3D Software Interface Design Based on Eye Tracking Testing." Design 08, no. 02 (2023): 313–24. http://dx.doi.org/10.12677/design.2023.82044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Malsagov, B. S., M. V. Sygotina, and O. V. Yalovenko. "3D solid design algorithms." Journal of Physics: Conference Series 2032, no. 1 (October 1, 2021): 012143. http://dx.doi.org/10.1088/1742-6596/2032/1/012143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fang, Jing‐Jing. "3D collar design creation." International Journal of Clothing Science and Technology 15, no. 2 (April 2003): 88–106. http://dx.doi.org/10.1108/09556220310470088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sittas, E. "3D design reference framework." Computer-Aided Design 23, no. 5 (June 1991): 380–81. http://dx.doi.org/10.1016/0010-4485(91)90031-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sittas, E. "3D design reference framework." Computer-Aided Design 23, no. 5 (June 1991): 383–84. http://dx.doi.org/10.1016/0010-4485(91)90032-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Verhunov, S. V. "3D-model and 3D-modeling in industrial design." Educational Dimension 26 (December 14, 2009): 84–89. http://dx.doi.org/10.31812/educdim.6994.

Full text
Abstract:
In the article undertake the attempt to formulate the definition of 3D-model and process of 3D-modeling in industrial design, cons hit definitive aspects of this conception from the position of industrial designer and todays production process.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "3D design"

1

JOHANSSON, ANNA. "3D-2D-3D." Thesis, Högskolan i Borås, Institutionen Textilhögskolan, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-18108.

Full text
Abstract:
The area of this work is a combination of draping and printing. It strives towards the technique that dazzles the eye with illusions of more than one dimension. As a viewer you will believe that the prints are real drapings while they are flat surfaces. Today prints in fashion are categorized as placed prints or all-over prints, and generally created as a flat surface to decorate the garments. In this work the idea is to manipulate and challenge the boundaries of print and give it life through the body shapes and in the movement. Potentially this work could be an introduction to a new way of working with prints in fashion. This work could poosibly be presented as a new technique where placed- print and all-over prints comes together- called placed all-over prints. Also, it could develop into further techniques in using two-dimensional flatness and save fabric in using photography as an option to the real three-dimensional drapings. Furthermore could it mean savings in material as a conscious choice in the process ? This investigation explores two particular kinds of techniques, - print and draping, that are merged into one expression. The aims of this work is to find new ways of using print in combination with draping in dress and explore the possibilities to find a new technique to create interesting womenswear. To unite dimensions like two-dimensional and three-dimensional as a method of finding new forms and expressions. Through experiments with striped textiles the focus is to investigate the possibilities of greater visual effects on two-dimensional prints. For a depth and to exaggerate the directions in the fabric before translating it into a flat surface the striped textile can be a tool for further design. The striped textile has the potential to help the eye to understand the directions in the print and can be used in more than one dimension and color. To explore how to create 3D effect on 2D in print design through draping in dress is the aim of this work.
Program: Modedesignutbildningen
APA, Harvard, Vancouver, ISO, and other styles
2

Chrástek, Jan. "Design 3D tiskárny." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-319491.

Full text
Abstract:
Diploma thesis is focused on design of stereolithography 3D printer, which includes new technology and innovations to achive larger workspace and easy and comfortable manipulation. Great part of thesis is focused on shaping and aesthetic effect with respect of functional, safety, ergonomic and technical claims.
APA, Harvard, Vancouver, ISO, and other styles
3

Chávez, Marroquín Jorge Luis. "Digital fashion 3D design." Universidad Peruana de Ciencias Aplicadas (UPC), 2006. http://hdl.handle.net/10757/656734.

Full text
Abstract:
Jorge Luis Chávez Marroquín (Perú) - Expositor
En este seminario se mostrará el proceso de diseño de la moda de manera digital, utilizando el software CLO3D desde el dibujo de patrones hasta la visualización fotorrealista.
APA, Harvard, Vancouver, ISO, and other styles
4

Нгуєн, В'єт Нган. "3D Printer in Fashion Design." Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/7363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chávez, Marroquín Jorge Luis. "Workshop. Digital fashion 3D design." Universidad Peruana de Ciencias Aplicadas (UPC), 2021. http://hdl.handle.net/10757/656734.

Full text
Abstract:
Jorge Luis Chávez Marroquín (Perú) - Expositor
En este seminario se mostrará el proceso de diseño de la moda de manera digital, utilizando el software CLO3D desde el dibujo de patrones hasta la visualización fotorrealista.
APA, Harvard, Vancouver, ISO, and other styles
6

Eriksson, Emma. "Biokomposit : Kommersiell potential med 3D-print." Thesis, Högskolan i Gävle, Avdelningen för industriell ekonomi, industridesign och maskinteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-36276.

Full text
Abstract:
Biokomposit är ett material som har stor potential att ersätta plastprodukter i framtiden. Med ett innehåll av träfibrer och växtbaserad plast är det både biologiskt nedbrytbart och fullt möjligt att återvinna. I det här projektet undersöks materialet biokomposit i samklang med additiv tillverkning, 3D-print. Syftet är att undersöka materialets estetiska potential, och visa möjligheter inom en tillverkningsteknik som inte håller samma status som exempelvis formsprutning. Författaren vill framhäva det som många skulle se som defekter i en tillverkningsprocess, för att ge komplement till Studio Tabos rotationssymmetriska armaturer. En fokusgrupp har varit till stöd i beslutstagande, och processen har varit experimentell med strikta ramar och mål.  Det intressanta är inte hur man kan skriva ut ett objekt, utan det är varför. Är det för massproduktion av kommersiella produkter som kräver perfektion, så är inte additiv tillverkning rätt väg att gå. Är det för att göra en mindre kollektion, i en produkt där tekniken estetiskt tillför någonting kan tekniken i stället vara en fördel. Framtiden ser ljus ut för nya produkter och det finns mer att utforska i ämnet.
APA, Harvard, Vancouver, ISO, and other styles
7

Starrin, Victoria, and Vendela Stertman. "Designverktyg, Produktutveckling, 3D-design, Mode, Hållbarhet : MED INFÖRANDE AV 3D-DESIGNTEKNIK." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-22074.

Full text
Abstract:
Modebranschen utvecklas kontinuerligt och är i stort behov av nya processer och tekniker för att kunna effektivisera produktutvecklingsfaserna för att fortsätta växa och lyckas. Denna uppsats grundar sig i problematiseringen om ökande problem inom modeindustrin som rör överproduktion, som i sin tur resulterar i långa ledtider, höga kostnader, miljöskada och osålda produkter. Uppsatsens syfte är att undersöka produktutvecklingsfaser inom modeföretag och undersöka hur de kan effektiviseras genom att implementera ny designteknik. Mer specifikt att införa 3D-designverktyg i produktutvecklingsprocessen. Uppsatsen använder sig av kvalitativa metoder som analys av olika teoretiska studier, utförande av fältstudier samt semi-strukturerade intervjuer. Den tidigare forskningen visar olika studier med fokus på 3D-designtekniker för att skapa en förståelse och grund. För att vidareutveckla uppsatsen utfördes intervjuer och observationer på modeföretag. Intervjuer och observationer bidrog med information kring skillnaden mellan företags användning av endast 2D-designtekniker och företag som infört 3D-designtekniker. Från all sammanställd information framkom att en implementering av 3D-designverktyg kan gynna företag i att bli mer tidseffektiva i sin produktutvecklingsprocess. Resultatet svarar på de utformade forskningsfrågorna samt väckte ett flertal frågor att studera i vidare forskning. Studien avgränsar sig till att analysera enbart tidsperspektivet, och kan då i vidare forskning analysera andra aspekter som ekonomi och miljö.
The fashion industry is a continuously developing industry that is in great need of new processes and technologies to be able to streamline the product development phases in order to continue to grow and succeed. This thesis is based on the problematization of increasing problems in the fashion industry concerning overproduction, which in turn results in long lead times, high costs, environmental damage and unsold products. The purpose of the thesis is to investigate the product development phases in fashion companies and examine how they can be made more efficient by implementing new design technology. More specifically, introducing 3D design tools into the product development process.   The thesis used qualitative methods such as analysis of various theoretical studies, execution of field studies and semi-structured interviews. The previous research shows various studies focusing on 3D design techniques to create an understanding and foundation. To further develop the paper, interviews and observations were carried out at fashion companies. The interviews and observations provided information about the difference between companies' use of only 2D design techniques and companies that introduced 3D design techniques. From all the compiled information it emerged that an implementation of 3D design tools can benefit companies in becoming more time-efficient in their product development process. The results responded to the research questions and raised several questions to study in further research. The study is limited to analyzing only the time perspective, and can then analyze other aspects such as economy and the environment in further research.
APA, Harvard, Vancouver, ISO, and other styles
8

Börjesson, Christopher. "3D-printing : För effektivisering av produkter." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-86007.

Full text
Abstract:
In this report, my work on 3D-printing will be presented. This project is what constitutes my examination project in the education of industrial design engineering.   3D-printers are tools that have undergone great development in recent years. Through this development, the machines have become increasingly accessible to private individuals thanks to reduced prices, easyer use and higher quality. Through an increased use of the tool on a more private level, new opportunities are created for how we manufacture products, as well as how our attitude to its components are viewed.   The purpose of the work was to investigate how 3D-printing can be used to create more efficient and sustainable products with a focus on users, manufacturers and the environment. The goal was to develop an approach to utilize the function of a 3D-printer in a way that contributes to higher sustainability and efficiency, where the end result should contribute to this without forcing the user to make any decisive sacrifices.   The work has been carried out with a three-part process, divided into the phases Inspiration, Ideation and implementation, which together constitute an iterative design process. Initially in the inspiration phase, inspiration was created for the work with the help of a literature study, theory collection and a context analysis. Then began the ideation phase, whose purpose was to start creating ideas and conceptualize the inspiration that has previously been collected in the inspiration phase. To implement these ideas and concepts, the implementation phase was carried out to achieve a more completed and implemented concept.   The work resulted in the concept TonePrint. TonePrint is a speaker and a pair of headphones that work together in a form of ecosystem to make the interaction smoother for the user when changing audio source. The product TonePrint is a product that the user 3D-prints by oneself. This contributes to a more efficient and sustainable product as well as production. The product is designed in a way that enables the user to configure the product based on their own needs, which contributes to increased personalization. It allows the user to reuse components from previous devices that would otherwise be discarded, or select components based on their own liking and taste.
I den här rapporten kommer mitt arbete rörande 3D-printeing presenteras. Det här projektet är det som utgör mitt examensarbete i utbildningen högskoleingenjör inom teknisk design.   3D-printers är verktyg som har genomgått stor utveckling de senaste åren. Genom den här utvecklingen har maskinerna blivit allt mer tillgängliga för privatpersoner tack vare lägre priser, smidigare användning och högre kvalitet. Genom en ökad användning av verktyget på mer privata plan skapas nya möjligheter för hur vi tillverkar produkter, samt hur vi ser på produkter och dess uppbyggande komponenter.   Syftet med arbetet var att undersöka hur 3D-printing kan användas för att skapa mer effektiva och hållbara produkter med fokus på användare, tillverkare och miljön. Målet var att ta fram ett tillvägagångssätt att nyttja de egenskaper en 3D-printer medför på ett sätt som bidrar till en högre hållbarhet och effektivitet, där det slutliga resultatet ska bidra till detta utan att tvinga användaren att göra några avgörande uppoffringar.    Arbetet har genomförts med en tre delad process, indelad i faserna Inspiration, Ideation och implementation som tillsammans utgör en iterativ designprocess. Initialt i inspirationsfasen skapades inspiration för arbetet med hjälp av en litteraturstudie, teoriinsamling samt en kontextanalys. Därefter påbörjades ideationsfasen, vars syfte var att börja skapa idéer och konceptualisera den inspirationen som tidigare blivit insamlad i inspirationsfasen. För att implementera dessa idéer och koncept utfördes implementationsfasen för att nå ett mer färdigställt och förverkligat koncept.   Arbetet resulterade i konceptet TonePrint. TonePrint är en högtalare och ett par hörlurar som samverkar i ett form av ekosystem för att göra interaktionen smidigare för användaren vid byte av ljudkälla. Produkten TonePrint är en produkt som användaren själv 3D-printar. Detta bidrar till en mer effektiv och hållbar produkt samt produktion. Produkten är utformad på ett sätt som möjliggör för användaren att konfigurera produkten utifrån eget behov vilket bidrar till en ökad personalisering. Det möjliggör för användaren att återanvända komponenter från tidigare enheter som annars skulle slängas, eller välja komponenter utifrån eget tycke och smak.
APA, Harvard, Vancouver, ISO, and other styles
9

Yagmur-Kilimci, Elif Sezen. "3D mental visualization in architectural design." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37132.

Full text
Abstract:
Many architects report about mentally visualizing 3D aspects of their design ideas while simply working with 2D sketches of them. Indeed, in architecture, the general practice of conveying 3D building information by means of 2D drawings bears on the assumptions that every architect can mentally visualize a building in 3D by looking at its 2D drawings or sketches and that architects, as many report, can capture the 3D aspects of a building design during such 3D mental visualization practices. Additionally, many intuitively believe that the levels at which architects perform such 3D mental visualization practices is highly correlated to their spatial visualization abilities as defined by existing measures of spatial visualization ability. This thesis presents the outcomes of protocol studies and analyses that were conducted with the aim of developing an in-depth understanding about such 3D mental visualization practices and capabilities of architects on the basis of four research questions. First, what might be the nature of the 3D mental visualization phenomena that architects claim to experience: what are the features of these 3D mental visualizations as evidenced in specific tasks; and what might be the nature of the mental representations created during these visualization processes? Second, can every architect carry out these 3D mental visualization practices; might there be individual differences among architects' performances? Third, might 3D mental visualization of buildings be only an architectural skill; can non-architects, who can read 2D architectural drawings, visualize a building in 3D based on its 2D drawings and can they do so to the same levels of performance of those of architects? Fourth, might performance in 3D mental visualization tasks be related to/predicted by spatial visualization ability? The major conclusions of this thesis with regard to the first research question include that (1) architects can be visualizing the buildings in one of the two major forms or by alternatively switching between them: by imagining themselves situated within (almost) the actual size 3D building environment or by imagining a 3D small scale model of the building; (2) the mental representations they create during these visualization processes capture the various visual and spatial aspects of the buildings with a structure similar to that of an actual size or small scale model of the visualized space/form, yet the way they capture these aspects is not like the way these aspects would be captured from a certain viewpoint in reality; and (3) what they experience during these visualization processes is not like the continuous holistic visuospatial experience that one would have when looking at a building or walking inside/around a building. With regard to the second, third and fourth research questions this thesis concludes that (question 2) architects differ in their 3D mental visualization skills; (question 3) 3D mental visualization is an architectural skill in that it relies on certain abilities that become heightened in architects, possibly during education; and (question 4) 3D mental visualization skills are not related to spatial visualization ability as defined by the standard paper-folding test of spatial visualization ability.
APA, Harvard, Vancouver, ISO, and other styles
10

Pugachova, A. O. "3D printing: the future of design." Thesis, Київський національний університет технологій та дизайну, 2018. https://er.knutd.edu.ua/handle/123456789/11427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "3D design"

1

Kumar, Abhishek. Immersive 3D Design Visualization. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6597-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goodman, Richard M. Automobile design liability 3d. [St. Paul, Minn.?]: West Group, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gene, Bodio, ed. Softimage 3D design guide. Albany, NY: Coriolis Group Books, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Home, Sierra. Custom landDesigner: 3D design. Bellevue, WA: Sierra Home, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

M, Goodman Richard. Automobile design liability, 3d. Deerfield, IL: Clark Boardman Callaghan, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rhino 3D modeling. Tokyo: San'ei Shobo Publishing Co., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Design first for 3D artists. Plano, Tex: Wordware Pub., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

H, Friedel David, and Stock Anthony, eds. 3D Studio MAX design guide. Scottsdale, AZ: Coriolis Group Books, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kubinyi, Hugo, Gerd Folkers, and Yvonne C. Martin, eds. 3D QSAR in Drug Design. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/0-306-46857-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kubinyi, Hugo, Gerd Folkers, and Yvonne C. Martin, eds. 3D QSAR in Drug Design. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/0-306-46858-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "3D design"

1

Lienig, Jens. "3D Design." In Bio and Nano Packaging Techniques for Electron Devices, 79–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28522-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gebhardt, Andreas, Julia Kessler, and Laura Thurn. "Materials and Design." In 3D Printing, 167–93. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9781569907030.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gebhardt, Andreas, Julia Kessler, and Laura Thurn. "Materials and Design." In 3D Printing, 167–93. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2019. http://dx.doi.org/10.1007/978-1-56990-703-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Toriya, Hiroshi, and Hiroaki Chiyokura. "Functions in Aiding Design." In 3D CAD, 207–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-45729-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

John, Elys. "3D." In A Studio Guide to Interior Design, 57–80. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003120650-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cong, Jason, and Guojie Luo. "3D Physical Design." In Three Dimensional System Integration, 73–100. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-0962-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, Abhishek. "3D Design Visualization." In VR Integrated Heritage Recreation, 85–131. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6077-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Abhishek. "Immersive Design Portfolio." In Immersive 3D Design Visualization, 275–95. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6597-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Horvath, Joan, and Rich Cameron. "Design Rules for 3D Printing." In Mastering 3D Printing, 211–21. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5842-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmad, F., A. Nazeer, and S. Ahmad. "3D Nano Printing." In Nanomanufacturing and Nanomaterials Design, 73–94. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003220602-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "3D design"

1

Peters, Brian. "Vertex.3D." In ACADIA 2014: Design Agency. ACADIA, 2014. http://dx.doi.org/10.52842/conf.acadia.2014.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Simpson, Timothy W. "Advanced design for additive manufacturing." In Laser 3D Manufacturing VIII, edited by Henry Helvajian, Bo Gu, and Hongqiang Chen. SPIE, 2021. http://dx.doi.org/10.1117/12.2590165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mills, Samuel, John Hana, and Christopher Ring. "Luminaire design using additive manufacturing methods." In 3D Printing for Lighting, edited by Nadarajah Narendran, Samuel T. Mills, and Govi Rao. SPIE, 2023. http://dx.doi.org/10.1117/12.2676390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wong, Martin D. F. "3D floorplan design." In 2009 International Conference on Communications, Circuits and Systems (ICCCAS). IEEE, 2009. http://dx.doi.org/10.1109/icccas.2009.5250322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pégard, Nicolas C., and Jason W. Fleischer. "3D Microfluidic Microscopy." In Bio-Optics: Design and Application. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/boda.2013.bw5a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Murali, Gauthaman, Sandra Maria Shaji, Anthony Agnesina, Guojie Luo, and Sung Kyu Lim. "ART-3D: Analytical 3D Placement with Reinforced Parameter Tuning for Monolithic 3D ICs." In ISPD '22: International Symposium on Physical Design. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3505170.3506725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang Liu, Shouqian Sun, and Aiguo Xu. "3D virtual garment design system." In in Design (CSCWD). IEEE, 2008. http://dx.doi.org/10.1109/cscwd.2008.4537069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lu, Jingwei, Hao Zhuang, Ilgweon Kang, Pengwen Chen, and Chung-Kuan Cheng. "ePlace-3D." In ISPD'16: International Symposium on Physical Design. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2872334.2872361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Arabi, Karim, Kambiz Samadi, and Yang Du. "3D VLSI." In ISPD'15: International Symposium on Physical Design. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2717764.2717779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Madsen, Christi K. "Millimeter-scale glass optical concentrator design and fabrication." In Laser 3D Manufacturing VIII, edited by Henry Helvajian, Bo Gu, and Hongqiang Chen. SPIE, 2021. http://dx.doi.org/10.1117/12.2578454.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "3D design"

1

Sun, Lushan, and Jean Parsons. 3D Printing for Apparel Design: Exploring Apparel Design Process using 3D Modeling Software. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/itaa_proceedings-180814-915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arimatsu, Kanjo, Shingo Ito, Tadashi Tsurushima, Taro Sakai, Toyoki Iguchi, Atsushi Teraji, and Naohisa Mamiya. Application of 3D Combustion Simulation (UCFM) for Production Design. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sohn, MyungHee. Application of 3D scanner and 3D CAD in Apparel Design Education: Development of Custom Dress Form. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-1846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fernandez, Ruben, Hernando Lugo, and Georfe Dulikravich. Aerodynamic Shape Multi-Objective Optimization for SAE Aero Design Competition Aircraft. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009778.

Full text
Abstract:
The SAE Regular Class Aero Design Competition requires students to design a radio-controlled aircraft with limits to the aircraft power consumption, take-off distance, and wingspan, while maximizing the amount of payload it can carry. As a result, the aircraft should be designed subject to these simultaneous and contradicting objectives: 1) minimize the aerodynamic drag force, 2) minimize the aerodynamic pitching moment, and 3) maximize the aerodynamic lift force. In this study, we optimized the geometric design variables of a biplane configuration using 3D aerodynamic analysis using the ANSYS Fluent. Coefficients of lift, drag, and pitching moment were determined from the completed 3D CFD simulations. Extracted coefficients were used in modeFRONTIER multi-objective optimization software to find a set of non-dominated (Pareto-optimal or best trade-off) optimized 3D aircraft shapes from which the winner was selected based to the desired plane performance.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Joshua L. Efficient Design Tool for 2D and 3D NIMS Photonic Crystals. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada493498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alenazi, Mohammed, Cenk Sahin, and James P. Sterbenz. Design Improvement and Implementation of 3D Gauss-Markov Mobility Model. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada582755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ahmed, Mohammad. Early Layout Design Exploration in TSV-based 3D Integrated Circuits. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kompaniets, Alla, Hanna Chemerys, and Iryna Krasheninnik. Using 3D modelling in design training simulator with augmented reality. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3740.

Full text
Abstract:
The article is devoted to the theoretical consideration of the problem and the use of innovative technologies in the educational process in the educational establishment of secondary education in the process of studying the school course of computer science. The main advantages of using educational simulators in the educational process are considered, based on the new state standard of basic and complete general secondary education. Based on the analysis of scientific and methodological literature and network sources, the features of the development of simulators for educational purposes are described. Innovative tools for simulator development have been investigated, as augmented reality with the use of three-dimensional simulation. The peculiarities of using a simulator with augmented reality when studying the topic of algorithmization in the course of studying a school computer science are considered. The article also describes the implementation of augmented reality simulator for the formation of algorithmic thinking skills by students, presents the results of development and describes the functionality of the software product. In the further prospects of the study, it is planned to conduct an experimental study to determine the effectiveness of the use of software development in the learning process.
APA, Harvard, Vancouver, ISO, and other styles
9

Krasnykh, Anatoly. 3D Method for the Design of Multi Sheet Beam RF Sources. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/800007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fowler, Simon. Design and Application of a 3D Photocatalyst Material for Water Purification. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography