Academic literature on the topic 'Acoustic levitation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acoustic levitation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Acoustic levitation":

1

Hasegawa, Koji, and Manami Murata. "Oscillation Dynamics of Multiple Water Droplets Levitated in an Acoustic Field." Micromachines 13, no. 9 (August 23, 2022): 1373. http://dx.doi.org/10.3390/mi13091373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This study aimed to improve and investigate the oscillation dynamics and levitation stability of acoustically levitated water droplets. Contactless sample manipulation technology in mid-air has attracted significant attention in the fields of biochemistry and pharmaceutical science. Although one promising method is acoustic levitation, most studies have focused on a single sample. Therefore, it is important to determine the stability of multiple samples during acoustic levitation. Here, we aim to understand the effect of multiple-sample levitation on levitation stability in acoustic fields. We visualized the oscillatory motion of multiple levitated droplets using a high-speed video camera. To characterize the dynamics of multiple levitating droplets, the oscillation frequency and restoring force coefficients of the levitated samples, which were obtained from the experimental data, were analyzed to quantify the droplet–droplet interaction. The oscillation model of the spring-mass system was compared with the experimental results, and we found that the number of levitating droplets and their position played an important role in the levitation stability of the droplets. Our insights could help us understand the oscillatory behavior of levitated droplets to achieve more stable levitation.
2

Wijaya, Harri, Kourosh Latifi, and Quan Zhou. "Two-Dimensional Manipulation in Mid-Air Using a Single Transducer Acoustic Levitator." Micromachines 10, no. 4 (April 18, 2019): 257. http://dx.doi.org/10.3390/mi10040257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We report a single transducer acoustic levitator capable of manipulating objects in two-dimensions. The levitator consists of a centrally actuated vibrating plate and a flat reflector. We show that the levitation position of the object depends not only on the vibration frequency, but also on the tilting angle between the plate and the reflector. Additionally, new levitation positions can be created by actuating the plate with a composite signal of two frequencies using frequency switching. Based on recorded levitation positions, such single transducer acoustic levitator can manipulate a cluster of levitated microspheres in predefined trajectories, with mean position error of 155 ± 84 µm.
3

Wei, Bin, Yongyong He, and Wei Wang. "Acoustic radiation simulation and pre-stress effect on compact acoustic levitation platform." Modern Physics Letters B 33, no. 07 (March 10, 2019): 1950080. http://dx.doi.org/10.1142/s0217984919500805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In order to satisfy the requirements of precise components with tidiness, low power and high stability in the field of biological engineering, medical equipment and semiconductors etc. a pre-stress acoustic transport prototype without horn was proposed in this paper. The mechanism of levitation and transport which is driven by orthogonal waves was revealed by the analysis of waveform and squeeze film characteristics in high-frequency exciting condition; also, the electric, solid and acoustic coupled finite element method (FEM) was established to investigate the effect of pre-stress and acoustic pressure distribution in the near field. The levitation and driving capacity of near field acoustic levitation (NFAL) transport platform without horns can be proved in this experiment and further to achieve the goal of parameters optimization. The theoretical and experimental results indicate that the pre-stress has a significant effect on resonant frequency and levitating stability, the pre-stress are determined by the DC voltage offset which is related to the system working point so that we cannot increase the offset and exciting voltage unlimitedly to improve the stability. At the same time, the calculated pressure distribution of acoustic radiation can generally reflect the regional bearing capacity in near and far field for levitation. These achievements can partly solve the problem of accuracy design of prototype and thickness of gas film, supporting for accuracy close loop control of levitating height.
4

Stolarski, T. A., and C. I. Woolliscroft. "Use of Near-Field Acoustic Levitation in Experimental Sliding Contact." Journal of Applied Mechanics 74, no. 4 (May 22, 2006): 816–20. http://dx.doi.org/10.1115/1.2424472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The paper presents an investigation into producing the self-levitation effect using piezo-electric actuators (PZTs). Self-levitation has been demonstrated and results are presented and discussed. A relationship between the levitation distance and weight of the levitating sample has been found. In addition, the orientation and position of the PZTs has been found to affect the levitation distance. Modal shapes of the vibration plates used have been produced through modeling and found to accurately correlate with the experimental results found. Additional evidence suggests that the type of vibration plate material affects the separation distance, possibly due to the material’s properties of acoustic reflection.
5

