Academic literature on the topic 'Doubly salient electric motor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Doubly salient electric motor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Doubly salient electric motor"

1

Cheng, Ming, Ying Fan, and K. T. Chau. "Design and analysis of a novel stator–doubly-fed doubly salient motor for electric vehicles." Journal of Applied Physics 97, no. 10 (2005): 10Q508. http://dx.doi.org/10.1063/1.1853731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Yunyun, Yu Ding, Jiahong Zhuang, and Xiaoyong Zhu. "Multi-Objective Optimization Design and Multi-Physics Analysis a Double-Stator Permanent-Magnet Doubly Salient Machine." Energies 11, no. 8 (2018): 2130. http://dx.doi.org/10.3390/en11082130.

Full text
Abstract:
The double-stator permanent-magnet doubly salient (DS-PMDS) machine is an interesting candidate motor for electric vehicle (EV) applications because of its high torque output and flexible working modes. Due to the complexity of the motor structure, optimization of the DS-PMDS for EVs requires more research efforts to meet multiple specifications. Effective multi-objective optimization to increase torque output, reduce torque ripple, and improve PM material utilization and motor efficiency is implemented in this paper. In the design process, a multi-objective comprehensive function is establish
APA, Harvard, Vancouver, ISO, and other styles
3

Steiert, U., and H. Späth. "Torque control of the doubly-salient reluctance motor." European Transactions on Electrical Power 3, no. 4 (2007): 265–72. http://dx.doi.org/10.1002/etep.4450030403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ming Cheng, K. T. Chau, and C. C. Chan. "New split-winding doubly salient permanent magnet motor drive." IEEE Transactions on Aerospace and Electronic Systems 39, no. 1 (2003): 202–10. http://dx.doi.org/10.1109/taes.2003.1188904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fan, Ying, and K. T. Chau. "Development of Doubly Salient Permanent Magnet Motors for Electric Vehicles." Journal of Asian Electric Vehicles 3, no. 1 (2005): 689–95. http://dx.doi.org/10.4130/jaev.3.689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mbadiwe, Enwelum I., Erwan Sulaiman, Zarafi Md Ahmad, and M. F. Omar. "Permanent magnet flux switching motor technology as a solution for high torque clean electric vehicle drive." International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no. 2 (2019): 575. http://dx.doi.org/10.11591/ijpeds.v10.i2.pp575-584.

Full text
Abstract:
<span lang="EN-US">A breakthrough in this century has been the development of electric vehicle which is propelled by electric motor powered by electricity. Already, many electric motors have been used for electric vehicle application but performances are low. In this paper, a permanent magnet motor technology using unconventional segmented rotor for high torque application is presented. Unlike conventional motors, this design, flux switching motor (FSM) is an advance form of synchronous machine with double rotating frequency. It accommodates both armature winding and flux source on the s
APA, Harvard, Vancouver, ISO, and other styles
7

Cheng, M., K. T. Chau, and C. C. Chan. "Static Characteristics of a New Doubly Salient Permanent Magnet Motor." IEEE Power Engineering Review 21, no. 2 (2001): 53. http://dx.doi.org/10.1109/mper.2001.4311275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yu, C., and K. T. Chau. "New fault-tolerant flux-mnemonic doubly-salient permanent-magnet motor drive." IET Electric Power Applications 5, no. 5 (2011): 393. http://dx.doi.org/10.1049/iet-epa.2009.0300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

LIAO, YUEFENG, and T. A. LIPO. "A NEW DOUBLY SALIENT PERMANENT MAGNET MOTOR FOR ADJUSTABLE SPEED DRIVES." Electric Machines & Power Systems 22, no. 2 (1994): 259–70. http://dx.doi.org/10.1080/07313569408955566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chang, Sungwoo, Noboru Niguchi, Je-Hoon Lee, and Katsuhiro Hirata. "Improvement of Torque Performance and Energy Density of PM-Type Vernier Motor Utilizing Saddle Coil and Salient Pole." Applied Sciences 11, no. 6 (2021): 2818. http://dx.doi.org/10.3390/app11062818.

Full text
Abstract:
In electric motors, the use of rare-earth magnets has been increasing rapidly. A stronger magnet force of the magnet enables the motor’s higher performance, resulting in the most high-performance motors generally using rare-earth magnets. However, these magnets have two crucial disadvantages: the potential restrictions on the supply of rare-earth magnetic materials and the sharp fluctuation in price. Thus, many recent researches focus on developing high-performance electric motors and reducing the use of critical rare-earth magnets. By increasing the torque density of the motor, we can reduce
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!