Academic literature on the topic 'Berry colour'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Berry colour.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Berry colour"
Green, R. C., and G. Mazza. "Colour intensification of saskatoon berry extracts." Canadian Institute of Food Science and Technology Journal 19, no. 4 (October 1986): xxxviii. http://dx.doi.org/10.1016/s0315-5463(86)71527-7.
Full textChervin, C., S. Savocchia, M. Krstic, E. Serrano, and R. van Heeswijck. "Enhancement of grape berry weight induced by an ethanol spray four weeks before harvest and effects of a night spray at an earlier date." Australian Journal of Experimental Agriculture 45, no. 6 (2005): 731. http://dx.doi.org/10.1071/ea03147.
Full textTaylor, BK, and KC Leamon. "Trellis effects on yield and fruit quality of five table grape varieties in the Murray Valley." Australian Journal of Experimental Agriculture 31, no. 4 (1991): 585. http://dx.doi.org/10.1071/ea9910585.
Full textWu Dai, Zhan, Michel Génard, Shao-hua Li, and Philippe Vivin. "Analyzing the functional association among seed traits, berry growth and chemical composition in Cabernet-Sauvignon berry (Vitis vinifera L.) using a mathematical growth function." OENO One 43, no. 1 (March 31, 2009): 35. http://dx.doi.org/10.20870/oeno-one.2009.43.1.807.
Full textLijavetzky, Diego, Leonor Ruiz-García, José A. Cabezas, María T. De Andrés, Gemma Bravo, Ana Ibáñez, Juan Carreño, Félix Cabello, Javier Ibáñez, and José M. Martínez-Zapater. "Molecular genetics of berry colour variation in table grape." Molecular Genetics and Genomics 276, no. 5 (August 19, 2006): 427–35. http://dx.doi.org/10.1007/s00438-006-0149-1.
Full textLiu, Bei, Qingqing Xu, and Yujing Sun. "Black goji berry (Lycium ruthenicum) tea has higher phytochemical contents and in vitro antioxidant properties than red goji berry (Lycium barbarum) tea." Food Quality and Safety 4, no. 4 (August 18, 2020): 193–201. http://dx.doi.org/10.1093/fqsafe/fyaa022.
Full textGil, M., O. Pascual, S. Gómez-Alonso, E. García-Romero, I. Hermosín-Gutiérrez, F. Zamora, and J. M. Canals. "Influence of berry size on red wine colour and composition." Australian Journal of Grape and Wine Research 21, no. 2 (January 22, 2015): 200–212. http://dx.doi.org/10.1111/ajgw.12123.
Full textTalay, Rabia, Ümmügülsüm Erdoğan, and Metin Turan. "Physico-chemical Properties, Mineral Matter, Organic Acid, Amino Acid, and Plant Hormones Content of Goji Berry (Lycium barbarum L.) Grown in Turkey." Turkish Journal of Agriculture - Food Science and Technology 9, no. 10 (November 2, 2021): 1889–94. http://dx.doi.org/10.24925/turjaf.v9i10.1889-1894.4566.
Full textGaudillère, Jean-Pierre, Xavier Choné, Cornelis Van Leeuwen, and Olivier Trégoat. "The assessment of vine water and nitrogen uptake by means of physiological indicators influence on vine development and berry potential (Vitis vinifera L. cv Merlot, 2000, Bordeaux)." OENO One 36, no. 3 (September 30, 2002): 133. http://dx.doi.org/10.20870/oeno-one.2002.36.3.967.
Full textAllegro, Gianluca, Chiara Pastore, Gabriele Valentini, and Ilaria Filippetti. "The Evolution of Phenolic Compounds in Vitis vinifera L. Red Berries during Ripening: Analysis and Role on Wine Sensory—A Review." Agronomy 11, no. 5 (May 18, 2021): 999. http://dx.doi.org/10.3390/agronomy11050999.
Full textDissertations / Theses on the topic "Berry colour"
Rathinam, Alagappan Diviya. "Influence of invections of mild isolates of different grapevine viruses on berry colour, texture, flavour and storage life of 'Crimson seedless' table grapes." Thesis, Curtin University, 2011. http://hdl.handle.net/20.500.11937/331.
Full textCardoso, Silvana Coelho. "Genetics of berry colour and anthocyanin content variation in grapevine (Vitis vinifera L.subsp. vinifera)." Doctoral thesis, Universidade Nova de Lisboa. Instituto de Tecnologia Química e Biológica, 2011. http://hdl.handle.net/10362/6181.
Full textAnthocyanin content of grape berry skin determines the colour of grapes and wine. This trait has been widely studied due to its importance for grape and wine marketing and also due to the antioxidant properties of anthocyanins. In this thesis the variation of this trait was investigated within and between cultivars. DNA sequence variation and differential gene expression were studied among clones of the cultivars Aragonez and Negra Mole. Grape colour phenotyping was explored using different phenotyping approaches. Association mapping was performed for a sample of 149 cultivars and association mapping methodologies considering structure and relatedness in the sample were discussed. It was observed that no DNA sequence variation was present in the studied genomic regions between different clones of the same cultivar. Differential expression between Aragonez clones with contrasting values of skin total anthocyanin concentration was found to be very subtle not showing any significant results after correction for multiple testing and with two fold-change. However, relaxing statistical stringency and focusing on functional groups of interest (flavonoid metabolism and transcription factors) a list of 24 genes of interest was identified. This included two genes involved in the flavonoid metabolism, coding enzymes related with the glucosylation of flavonoids and transcription factors of the following families: Myb, Myc, zinc fingers, WRKY, DOF, GRAS, homeobox domain, YABBY, basic-leucine zipper, pathogenesisrelated and plant homeodomain finger.(...)
Financial support from Fundação para a Ciência e a Tecnologia, grant number SFRH / BD / 29379 / 2006 and ERA-PG 074B GRASP GRAPE WINE.
Santibanez, Claudia. "Comparative genetic and metabolic characterization between two table grape varieties with contrasted color berry skin : red Globe and Chimenti Globe." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0918/document.
Full textEl desarrollo de la uva es un proceso dinámico caracterizado por una curva de crecimiento doble sigmoidea, separada por una fase lag, en donde ocurre una biosíntesis coordinada de metabolitos primarios y secundarios. Al final de la fase lag, ocurre un fenómeno llamado pinta correspondiente al comienzo de la coloración de la baya e iniciándose también el proceso de maduración. Las antocianinas son las responsables de la coloración de la piel de las bayas y su regulación ha sido ampliamente estudiada. Sin embargo, pocos estudios se han enfocado en la caracterización genética y metabólica, utilizando variedades contrastantes de color de piel. Utilizando análisis metabólico y la tecnología de RNA-seq, se realizó una nueva caracterización comparativa de dos uvas de mesa, Chimenti Globe (CG) y Red Globe (RG), que poseen un color de piel de la baya contrastante: CG tiene un color rojizo claro y RG posee un color morado. La originalidad de este modelo es que CG fue generada en un evento espontáneo de campo desde una rama de una planta RG. Por lo tanto, el background genético responsable del cambio de color es el mismo. El análisis del contenido metabólico de las pieles de las bayas reveló la importancia de las etapas de desarrollo, pinta y maduración, en ambas variedades en estudio. En particular, la diferencia en la concentración de metabolitos de la ruta fenilpropanoide, tales como shikimato y fenilalanina y otras moléculas como UDP-glucosa y trehalosa-6-fosfato, entre otros. Asimismo, las diferencias entre las variedades estuvieron dadas por cambios relacionados con la biosíntesis de sacarosa y antocianinas. CG solo contenía antocianinas dihidroxiladas, cianidina y peonidina, y no las del tipo trihidroxiladas, malvidina, delfinidina y petunidina, lo cual fue consistente con el fenotipo del color de piel observado. A partir del análisis transcriptómico, generamos un heatmap con 109 genes expresado diferencialmente en CG en comparación con RG, siendo muchos de estos asociados a la ruta biosíntesis de flavonoides. Además, observamos que 11 copias del gen flavonoide 3'5'-hidroxilasa, que codifica una enzima clave para la biosíntesis de antocianinas trihidroxiladas, no estaban inducidas en CG. A partir de este análisis, se seleccionó un gen candidato para contribuir en el estudio de la ruta de biosíntesis de antocianinas: citocromo b5 (Cytb5) que codifica una proteína clave donadora de electrones no caracterizada en vides. La sobreexpresión de Cytb5 en embriones V. berlandieri x V. rupestris cv. 110R sugirió fuertemente la participación en la ruta, ya que los embriones transgénicos exhibieron un color rojizo e incluso, un desarrollo acelerado en comparación con el control. Con estos resultados, hemos sido capaces de proporcionar información sobre la regulación de las antocianinas en vides responsables de la coloración de la piel de las bayas, abriendo nuevos terrenos en la búsqueda de reguladores moleculares de la vía flavonoide
Noordhuis-Fairfax, Sarina. "Field | Guide: John Berger and the diagrammatic exploration of place." Phd thesis, Canberra, ACT : The Australian National University, 2018. http://hdl.handle.net/1885/154278.
Full textGreen, Richard C. "Anthocyanins of the saskatoon berry (Amelanchier alnifolia Nutt) : interactions with physical and chemical parameters and colour intensification of the pigment extracts." 1988. http://hdl.handle.net/1993/9471.
Full textFerreira, Vanessa Cristina Monteiro. "Grape berry color variation: genomic and metabolomic analysis." Doctoral thesis, 2018. http://hdl.handle.net/10348/9146.
Full textGrapevine (Vitis vinifera L.) is one of the oldest perennial domesticated fruit crops in the world and has been widely cultivated and appreciated both for its fruit and wine. During the domestication process of the wild Vitis vinifera subsp. sylvestris to Vitis vinifera subsp. sativa, a complex and long-term evolutionary process led to dramatic changes on grape biology. Since early, vine growers selected the grapevine phenotypes capable of ensuring a greater and regular fruit production and quality, maintaining them through vegetative propagation, thus multiplying highly desirable genotypes. However, natural crossings between newly introduced cultivars and the local germplasm also occurred, alongside with the emergence of somatic events. One of the major contributors for the existing diversity in cultivated grapevine has been the appearance of somatic mutations that affect berry skin color leading to various phenotypes. Indeed, this feature has been used as basis for selection on breeding programs due to its influence on vine growers, winemakers and consumers, representing an important economic factor on this crop. Grapes are not obviously only red or white, instead they provide a huge assortment of colors ranging from whitish, yellow, green, to pink, grey, and to darker red, purple and black berries. This broad range of color cannot be explained by the simple presence of a specific group of molecules, thus, the present study intended to deepen the current knowledge about how grape berry skin color variation is affected by the synthesis of phenolic compounds and their underlying genetic factors. Primarily, the identification of grape berry skin color mutants was performed by genotyping a germplasm set of twenty-five grapevine accessions with twelve microsatellite loci. Among the eleven groups of putative berry skin color mutants genotyped, nine accessions, which were grouped in four different families, were identified as true color mutants, including related black, grey or red and white-skinned variants derived from a single variety. The phenolic profile of the confirmed berry skin color mutants revealed that they could be distinguished according to their non-colored compounds and anthocyanins composition. Moreover, this work benefits from the complementary use of molecular and chemical approaches for the correct identification of the berry skin color mutants studied. The change of berry skin color, from green to white/yellow in non-colored cultivars or from green to pink-red/blue-black in colored cultivars due to anthocyanin synthesis and accumulation occurs during the onset of ripening (veraison). Based on these facts, a first attempt to characterize these changes by means of an integrative approach combining colorimetric (CIELab measurement), metabolic (phenolic profile by HPLC-DAD) and genotypic (allelic composition of MYBA1 and MYBA2 genes) data was performed. This study was focused on the changes that occur during berry development, to improve the knowledge regarding grape berry skin color diversity using somatic variants for berry skin color. Overall, the process of anthocyanin biosynthesis/ accumulation showed a correlation with the colorimetric parameters analysed. Despite the berry skin color variability observed among the somatic variants analyzed was not fully explained by the berry color locus genotype, the phenolic profiles allowed to infer about specific interferences, namely some possible dysfunctions at different levels of the biosynthetic pathway, which could be behind the color variation observed. Additionally, a case study focused on an extremely skin-pigmented Portuguese cultivar (cv. ‘Vinhão’) was conducted throughout berry development, providing the first insights into the genetic and transcriptomic background that may be responsible for the skin color properties of this cultivar. Several types of mutations have been identified at the berry color locus as being responsible for color reversions in grapevine. Through a layer-specific approach, the molecular mechanisms responsible for berry skin color reversion were determined on a subset of somatic variants for berry skin color never investigated before, by the genetic characterization of the berry color locus and its surrounding genomic region. In addition to the observation and description of the most well-known models and mechanisms behind berry skin color reversions, a novel mechanism for the genetic make-up of less-pigmented variants evolving from an unpigmented ancestor was also proposed, in which color gain seems to result from the recovery of the functional G allele on MYBA2. Moreover, it was observed that the mutational events responsible for color gain/ recovery are less understood and different from those described for color loss. On this way, a case study of a white-to-red berry skin color reversion was also performed, in order to better understand its transcriptomic and metabolic consequences in grapevine, specifically in the cv. ‘Moscatel Galego’. The results obtained showed that the coloration of the red-skinned variant was recovered from the white-skinned phenotype of cv. ‘Moscatel Galego Branco’ by the partial activation of the berry color locus. The red-skinned coloration in cv. ‘Moscatel Galego Roxo’ was also associated with the reduced activity of the flavonoid trihydroxylated sub-branch and decreased anthocyanins methylation/acylation.
A videira (Vitis vinifera L.) é uma das mais antigas culturas perenes domesticadas no mundo e tem sido extensamente cultivada e apreciada tanto pelos seus frutos como pelo vinho. Ao longo do processo de domesticação de Vitis vinifera subsp. sylvestris para Vitis vinifera subsp. sativa, um processo evolutivo complexo e de longa duração levou a alterações dramáticas na biologia da uva. Desde cedo, os vitivinicultores selecionaram os fenótipos de videira capazes de assegurar uma maior e mais regular produção e qualidade do fruto, mantendo-os através de propagação vegetativa, multiplicando assim, genótipos altamente desejáveis. No entanto, também ocorreram cruzamentos naturais entre as novas cultivares introduzidas e o germoplama local, juntamente com o aparecimento de eventos somáticos. Uma das maiores contribuições para a diversidade existente na videira cultivada foi o aparecimento de mutações somáticas que afetam a cor do bago levando a vários fenótipos. De facto, esta característica tem sido usada como base de seleção em programas de melhoramento devido à sua influência sobre os vitivinicultores, enólogos e consumidores, representando um importante fator económico nesta cultura. As uvas não são obviamente só tintas ou brancas, em vez disso apresentam uma enorme seleção de cores variando desde uvas esbranquiçadas, amarelas, verdes, a rosadas, rosa-pálido, e até vermelhas mais escuras, roxas e pretas. Este grande intervalo de cor não pode ser explicado pela simples presença de um determinado grupo de moléculas, assim, o presente estudo destinou-se a aprofundar o conhecimento atual sobre como a variação da cor do bago é afetada pela síntese de compostos fenólicos e os seus fatores genéticos subjacentes. Primeiramente, foi efetuada a identificação de mutantes para a cor do bago num conjunto de germoplasma contendo vinte e cinco acessos de videira através da genotipagem com doze loci de microssatélites. Entre os onze grupos de putativos mutantes para a cor do bago genotipados, nove acessos, agrupados em quatro famílias diferentes, foram identificados como verdadeiros mutantes para a cor, incluindo variantes com película de cor tinta, roxa ou rosada e branca derivados de uma única variedade. O perfil fenólico dos mutantes para a cor do bago confirmados revelou que estes podem ser distinguidos de acordo com a sua composição em compostos não-corados e antocianinas. Além disso, este trabalho beneficiou do uso complementar de técnicas moleculares e químicas para a correta identificação dos mutantes para a cor do bago estudados. A alteração da cor do bago, de verde para branco/amarelo em cultivares não-corados ou de verde para rosa-avermelhado/preto-azulado em cultivares corados devido à síntese e acumulação de antocianinas ocorre no início do amadurecimento (pintor). Com base nestes factos, foi realizada uma primeira tentativa de caracterizar estas mudanças recorrendo a uma abordagem integrada combinando dados colorimétricos (medição CIELab), metabólicos (perfil fenólico através de HPLC-DAD) e genotípicos (composição alélica dos genes MYBA1 e MYBA2). Este estudo focou-se nas alterações ocorridas durante o desenvolvimento do bago, de forma a melhorar o conhecimento acerca da diversidade da cor do bago em videira utilizando variantes somáticos para a cor do bago. No geral, o processo de biossíntese/ acumulação de antocianinas demonstrou uma correlação com os parâmetros colorimétricos analisados. Apesar da variabilidade da cor do bago observada entre os variantes somáticos analisados não ser totalmente explicada pelo genótipo do locus da cor do bago, os perfis fenólicos permitiram inferir sobre interferências específicas, nomeadamente sobre possíveis disfunções a diversos níveis da via biossintética, que poderão estar por detrás da variação de cor observada. Adicionalmente, um estudo de caso focado num cultivar Português extremamente pigmentado (cv. ‘Vinhão’) foi conduzido durante o desenvolvimento do bago, fornecendo as primeiras descobertas sobre o fundo genético e transcritómico que poderá ser responsável pelas propriedades colorimétricas deste cultivar. Vários tipos de mutações têm sido identificados no locus da cor do bago como sendo responsáveis por reversões de cor em videira. Através de uma abordagem específica em camadas, os mecanismos moleculares responsáveis por reversões de cor foram determinados num conjunto de variantes somáticos para a cor da película do bago, nunca estudados anteriormente, através da caracterização genética do locus da cor do bago e da região genómica adjacente. Além da observação e descrição dos modelos e mecanismos responsáveis pela reversão de cor mais conhecidos, foi também proposto um novo mecanismo responsável pela composição genética de variantes pouco pigmentados descendentes de um ancestral não pigmentado, no qual o ganho de cor parece resultar da recuperação do alelo funcional G no gene MYBA2. Além disso, foi observado que os eventos mutacionais responsáveis pelo ganho/ recuperação de cor são menos compreendidos e diferentes dos descritos para a perda de cor. Desta forma, foi realizado o estudo de um caso de reversão de cor, de branco para rosado, de forma a melhor compreender as suas consequências a nível transcritómico e metabólico em videira, especificamente no cv. ‘Moscatel Galego’. Os resultados obtidos demonstraram que a coloração do variante roxo foi recuperada a partir do fenótipo branco do cv. ‘Moscatel Galego Branco’ através da ativação parcial do locus da cor do bago. A coloração roxa do cv. ‘Moscatel Galego Roxo’ foi também associada à reduzida atividade da sub-via dos flavonoides tri-hidroxilados e à diminuição da metilação/ acilação das antocianinas
Kennedy, Andreana Holmes. ""The darker the berry...'': An investigation of skin color effects on perceptions of job suitability." Thesis, 1993. http://hdl.handle.net/1911/13745.
Full textBooks on the topic "Berry colour"
Lisa, Workman, Workman Terry, and Muschinske Emily, eds. Berry fun book: A color and crafts adventure. New York: Scholastic Inc., 2004.
Find full textScholastic. Color Your Classroom Berry Scalloped Trimmer. Teacher's Friend Publications, Incorporated, 2017.
Find full textBerry Smudges and Leaf Prints: Finding and Making Colors from Nature. Dutton Juvenile, 2001.
Find full textServices, Readerlink Distribution. Beary Sweet Paintbox to Color. Retail Centric Marketing, 2021.
Find full textBerry Bees "El místerio del collar dorado". Spain: Destino infantil & juvenil, 2019.
Find full textPress, Dalmatian. Paint with Water Book to Color: Berry Fun! (Strawberry Shortcake). Tandem Library, 2003.
Find full textOkaty, Nicole. The Berry Fun Book (Strawberry Shortcake Craft Club, A Color and Crafts Adventure). Scholastic, 2004.
Find full textBook chapters on the topic "Berry colour"
Rein, Maarit J., and Marina Heinonen. "Pigment Composition and Stability in Berry Juices and Wines." In Color Quality of Fresh and Processed Foods, 203–11. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0983.ch016.
Full textGaskell, Elizabeth. "Chapter IX Dressing for Tea." In North and South. Oxford University Press, 2008. http://dx.doi.org/10.1093/owc/9780199537006.003.0011.
Full textHussain Shah, Monis, Rizwan Rafique, Tanzila Rafique, Mehwish Naseer, Uzman Khalil, and Rehan Rafique. "Effect of Climate Change on Polyphenols Accumulation in Grapevine." In Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.99779.
Full textSamokhvalova, Olga, and Kateryna Kasabova. "USE OF MULTICOMPONENT FRUIT AND BERRY PASTE IN THE TECHNOLOGY OF PASTILLES." In Development of scientific, technological and innovation space in Ukraine and EU countries. Publishing House “Baltija Publishing”, 2021. http://dx.doi.org/10.30525/978-9934-26-151-0-34.
Full textHoward, June. "Regionalisms Now." In The Center of the World, 161–217. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198821397.003.0005.
Full textBare, Daniel R. "Polemics from the Pulpit." In Black Fundamentalists, 87–120. NYU Press, 2021. http://dx.doi.org/10.18574/nyu/9781479803262.003.0004.
Full textLowery, Malinda Maynor. "In Defiance of All Laws." In The Lumbee Indians, 62–88. University of North Carolina Press, 2018. http://dx.doi.org/10.5149/northcarolina/9781469646374.003.0004.
Full textKarci, Harun, Habibullah Tevfik, Nesibe Ebru Kafkas, and Salih Kafkas. "Quantitative Trait Loci Associated with Agronomical Traits in Strawberry." In Recent Studies on Strawberries. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.108311.
Full textHarris, James C. "Genetics, Behavior, and Behavioral Phenotypes." In Intellectual Disability. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195178852.003.0010.
Full textNadeau, Robert. "Rebirth of the Sacred : Science, Religion, and the New Environmental Ethos." In Rebirth of the Sacred. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199942367.003.0004.
Full textConference papers on the topic "Berry colour"
Headleand, Christopher, Llyr Cenydd, and William Teahan. "Berry Eaters: Learning Color Concepts with Template Based Evolution." In Artificial Life 14: International Conference on the Synthesis and Simulation of Living Systems. The MIT Press, 2014. http://dx.doi.org/10.7551/978-0-262-32621-6-ch077.
Full textChoudhury, Sajid M., Amr Shaltout, Vladimir M. Shalaev, Alexandra Boltasseva, and Alexander V. Kildishev. "Color Hologram Generation Using a Pancharatnam-Berry Phase Manipulating Metasurface." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_at.2015.jtu5a.89.
Full textChoudhury, Sajid M., Amr Shaltout, Vladimir M. Shalaev, Alexander V. Kildishev, and Alexandra Boltasseva. "Experimental Realization of Color Hologram Using Pancharatnam-Berry Phase Manipulating Metasurface." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_qels.2016.ff1d.8.
Full textAgudelo-Quintero, Myriam L., Ivan Luzardo-Ocampo, Jorge A. Lopera-Rodríguez, Maria E. Maldonado-Celis, and Sandra S. Arango-Varela. "Bioactive Compounds from Andean Berry (Vaccinium meridionale Swartz) Juice Inhibited Cell Viability and Proliferation from SW480 and SW620 Human Colon Adenocarcinoma Cells." In Foods 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/foods2022-12984.
Full textReports on the topic "Berry colour"
Reisch, Bruce, Pinhas Spiegel-Roy, Norman Weeden, Gozal Ben-Hayyim, and Jacques Beckmann. Genetic Analysis in vitis Using Molecular Markers. United States Department of Agriculture, April 1995. http://dx.doi.org/10.32747/1995.7613014.bard.
Full text