Hansen, Uwe J. "Acoustic levitation." Journal of the Acoustical Society of America 118, no. 3 (September 2005): 1946. http://dx.doi.org/10.1121/1.4781181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fitzgerald, Richard J. "Acoustic levitation." Physics Today 64, no. 9 (September 2011): 23. http://dx.doi.org/10.1063/pt.3.1249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liang, Yan De, Hong Ling, and Yuan Zhang. "Study on the Conditions of Near-Field Acoustic Levitation." Advanced Materials Research 97-101 (March 2010): 4135–40. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.4135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper establishes a near-field acoustic radiation pressure solving model applying with acoustics theory and derives an initial acoustic levitation calculating formula of rotundity objects. Combining with finite element and boundary element analysis, levitate conditions of levitated objects are calculated. This paper takes rectangular ultrasonic oscillator for example, testing and analyzing conditions of near-field acoustic levitation by using self-designed test equipments, the results are proved to be better.
8

Lopatka, Alex. "Visualizing acoustic levitation." Physics Today 74, no. 7 (July 1, 2021): 64. http://dx.doi.org/10.1063/pt.3.4802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guigné, Jacques Y., and Martin B. Barmatz. "Acoustic beam levitation." Journal of the Acoustical Society of America 100, no. 4 (1996): 1935. http://dx.doi.org/10.1121/1.417849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cass, Stephen. "Acoustic levitation [Resources]." IEEE Spectrum 55, no. 5 (May 2018): 19–20. http://dx.doi.org/10.1109/mspec.2018.8352565.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Acoustic levitation":

1

Castro, Angelica. "Manipulation of biomimetic objects in acoustic levitation." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://pastel.archives-ouvertes.fr/pastel-00938546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La lévitation acoustique par des ondes stationnaires ultrasonores (USW), permettent la manipulation des objets micrométriques. L'objectif principal de cette thèse est d'explorer les possibilités offertes par la lévitation acoustique pour manipuler des particules, des cellules et même des bactéries. Nous avons conçu et construit tous les résonateurs et nous avons développé les méthodologies que nous allons montrer dans ce travail expérimental. Selon la nature des particules, leur déplacement est donné par son interaction avec la force acoustique primaire. La position où les particules se déplacent est le point dont les forces acoustique et gravitationnel sont équilibrées. Dans le plan de lévitation, les interactions connues comme force secondaire de Bjerknes est la première étape du processus d'agrégation. Nous présentons une méthodologie pour mesurer cette force. Nous avons mesuré cette force en conditions de micropesanteur. Dans nous résonateurs, nous travaillons avec un grand nombre des particules dont les agrégats sont 3D. Nous introduisons le mode acoustique pulsé que nous permet générer des agrégats 2D. Lorsque les particules deviennent plus petites de 1µm, sa manipulation est difficile en raison de l'influence de l'acoustic streaming qui modifie le comportement des particules. Le mode acoustique pulsé permet de réduire ou de contrôler l'acoustic streaming que nous permet manipuler des particules de taille submicronique, des bactéries et des micro-cylindres catalytiques. Une séparation a été faite par un mélange des particules de 7-12µm dans le dispositif s-SPLITT. Néanmoins la combinaison de forces hydrodynamique et acoustique (HACS) a permis améliorer la séparation.
2

Castro, Camacho Luz Angelica. "Manipulation of biomimetic objects in acoustic levitation." Paris 6, 2013. http://www.theses.fr/2013PA066673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La lévitation acoustique par des ondes stationnaires ultrasonores (USW), permettent la manipulation des objets micrométriques. L'objectif principal de cette thèse est d'explorer les possibilités offertes par la lévitation acoustique pour manipuler des particules, des cellules et même des bactéries. Nous avons conçu et construit tous les résonateurs et nous avons développé les méthodologies que nous allons montrer dans ce travail expérimental. Selon la nature des particules, leur déplacement est donné par son interaction avec la force acoustique primaire. La position où les particules se déplacent est le point dont les forces acoustique et gravitationnel sont équilibrées. Dans le plan de lévitation, les interactions connues comme force secondaire de Bjerknes est la première étape du processus d'agrégation. Nous présentons une méthodologie pour mesurer cette force. Nous avons mesuré cette force en conditions de micropesanteur. Dans nous résonateurs, nous travaillons avec un grand nombre des particules dont les agrégats sont 3D. Nous introduisons le mode acoustique pulsé que nous permet générer des agrégats 2D. Lorsque les particules deviennent plus petites de 1µm, sa manipulation est difficile en raison de l'influence de l’acoustic streaming qui modifie le comportement des particules. Le mode acoustique pulsé permet de réduire ou de contrôler l’acoustic streaming que nous permet manipuler des particules de taille submicronique, des bactéries et des micro-cylindres catalytiques. Une séparation a été faite par un mélange des particules de 7-12µm dans le dispositif s-SPLITT. Néanmoins la combinaison de forces hydrodynamique et acoustique (HACS) a permis améliorer la séparation
Levitation is a promising tool for contactless guiding and non-toxic manipulation. Acoustic levitation by ultrasonic standing waves (USW) allows micron-scale particle manipulation in acoustic resonators. The main goal of this thesis is to explore the possibilities given by the acoustic levitation for manipulating rigid and elastic particles, cells and even bacteria. Therefore we designed and built all the resonators we used and developed new methodologies we shall show in this experimental work. According to the particles nature, their displacement towards the node or the antinode is given by the interaction with the primary force. The position where particles move is a point where the acoustic and the gravitational forces are balanced. At the levitation plane, the first stage of the aggregation process is given by inter particles interactions known as the secondary Bjerknes force. We introduced a methodology for measuring this short range force. In addition, we measured this force in microgravity conditions. Usually, we dealt with hundreds or thousands of micron-size particles leading 3D aggregates. We introduce pulse mode acoustics, where we can generate homogeneous structures, 2D aggregates. However, when species smaller than 1µm particle manipulation is challenging due the complex influence of the acoustic streaming. Pulse mode acoustics can reduce or control the acoustic streaming leading applications to sub-micron size particles, bacteria and catalytic micro rods. A mixture of 7-12µm particles was separated in the s-SPLITT device. However the combination of hydrodynamic and the programmed acoustic of HACS device, improved the purity of the separation
3

Ramachandran, Narayanan. "MODELING AND CONTROL OF ACOUSTIC LEVITATION FOR DUST CONTROL APPLICATION." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The objective is to study and model acoustic levitation by treating it as a control system problem rather than visualizing it as a physical system problem. The specific agenda is to model the acoustic levitation system and design a controller using the obtained model; this model can be used in for "Active dust control" in a closed chamber. A test-bed needs to be developed and constructed for experimental investigation and proof of concept of particle manipulation using sonic/ultrasonic waves. Acoustic standing waves are well established physical concepts, but controlling and modeling the same is a difficult control system problem because of various non-linearity that creeps in an acoustic system at high frequency. Future work would involve in designing a robust controller using the model obtained. The same needs to be extended to the 3-d acoustic dust control system.
4

Thomas, Gilles Pierre Loïc. "Modeling, design and manufacturing of an acoustic levitation linear transportation system." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-28112016-083848/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Acoustic levitation is a method which uses sound radiation to suspend matter in a medium. The main use of this phenomenon is for the contactless processing of matter, allowing to manipulate small objects without any solid contact. Contactless processing of matter presents many advantages in, for example, the fabrication of MEMS (microelectromechanical systems) where handling the components is challenging because of their fragile and surface-sensitive characteristics or in the chemical/biological industry when handling high-purity or hazardous materials. Thus, a new device for noncontact linear transportation of small solid objects is presented here. In this device, ultrasonic flexural vibrations are generated along the ring shaped vibrator using two Langevin transducers and by using a reflector parallel to the vibrator, small particles are trapped at the nodal points of the resulting acoustic standing wave. The particles are then moved by generating a traveling wave along the vibrator, which can be done by modulating the vibration amplitude of the transducers. The working principle of the traveling wave along the vibrator has been modeled by the superposition of two orthogonal standing waves, and the position of the particles can be predicted by using finite element analysis of the vibrator and the resulting acoustic field. A prototype consisting of a 3 mm thick, 220 mm long, 50 mm wide and 52 mm radius aluminum ring-type vibrator and a reflector of the same length and width was built and small polystyrene spheres have been successfully transported along the straight parts of the vibrator.
Levitação acústica é um método para suspender matéria em um meio através de pressão de radiação acústica gerada por intensas ondas de som. O principal uso desse fenômeno é na manipulação de partículas sem contato solido. Esse fenômeno tem várias aplicações para pesquisas onde deve ser evitado todo o contato como, por exemplo, na área de biologia, química, e na fabricação de MEMS. Assim, um novo sistema de transporte linear de partículas por levitação acústica está apresentado aqui. Nesse sistema, vibrações flexurais estão geradas em uma placa tipo anel com dois transdutores tipo Langevin, e colocando um refletor paralelo ao oscilador, partículas estão presas no pontos nodais da onda acústica gerada. As partículas estão deslocadas modulando a amplitude dos transdutores. Assim, este trabalho tem como objetivos a modelagem do fenômeno de levitação acústica, o dimensionamento de um protótipo de sistema de transporte linear de partículas por levitação acústica, bem como a fabricação e o controle desse protótipo. Um protótipo consistindo de uma estrutura tipo anel de alumínio de 3 mm de espessura, 220 mm de comprimento e um raio de 52 mm foi fabricado e o transporte de pequenas esferas de isopor foi realizado com êxito nas parte retas do vibrador.
5

Lupi, Victor D. (Victor Dominick). "The development of an acoustic levitation test facility for cloud physics research." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/27969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Warschat, Carsten. "Implementierung der akustischen Levitation in ein Totalanalysesystem." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Als Totalanalysesysteme (TAS) werden Geräte bezeichnet, welche komplette chemische Analysen eigenständig ausführen. Die Einführung solcher Systeme ermöglicht einen effizienteren Arbeitsablauf in Analyselaboren, da beispielsweise die Probenmanipulation, Aufreinigung und die physikalisch-/chemische Analyse automatisiert in einem Arbeitsgang durchgeführt werden können. Die speziellen Mikrototalanalysesysteme benötigen geringere Probemengen im $\mu$L- Bereich. Durch Kontamination, Agglomeration oder einem Verschluss etwaiger Kanäle in mikrofluidischen Totalanalysesystemen kann es zu einem kompletten Systemausfall kommen. Eine Alternative bildet die akustische Levitation, um derartige Störfälle durch gänzlichen Verzicht auf Gefäße und Wandkontakte gezielt zu reduzieren. Damit die akustische Levitation erfolgreich in Mikrototalanalysesystemen Anwendung finden kann, bedarf es der technischen Weiterentwicklung von Analysemethoden und Kopplungstechniken. In der vorliegenden Arbeit wird das Hauptaugenmerk auf die Kopplung von Levitationstechnik und Massenspektrometrie gelegt. Darüber hinaus wurden spektroskopische Experimente durchgeführt, welche auf Totalreflektionen innerhalb der Tropfen beruhen. Die besonders gute Reflektion hängt damit zusammen, dass sich die Phasengrenze zwischen Luft und Flüssigkeit im Schwebezustand durch molekulare Wechselwirkungen ständig erneuert und keine produktionsbedingte raue Oberfläche aufweist. Die Kombination aus automatischer Tropfengenerierung, Spektroskopie sowie der entwickelten Methode zur Ionenerzeugung aus dem Probevolumen und der massenspektrometrischen Analyse bilden die Grundlage eines neuartigen Mikrototalanalysesystems für geringe Probemengen.
As a total analysis system (TAS) an instrument is called which carries out complete chemical analysis procedures independently. The introduction of such systems offers a more efficient workflow in analytical laboratories because the sample manipulation, purification and the actual automated analysis can be carried out in one single operation. Specialized and already existing micro total analysis systems require currently a small amount of sample in the $\mu$L range. Owing to contamination, agglomeration and thus cross-secion reduction of incorporated channels in micro fluidics total analysis systems it can lead to a complete system interruption. Hence, the implementation of acoustic levitation in these systems is interessting alternative in order to avoid such kind of problems by abandoning vessels and wall contacts completely. To ensure acoustic levitation in micro total analysis systems can be successfully applied, technical development of analytical methods and coupling techniques is required. In the present work, the coupling of levitation technology and mass spectrometry is the prioritized topic but, in addition, spectroscopic experiments based on total reflections within the levitated droplet are as well realized in order to gain process insights. The particularly good reflection at the freely levitated droplet's circumference is due to the fact that the phase boundary between air and liquid is renewed by molecular interactions constantly and has no production-related rough surface. The combination of automated droplet generation, spectroscopy as well as the developed method for ion generation from the sample volume and mass spectrometry forms the basis of a novel micro total analysis system for small sample quantities.
7

Yin, Yanbo. "NON-CONTACT OBJECT TRANSPORTATION USING NEAR-FIELD ACOUSTIC LEVITATION INDUCED BY ULTRASONIC FLEXURAL WAVES." NCSU, 2007. http://www.lib.ncsu.edu/theses/available/etd-09282007-091302/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Handling and processing precision products, such as Compact Discs, LCDs, LSIs and silicon wafers requires strict conditions to keep the products from acquiring tiny defects, scratches and stains. A non-contact transportation system using Near-Field Acoustic Levitation (NFAL) will satisfy these conditions. An initial experiment was firstly set up to check the validation of NFAL Phenomenon. A system consisting of an aluminum beam, two piezoelectric actuators and a mechanical horn was experimentally and theoretically analyzed. With an input of 300 Vp-p, a flat object weighing 4g could be levitated and transported with the speed up to 17 cm/s. The transportation direction can be reversed by adjusting the phase angle difference between the two actuators. Computational fluid dynamics simulation was performed to obtain the time average speed in acoustic streaming. Sliding Film Theory was then utilized to investigate the mechanism of transportation, where the shear force induced by the acoustic streaming was found to be the main source of driving the floating object. To extend the transportation, transportation over a curved path and Module-to-Module connection were experimentally performed. A beam with a shape of 90 degrees of arc was found to have uniform mode shapes and experiment results confirmed its feasibility to change transportation direction. For Module-to-Module connection, a speed threshold was discovered beyond which the transportation would be smooth without any problems. Cylinder rolling induced by the acoustic streaming was also performed to find out the dynamics of the cylinder. To optimize the system performance, the mechanical parts were analyzed in frequency domain. A close-loop system, which consists of the transportation module, vision module, and instrumentation module, was proposed. PID, Single Neuron Method and Sliding Mode Control were adopted to investigate the control effects and the performance results were mixed.
8

Schiffter, Heiko A. [Verfasser]. "Single Droplet Drying of Proteins and Protein Formulations via Acoustic Levitation / Heiko A Schiffter." Aachen : Shaker, 2006. http://d-nb.info/117053404X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schiffter, Heiko Alexander [Verfasser]. "Single Droplet Drying of Proteins and Protein Formulations via Acoustic Levitation / Heiko A Schiffter." Aachen : Shaker, 2006. http://nbn-resolving.de/urn:nbn:de:101:1-2018110406334581120604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qasem, Amal ali. "Design and Development of an Acoustic Levitation System for Use in CVD Growth of Carbon Nanotubes." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1479809526489146.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Acoustic levitation":

1

Zang, Duyang, ed. Acoustic Levitation. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9065-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miyagawa, Akihisa. Acoustic Levitation-Based Trace-Level Biosensing. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1425-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sadhal, S. S. Ground based studies of thermocapillary flows in levitated drops: Analytical part : final report (April 1, 1993 - December 31, 1996), NASA grant no.--NAGW-3378. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zang, Duyang. Acoustic Levitation: From Physics to Applications. Springer, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zang, Duyang. Acoustic Levitation: From Physics to Applications. Springer Singapore Pte. Limited, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zang, Duyang. Acoustic Levitation: From Physics to Applications. Springer, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Miyagawa, Akihisa. Acoustic Levitation-Based Trace-Level Biosensing: Design of Detection Systems and Applications to Real Samples. Springer Singapore Pte. Limited, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miyagawa, Akihisa. Acoustic Levitation-Based Trace-Level Biosensing: Design of Detection Systems and Applications to Real Samples. Springer, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

H, Trinh Eugene, and United States. National Aeronautics and Space Administration., eds. Ground based studies of thermocapillary flows in levitated drops: Analytical part : final report (April 1, 1993 - December 31, 1996), NASA grant no.--NAGW-3378. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Program for the feasibility of developing a high pressure acoustic levitator. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Acoustic levitation":

1

Zang, Duyang. "Dialogues on Levitation Techniques and Acoustic Levitation." In Acoustic Levitation, 1–9. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9065-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marzo, Asier. "Standing Waves for Acoustic Levitation." In Acoustic Levitation, 11–26. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9065-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Andrade, Marco A. B. "Design of Single-Axis Acoustic Levitators." In Acoustic Levitation, 27–55. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9065-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Xiao-Peng. "Lattice Boltzmann Method for Acoustics Levitation." In Acoustic Levitation, 57–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9065-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Zehui, Kangqi Liu, and Duyang Zang. "Dynamics of Acoustically Levitated Drops." In Acoustic Levitation, 79–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9065-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hasegawa, Koji. "Flow Fields and Heat Transfer Associated with an Acoustically Levitated Droplet." In Acoustic Levitation, 97–119. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9065-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wei, Yanju. "Droplet Evaporation Under Acoustic Levitation." In Acoustic Levitation, 121–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9065-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yin, Da-Chuan, and Duyang Zang. "Crystallization in Acoustically Levitated Drops." In Acoustic Levitation, 131–49. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9065-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tsujino, Soichiro, and Takashi Tomizaki. "Applications of Acoustic Levitation in Chemical Analysis and Biochemistry." In Acoustic Levitation, 151–79. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9065-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miyagawa, Akihisa. "Theory of Combined Acoustic-Gravitational Field." In Acoustic Levitation-Based Trace-Level Biosensing, 21–33. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1425-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Acoustic levitation":

1

Sracic, Michael W., Jordan D. Petrie, Henry A. Moroder, Ryan T. Koniecko, Andrew R. Abramczyk, and Kamlesh Suthar. "Acoustic Pressure Fields Generated With a High Frequency Acoustic Levitator." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Acoustic levitation is an advantageous particle positioning mechanism currently employed for applications of x-ray spectroscopy and micro-material manufacturing[1], [2]. By levitating a particle using only acoustic pressure waves, one eliminates the need for a container or other physical structure which may contaminate the specimen. Unfortunately, the pressure field generated by a standing acoustic wave is susceptible to periodic instabilities, and a particle that is levitated in this field tends to vibrate. The amplitude of the vibration is largest in the directions that are orthogonal to the axis in which the acoustic wave is generated. Therefore, by generating additional acoustic waves in each orthogonal axis, the vibration amplitude of the levitated particle is significantly reduced. The authors have shown this phenomenon to be true in a previous study[3]. In this paper, the authors explore the details of the pressure field that is generated with the device. A single degree-of-freedom relationship is developed between the acoustic field pressure, the location of the levitated particle, and the mechanical vibration needed to produce levitation. In order to levitate a 100 micrometer diameter water droplet at 55 kilohertz, the calculations suggest that the transducer must achieve an average surface vibration amplitude of at least 6.43 micrometers. This mechanical vibration must produce a root means-squared pressure amplitude of 933 Pascal. Under these conditions, the particle will levitate approximately 0.4 millimeters below a zero pressure node. To validate the use of the single degree of freedom relationships and to explore the acoustic field for one, two, and three-axis levitation, the authors designed and prototyped an acoustic levitator capable of generating standing waves in three orthogonal directions. Using a simple electrical control circuit, the acoustic wave transducers of each axis can be turned on individually or simultaneously. An experiment was developed to measure the pressure of the acoustic field using a microphone. Preliminary pressure magnitude results were measured for one-axis levitation along the center of the vertical axis of the levitator. The measurements suggest that the theoretical development provides a valid first approximation for the pressure magnitude and required mechanical vibration amplitude.
2

Clough, Justin, Michael W. Sracic, Daniel Piombino, Jonathan Braaten, Scott Connors, Nathaniel Pedigo, Vincent Prantil, and Kamlesh Suthar. "Design and Prototype of a Two-Axis Acoustic Levitator." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The purpose of this paper is to document the process required to design and prototype a two-axis acoustic levitator and to show that the two-axis levitator improves the stability of a particle in an acoustic levitation field. The levitator design consists of the following subsystems: the transducer assemblies, which are responsible for generating the acoustic pressure field needed for levitation; the electrical system, which is responsible for providing the transducer assemblies with adequate power to maintain levitation; and the frame structure, which is responsible for locating and rigidly supporting the transducer assemblies. The two-axis levitator is designed to have four transducers that operate at 27.2 kHz, and simulated results show that the system satisfies nearly all the design criteria and objectives. A transducer test stand and prototype were constructed to verify the design. The test stand was used to characterize all four transducers, and once the assembly was constructed the prototype operating frequency was determined to be 27.5 kHz. The prototype was used to successfully levitate Styrofoam pellets, a plastic pellet, and water droplets of various sizes. The displacement of a water droplet of approximately 1 mm in diameter was measured when levitated with both one-axis (vertical) and two-axis (vertical and horizontal) levitation. Using one-axis levitation, the water droplet displaced a maximum of 1.1 mm in the horizontal direction and 0.17 mm in the vertical direction. Using two-axis levitation, the horizontal displacement was 0.07 mm and the vertical displacement was 0.05 mm. Therefore, the two-axis acoustic levitator provides significant improvements in levitated particle stability.
3

Puranen, Tuomas, Edward Haggstrom, Petteri Helander, Antti Merilainen, Goran Maconi, Antti Penttila, Maria Gritsevich, Ivan Kassamakov, Ari Salmi, and Karri Muinonen. "Multifrequency Acoustic Levitation." In 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, 2019. http://dx.doi.org/10.1109/ultsym.2019.8926200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kagawa, Y., and T. Murai. "Numerical Simulation of Acoustic Levitation." In IEEE 1985 Ultrasonics Symposium. IEEE, 1985. http://dx.doi.org/10.1109/ultsym.1985.198574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Marzo, Asier, Steven Kockaya, Euan Freeman, and Julie Williamson. "Tangible Interactions with Acoustic Levitation." In CHI '19: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3290607.3313265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hirayama, Ryuji, Diego M. Plasencia, Nobuyuki Masuda, and Sriram Subramanian. "Acoustic levitation for multimodal volumetric display." In Optical Trapping and Optical Micromanipulation XVII, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2020. http://dx.doi.org/10.1117/12.2569328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Al Zaitone, Belal. "Drying kinetics of cellulose nanofibers suspensions." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cellulose nanofibers (CNF) is used in various pharmaceutical applications due to its unique characteristics i.e., biodegradability, mechanical and biological properties. CNF is often produced by spray drying process, knowledge of the drying kinetics in terms of mass and heat transfer on the scale of single droplet is important for process development and model validation. Acoustic levitator was used to study drying process of CNF suspension at different air temperatures and initial CNF concentrations. The unique property of acoustic levitation to hold single droplet contactless in the air, enables to study particle morphology during drying process, calculate evaporation rate and estimate particle porosity. Results show that packed particles result at lower initial concentration and temperature has a moderate influence on mean porosity of CNF dried particles. Keywords: acoustic levitation; droplet; drying kinetics; Cellulose Nanofibers
8

Lima, Bruno, Filipe Fazanaro, Marco Aurelio Brizzotti Andrade, and Igor Genuino. "Development of Piezoelectric Transducers for Acoustic Levitation." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-1144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Naumann, Antonius, and Paul Methfessel. "Improving 3D-Editing Workflows via Acoustic Levitation." In UIST '22: The 35th Annual ACM Symposium on User Interface Software and Technology. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3526114.3561353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Helander, Petteri, Edward Haggstrom, Tuomas Puranen, Antti Merilainen, Goran Maconi, Antti Penttila, Maria Gritsevich, Ivan Kassamakov, Ari Salmi, and Karri Muinonen. "Simulating Acoustic Orientation Trapping for Stable Levitation." In 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, 2019. http://dx.doi.org/10.1109/ultsym.2019.8925843.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography