Journal articles on the topic 'Correction génique (CRISPR/Cas9)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Correction génique (CRISPR/Cas9).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jordan, Bertrand. "CRISPR-Cas9, une nouvelle donne pour la thérapie génique." médecine/sciences 31, no. 11 (2015): 1035–38. http://dx.doi.org/10.1051/medsci/20153111018.
Full textCheng, Hao, Feng Zhang, and Yang Ding. "CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications." Pharmaceutics 13, no. 10 (2021): 1649. http://dx.doi.org/10.3390/pharmaceutics13101649.
Full textMalki, Hugo, Juliette Pulman, and Deniz Dalkara. "Édition génique par transfert de complexes ribonucléoprotéiques de CRISPR/Cas9 dans la rétine." médecine/sciences 41, no. 6-7 (2025): 540–42. https://doi.org/10.1051/medsci/2025091.
Full textAbdelmoula, B., and N. Bouayed Abdelmoula. "CRISPR/Cas9 genome editing clinical trials for neurodevelopmental disorders." European Psychiatry 67, S1 (2024): S584—S585. http://dx.doi.org/10.1192/j.eurpsy.2024.1216.
Full textWalther, Johanna, Danny Wilbie, Vincent S. J. Tissingh, et al. "Impact of Formulation Conditions on Lipid Nanoparticle Characteristics and Functional Delivery of CRISPR RNP for Gene Knock-Out and Correction." Pharmaceutics 14, no. 1 (2022): 213. http://dx.doi.org/10.3390/pharmaceutics14010213.
Full textYun, Yeomin, and Yoon Ha. "CRISPR/Cas9-Mediated Gene Correction to Understand ALS." International Journal of Molecular Sciences 21, no. 11 (2020): 3801. http://dx.doi.org/10.3390/ijms21113801.
Full textMen, Ke, Xingmei Duan, Zhiyao He, Yang Yang, Shaohua Yao, and Yuquan Wei. "CRISPR/Cas9-mediated correction of human genetic disease." Science China Life Sciences 60, no. 5 (2017): 447–57. http://dx.doi.org/10.1007/s11427-017-9032-4.
Full textHainzl, S., P. Peking, T. Kocher, et al. "185 CRISPR/Cas9 mediated gene correction of COL7A1." Journal of Investigative Dermatology 137, no. 10 (2017): S224. http://dx.doi.org/10.1016/j.jid.2017.07.182.
Full textHanafy, Amira Sayed, Susanne Schoch, and Alf Lamprecht. "CRISPR/Cas9 Delivery Potentials in Alzheimer’s Disease Management: A Mini Review." Pharmaceutics 12, no. 9 (2020): 801. http://dx.doi.org/10.3390/pharmaceutics12090801.
Full textHaq, Ehsan Ul, Haseeb Khaliq, Ayesha Muddasser, et al. "EVALUATION OF CRISPR/CAS9 GENOME-EDITING SYSTEM IN HUMAN STEM CELLS HSCS: THERAPEUTICS AND DIAGNOSTICS PROSPECTS." Insights-Journal of Health and Rehabilitation 3, no. 3 (Health & Allied) (2025): 262–71. https://doi.org/10.71000/ce0xek27.
Full textJo, Dong Hyun, Dong Woo Song, Chang Sik Cho, et al. "CRISPR-Cas9–mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis." Science Advances 5, no. 10 (2019): eaax1210. http://dx.doi.org/10.1126/sciadv.aax1210.
Full textAtmanli, Ayhan, Andreas C. Chai, Miao Cui, et al. "Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy." Circulation Research 129, no. 6 (2021): 602–16. http://dx.doi.org/10.1161/circresaha.121.319579.
Full textLuo, Yumei, Detu Zhu, Zhizhuo Zhang, Yaoyong Chen, and Xiaofang Sun. "Integrative Analysis of CRISPR/Cas9 Target Sites in the HumanHBBGene." BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/514709.
Full textJinka, Chaitra. "CRISPR-Cas9 gene editing and human diseases." Bioinformation 18, no. 11 (2022): 1081–86. http://dx.doi.org/10.6026/973206300181081.
Full textPöhler, Michael, Sarah Guttmann, Oksana Nadzemova, et al. "CRISPR/Cas9-mediated correction of mutated copper transporter ATP7B." PLOS ONE 15, no. 9 (2020): e0239411. http://dx.doi.org/10.1371/journal.pone.0239411.
Full textXia, Emily, Rongqi Duan, Fushan Shi, Kyle E. Seigel, Hartmut Grasemann, and Jim Hu. "Overcoming the Undesirable CRISPR-Cas9 Expression in Gene Correction." Molecular Therapy - Nucleic Acids 13 (December 2018): 699–709. http://dx.doi.org/10.1016/j.omtn.2018.10.015.
Full textZhang, Yu, Hui Li, Yi-Li Min, et al. "Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system." Science Advances 6, no. 8 (2020): eaay6812. http://dx.doi.org/10.1126/sciadv.aay6812.
Full textDÖLARSLAN, Melda. "CRISPR-Cas9 Mediated Gene Correction of CFTR Mutations in Cystic Fibrosis: Evaluating Efficacy, Safety, and Long-Term Outcomes in Patient-Derived Lung Organoids." SHIFAA 2023 (May 19, 2023): 1–8. http://dx.doi.org/10.70470/shifaa/2023/005.
Full textSantos, Renato, and Olga Amaral. "Advances in Sphingolipidoses: CRISPR-Cas9 Editing as an Option for Modelling and Therapy." International Journal of Molecular Sciences 20, no. 23 (2019): 5897. http://dx.doi.org/10.3390/ijms20235897.
Full textWalsh, Colin, and Sha Jin. "Induced Pluripotent Stem Cells and CRISPR-Cas9 Innovations for Treating Alpha-1 Antitrypsin Deficiency and Glycogen Storage Diseases." Cells 13, no. 12 (2024): 1052. http://dx.doi.org/10.3390/cells13121052.
Full textAmoasii, Leonela, Chengzu Long, Hui Li, et al. "Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy." Science Translational Medicine 9, no. 418 (2017): eaan8081. http://dx.doi.org/10.1126/scitranslmed.aan8081.
Full textCharpentier, Emmanuelle. "Gene Editing and Genome Engineering with CRISPR-Cas9." Molecular Frontiers Journal 01, no. 02 (2017): 99–107. http://dx.doi.org/10.1142/s2529732517400119.
Full textPadayachee, Jananee, and Moganavelli Singh. "Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials." Nanobiomedicine 7 (January 1, 2020): 184954352098319. http://dx.doi.org/10.1177/1849543520983196.
Full textWade, Mark. "High-Throughput Silencing Using the CRISPR-Cas9 System." Journal of Biomolecular Screening 20, no. 8 (2015): 1027–39. http://dx.doi.org/10.1177/1087057115587916.
Full textBravo, Jack P. K., Mu-Sen Liu, Grace N. Hibshman, et al. "Publisher Correction: Structural basis for mismatch surveillance by CRISPR–Cas9." Nature 604, no. 7904 (2022): E10. http://dx.doi.org/10.1038/s41586-022-04655-8.
Full textSchaefer, Kellie A., Wen-Hsuan Wu, Diana F. Colgan, Stephen H. Tsang, Alexander G. Bassuk, and Vinit B. Mahajan. "Correction: Retraction: Unexpected mutations after CRISPR–Cas9 editing in vivo." Nature Methods 15, no. 5 (2018): 394. http://dx.doi.org/10.1038/nmeth0518-394a.
Full textKawashima, Nozomu, Yusuke Okuno, Yuko Sekiya, et al. "Correction of Fanconi Anemia Mutation Using the Crispr/Cas9 System." Blood 126, no. 23 (2015): 3622. http://dx.doi.org/10.1182/blood.v126.23.3622.3622.
Full textLi, Dandan, Minglin Ou, Wei Zhang, et al. "CRISPR/Cas9-Mediated Gene Correction in Osteopetrosis Patient-Derived iPSCs." Frontiers in Bioscience-Landmark 28, no. 6 (2023): 131. http://dx.doi.org/10.31083/j.fbl2806131.
Full textMEHAR, A., M. GHAFFAR, S. MUSTAFA, S. IQBAL, B. MASOOD, and I. SHAHID. "THERAPEUTIC CRISPR/CAS9 GENOME EDITING TOOL FOR TREATING SICKLE CELL DISEASE." Biological and Clinical Sciences Research Journal 2024, no. 1 (2024): 987. http://dx.doi.org/10.54112/bcsrj.v2024i1.987.
Full textJung, Hyerin, Yeri Alice Rim, Narae Park, Yoojun Nam, and Ji Hyeon Ju. "Restoration of Osteogenesis by CRISPR/Cas9 Genome Editing of the Mutated COL1A1 Gene in Osteogenesis Imperfecta." Journal of Clinical Medicine 10, no. 14 (2021): 3141. http://dx.doi.org/10.3390/jcm10143141.
Full textWada, Umar Bello, Shanti Nath, Mohammad Zeeshan, Kushiram Sharma, and Yogesh Joshi. "Progress on CRISPR -Cas9 Gene Editing Technology in Sickle cell disease: A Review." Galore International Journal of Health Sciences and Research 9, no. 4 (2025): 55–62. https://doi.org/10.52403/gijhsr.20240404.
Full textHan, Xin, Zongbin Liu, Myeong chan Jo, et al. "CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation." Science Advances 1, no. 7 (2015): e1500454. http://dx.doi.org/10.1126/sciadv.1500454.
Full textBeretta, Maxime, and Hugo Mouquet. "Ingénierie de lymphocytes B humains produisant des anticorps neutralisant le virus VIH-1 par édition génique CRISPR-Cas9." médecine/sciences 35, no. 12 (2019): 993–96. http://dx.doi.org/10.1051/medsci/2019196.
Full textVibhuti Choubisa and Sunil Sharma. "Unveiling neural network potential in forecasting CRISPR effects and off-target prophecies for gene editing." International Journal of Science and Research Archive 10, no. 1 (2023): 252–59. http://dx.doi.org/10.30574/ijsra.2023.10.1.0738.
Full textMiki, Toshio, Ludivina Vazquez, Lisa Yanuaria, et al. "Induced Pluripotent Stem Cell Derivation and Ex Vivo Gene Correction Using a Mucopolysaccharidosis Type 1 Disease Mouse Model." Stem Cells International 2019 (April 1, 2019): 1–10. http://dx.doi.org/10.1155/2019/6978303.
Full textAlanis-Lobato, Gregorio, Jasmin Zohren, Afshan McCarthy, et al. "Frequent loss of heterozygosity in CRISPR-Cas9–edited early human embryos." Proceedings of the National Academy of Sciences 118, no. 22 (2021): e2004832117. http://dx.doi.org/10.1073/pnas.2004832117.
Full textCosenza, Lucia Carmela, Cristina Zuccato, Matteo Zurlo, Roberto Gambari та Alessia Finotti. "Co-Treatment of Erythroid Cells from β-Thalassemia Patients with CRISPR-Cas9-Based β039-Globin Gene Editing and Induction of Fetal Hemoglobin". Genes 13, № 10 (2022): 1727. http://dx.doi.org/10.3390/genes13101727.
Full textChung, Sun-Ku, and Seo-Young Lee. "Advances in Gene Therapy Techniques to Treat LRRK2 Gene Mutation." Biomolecules 12, no. 12 (2022): 1814. http://dx.doi.org/10.3390/biom12121814.
Full textAbabneh, Nidaa A., Jakub Scaber, Rowan Flynn, et al. "Correction of amyotrophic lateral sclerosis related phenotypes in induced pluripotent stem cell-derived motor neurons carrying a hexanucleotide expansion mutation in C9orf72 by CRISPR/Cas9 genome editing using homology-directed repair." Human Molecular Genetics 29, no. 13 (2020): 2200–2217. http://dx.doi.org/10.1093/hmg/ddaa106.
Full textChen, Chiao-Lin, Jonathan Rodiger, Verena Chung, et al. "SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing." G3: Genes|Genomes|Genetics 10, no. 2 (2019): 489–94. http://dx.doi.org/10.1534/g3.119.400904.
Full textSharma, Saksham, Dhruv Gandhi, Bhoomi Bagadia, Kevin Lee, and Anna Jobilal. "Unravelling fragile minds: the promise of CRISPR and RNA therapy in Fragile X Syndrome." InterConf, no. 48(213) (August 19, 2024): 226–37. http://dx.doi.org/10.51582/interconf.19-20.08.2024.020.
Full textSalah Uddin, Iffat Munir, Syeda Hina Shah, Afshan Khalid, Sana Barkat Ali, and Mohammad Rayyan Faisal. "A Comparative Analysis of CRISPR-Cas9, Base Editing and Prime Editing Technologies for Precision Gene Therapy in Cardiac Disease Applications." Indus Journal of Bioscience Research 3, no. 4 (2025): 687–96. https://doi.org/10.70749/ijbr.v3i4.1173.
Full textPavani, Giulia, Anna Fabiano, Marine Laurent та ін. "Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells". Blood Advances 5, № 5 (2021): 1137–53. http://dx.doi.org/10.1182/bloodadvances.2020001996.
Full textJoung, Julia, Silvana Konermann, Jonathan S. Gootenberg, et al. "Author Correction: Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening." Nature Protocols 14, no. 7 (2018): 2259. http://dx.doi.org/10.1038/s41596-018-0063-0.
Full textMorishige, Satoshi, Shinichi Mizuno, Hidetoshi Ozawa, et al. "CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs." International Journal of Hematology 111, no. 2 (2019): 225–33. http://dx.doi.org/10.1007/s12185-019-02765-0.
Full textMin, Yi-Li, Hui Li, Cristina Rodriguez-Caycedo, et al. "CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells." Science Advances 5, no. 3 (2019): eaav4324. http://dx.doi.org/10.1126/sciadv.aav4324.
Full textÖktem, Mert, Enrico Mastrobattista, and Olivier G. de Jong. "Amphipathic Cell-Penetrating Peptide-Aided Delivery of Cas9 RNP for In Vitro Gene Editing and Correction." Pharmaceutics 15, no. 10 (2023): 2500. http://dx.doi.org/10.3390/pharmaceutics15102500.
Full textPavlova, Sophia V., Angelina E. Shulgina, Julia M. Minina, Suren M. Zakian, and Elena V. Dementyeva. "Generation of Isogenic iPSC Lines for Studying the Effect of the p.N515del (c.1543_1545delAAC) Variant on MYBPC3 Function and Hypertrophic Cardiomyopathy Pathogenesis." International Journal of Molecular Sciences 25, no. 23 (2024): 12900. https://doi.org/10.3390/ijms252312900.
Full textLuo, Xianjin, Eric Weidinger, Tobias Burghardt, Miriam Höhn, and Ernst Wagner. "CRISPR/Cas9 Ribonucleoprotein Delivery Enhanced by Lipo-Xenopeptide Carriers and Homology-Directed Repair Modulators: Insights from Reporter Cell Lines." International Journal of Molecular Sciences 26, no. 9 (2025): 4361. https://doi.org/10.3390/ijms26094361.
Full textGobalakrishnan, Krishshan, Vignesh Jayarajan, Veronica Kinsler, and Wei-Li Di. "O18 Precision genome editing for targeted correction of pathogenic D50N mutation in keratitis–ichthyosis–deafness syndrome using CRISPR/Cas9 and homology-directed repair." British Journal of Dermatology 190, no. 6 (2024): e76-e77. http://dx.doi.org/10.1093/bjd/ljae105.018.
Full text