Academic literature on the topic 'Dynamic Voltage and Frequency Scaling (DVFS)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamic Voltage and Frequency Scaling (DVFS).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamic Voltage and Frequency Scaling (DVFS)"
Kocanda, Piotr, and Andrzej Kos. "Energy losses and DVFS effectiveness vs technology scaling." Microelectronics International 32, no. 3 (August 3, 2015): 158–63. http://dx.doi.org/10.1108/mi-01-2015-0008.
Full textXu, Shen, Jun Song Li, and Jian Feng Jiang. "Dynamic Voltage and Frequency Scaling Under an Accurate System Energy Model." Advanced Materials Research 442 (January 2012): 321–25. http://dx.doi.org/10.4028/www.scientific.net/amr.442.321.
Full textLiang, Wen Yew, Ming Feng Chang, Yen Lin Chen, and Jenq Haur Wang. "Performance Evaluation for Dynamic Voltage and Frequency Scaling Using Runtime Performance Counters." Applied Mechanics and Materials 284-287 (January 2013): 2575–79. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.2575.
Full textGendler, Alex, Ernest Knoll, and Yiannakis Sazeides. "I-DVFS: Instantaneous Frequency Switch During Dynamic Voltage and Frequency Scaling." IEEE Micro 41, no. 5 (September 1, 2021): 76–84. http://dx.doi.org/10.1109/mm.2021.3096655.
Full textFlorence, A. Paulin, V. Shanthi, and C. B. Sunil Simon. "Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud." Scientific World Journal 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/9328070.
Full textJia, Fan, and Longbing Zhang. "Fine-Grained CPU Power Management Based on Digital Frequency Divider." Electronics 12, no. 2 (January 13, 2023): 407. http://dx.doi.org/10.3390/electronics12020407.
Full textChen, Yen-Lin, Ming-Feng Chang, Chao-Wei Yu, Xiu-Zhi Chen, and Wen-Yew Liang. "Learning-Directed Dynamic Voltage and Frequency Scaling Scheme with Adjustable Performance for Single-Core and Multi-Core Embedded and Mobile Systems." Sensors 18, no. 9 (September 12, 2018): 3068. http://dx.doi.org/10.3390/s18093068.
Full textHuang, Wei, Zhen Wang, Mianxiong Dong, and Zhuzhong Qian. "A Two-Tier Energy-Aware Resource Management for Virtualized Cloud Computing System." Scientific Programming 2016 (2016): 1–15. http://dx.doi.org/10.1155/2016/4386362.
Full textKhriji, Sabrine, Rym Chéour, and Olfa Kanoun. "Dynamic Voltage and Frequency Scaling and Duty-Cycling for Ultra Low-Power Wireless Sensor Nodes." Electronics 11, no. 24 (December 7, 2022): 4071. http://dx.doi.org/10.3390/electronics11244071.
Full textZou, An, Huifeng Zhu, Jingwen Leng, Xin He, Vijay Janapa Reddi, Christopher D. Gill, and Xuan Zhang. "System-level Early-stage Modeling and Evaluation of IVR-assisted Processor Power Delivery System." ACM Transactions on Architecture and Code Optimization 18, no. 4 (December 31, 2021): 1–27. http://dx.doi.org/10.1145/3468145.
Full textDissertations / Theses on the topic "Dynamic Voltage and Frequency Scaling (DVFS)"
Rountree, Barry. "Theory and Practice of Dynamic Voltage/Frequency Scaling in the High Performance Computing Environment." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/305368.
Full textSaha, Sonal. "An Experimental Evaluation of Real-Time DVFS Scheduling Algorithms." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/35035.
Full textMaster of Science
Clark, Mark A. "Dynamic Voltage/Frequency Scaling and Power-Gating of Network-on-Chip with Machine Learning." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1544105215810566.
Full textLi, Juan. "Application-Directed DVFS using Multiple Clock Domains on Graphics Hardware." Digital WPI, 2009. https://digitalcommons.wpi.edu/etd-theses/85.
Full textMuhammad, F. "Ordonnancement de tâches efficace et à complexité maîtrisée pour des systèmes temps-réel." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00454616.
Full textShiomi, Jun. "Performance Modeling and On-Chip Memory Structures for Minimum Energy Operation in Voltage-Scaled LSI Circuits." Kyoto University, 2017. http://hdl.handle.net/2433/228252.
Full textBhatti, K. "Energy-aware Scheduling for Multiprocessor Real-time Systems." Phd thesis, Université de Nice Sophia-Antipolis, 2011. http://tel.archives-ouvertes.fr/tel-00599980.
Full textMallangi, Siva Sai Reddy. "Low-Power Policies Based on DVFS for the MUSEIC v2 System-on-Chip." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229443.
Full textNuförtiden så har multifunktionella bärbara hälsoenheter fått en betydande roll. Dessa enheter drivs vanligtvis av batterier och är därför begränsade av batteritiden (från ett par timmar till ett par veckor beroende på tillämpningen). På senaste tiden har det framkommit att dessa enheter som används vid en fast spänning och frekvens kan användas vid flera spänningar och frekvenser. Genom att byta till lägre spänning och frekvens på grund av effektbehov så kan enheterna få enorma fördelar när det kommer till energibesparing. Dynamisk skalning av spänning och frekvens-tekniker (såkallad Dynamic Voltage and Frequency Scaling, DVFS) har visat sig vara användbara i detta sammanhang för en effektiv avvägning mellan energi och beteende. Hos Imec så använder sig bärbara enheter av den internt utvecklade MUSEIC v2 (Multi Sensor Integrated circuit version 2.0). Systemet är optimerat för effektiv och korrekt insamling, bearbetning och överföring av data från flera (hälso) sensorer. MUSEIC v2 har begränsad möjlighet att styra spänningen och frekvensen dynamiskt. I detta examensarbete undersöker vi hur traditionella DVFS-tekniker kan appliceras på MUSEIC v2. Experiment utfördes för att ta reda på de optimala effektlägena och för att effektivt kunna styra och även skala upp matningsspänningen och frekvensen. Eftersom att ”overhead” skapades vid växling av spänning och frekvens gjordes också en övergångsanalys. Realtidsoch icke-realtidskalkyler genomfördes baserat på dessa tekniker och resultaten sammanställdes och analyserades. I denna process granskades flera toppmoderna schemaläggningsalgoritmer och skalningstekniker för att hitta en lämplig teknik. Genom att använda vår föreslagna skalningsteknikimplementering har vi uppnått 86,95% effektreduktion i jämförelse med det konventionella sättet att MUSEIC v2-chipets processor arbetar med en fast spänning och frekvens. Tekniker som inkluderar lätt sömn och djupt sömnläge studerades och implementerades, vilket testade systemets förmåga att tillgodose DPM-tekniker (Dynamic Power Management) som kan uppnå ännu större fördelar. En ny metod för att genomföra den djupa sömnmekanismen föreslogs också och enligt erhållna resultat så kan den ge upp till 71,54% lägre energiförbrukning jämfört med det traditionella sättet att implementera djupt sömnläge.
Akgul, Yeter. "Gestion de la consommation basée sur l’adaptation dynamique de la tension, fréquence et body bias sur les systèmes sur puce en technologie FD-SOI." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20132/document.
Full textBeyond 28nm CMOS BULK technology node, some limits have been reached in terms of performance improvements. This is mainly due to the increasing power consumption. This is one of the reasons why new technologies have been developed, including those based on Silicon-On-Insulator (SOI). Moreover, the standardization of complex architectures such as multi-core architectures emphasizes the problem of power management at fine-grain. FD-SOI technologies offer new power management opportunities by adjusting, in addition to the usual parameters such as supply voltage and clock frequency, the body bias voltage. In this context, this work explores new opportunities and searches novel solutions for dynamically manage supply voltage, clock frequency and body bias voltage in order to optimize the power consumption of System on Chip.Adjusting supply voltage, frequency and body bias parameters allows multiple operating points, which must satisfy the constraints of functionality and performance. This work focuses initially at design time, proposing a method to optimize the placement of these operating points. An analytical solution to maximize power savings achieved through the use of several operating points is provided. The second important contribution of this work is a method based on convexity concept to dynamically manage the supply voltage, the frequency and the body bias voltage so as to optimize the energy efficiency. The experimental results based on real circuits show average power savings reaching 35%
Zorello, Ligia Maria Moreira. "Dynamic CPU frequency scaling using machine learning for NFV applications." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-30012019-100044/.
Full textO crescimento do setor de Tecnologia da Informação e Comunicação está aumentando a necessidade de melhorar a qualidade de serviço e a eficiência energética, pois o setor já ultrapassou a marca de 12% do consumo energético global em 2017. Data centers correspondem a grande parte desse consumo, representando cerca de 15% dos gastos com energia do setor Tecnologia Informação e Comunicação; além disso, o subsistema que gera mais custos para operadores de data centers é o de servidores e armazenamento. Muitas soluções foram propostas a fim de reduzir o consumo de energia com servidores, como o uso de escalonamento dinâmico de tensão e frequência, uma tecnologia que permite adaptar o consumo de energia à carga de trabalho, embora atualmente não sejam otimizadas para o processamento do tráfego de rede. Nessa dissertação, foi desenvolvido um método de controle usando um mecanismo de previsão baseado na análise do tráfego que chega aos servidores. Os algoritmos de aprendizado de máquina baseados em Redes Neurais e em Máquinas de Vetores de Suporte foram utilizados, e foi verificado que é possível reduzir o consumo de energia em até 12% em servidores com processador Intel Sandy Bridge e em até 21% em servidores com processador Intel Haswell quando comparado com a frequência máxima, que é atualmente a solução mais utilizada na indústria.
Books on the topic "Dynamic Voltage and Frequency Scaling (DVFS)"
Trescases, Olivier. A high-frequency, soft-switching DC-DC converter for dynamic voltage scaling in VLSI loads. 2004.
Find full textBook chapters on the topic "Dynamic Voltage and Frequency Scaling (DVFS)"
Kumar, Sachin, Saurabh Pal, Satya Singh, Vijendra Pratap Singh, Devashish Singh, Tapash Kumar Saha, Himanshu Gupta, and Priya Jaiswal. "Energy Efficient Model for Balancing Energy in Cloud Datacenters Using Dynamic Voltage Frequency Scaling (DVFS) Technique." In Proceedings of Third Doctoral Symposium on Computational Intelligence, 533–40. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3148-2_45.
Full textMoons, Bert, and Marian Verhelst. "DVAFS—Dynamic-Voltage-Accuracy-Frequency-Scaling Applied to Scalable Convolutional Neural Network Acceleration." In System-Scenario-based Design Principles and Applications, 99–111. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-20343-6_5.
Full textHsu, Chung-Hsing, and Ulrich Kremer. "Dynamic Voltage and Frequency Scaling for Scientific Applications." In Languages and Compilers for Parallel Computing, 86–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-35767-x_6.
Full textHsu, Chung-Hsing, and Ulrich Kremer. "Compiler-Directed Dynamic CPU Frequency and Voltage Scaling." In Designing Embedded Processors, 305–23. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-5869-1_14.
Full textAkgün, Gökhan, Lester Kalms, and Diana Göhringer. "Resource Efficient Dynamic Voltage and Frequency Scaling on Xilinx FPGAs." In Applied Reconfigurable Computing. Architectures, Tools, and Applications, 178–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44534-8_14.
Full textMeijer, Maurice, and José Pineda Gyvez. "Technological Boundaries of Voltage and Frequency Scaling for Power Performance Tuning." In Adaptive Techniques for Dynamic Processor Optimization, 25–47. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-76472-6_2.
Full textGhosh, Shreya, and Jaydeep Das. "Dynamic Voltage and Frequency Scaling Approach for Processing Spatio-Temporal Queries in Mobile Environment." In Green Mobile Cloud Computing, 185–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08038-8_9.
Full textHuang, Xin, KenLi Li, and RenFa Li. "A Energy Efficient Scheduling Base on Dynamic Voltage and Frequency Scaling for Multi-core Embedded Real-Time System." In Algorithms and Architectures for Parallel Processing, 137–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03095-6_14.
Full textHayamizu, Yuto, Kazuo Goda, Miyuki Nakano, and Masaru Kitsuregawa. "Application-Aware Power Saving for Online Transaction Processing Using Dynamic Voltage and Frequency Scaling in a Multicore Environment." In Architecture of Computing Systems - ARCS 2011, 50–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19137-4_5.
Full textYanamandra, Aditya, Soumya Eachempati, Vijaykrishnan Narayanan, and Mary Jane Irwin. "Reliability Aware Performance and Power Optimization in DVFS-Based On-Chip Networks." In Dynamic Reconfigurable Network-on-Chip Design, 277–92. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-61520-807-4.ch011.
Full textConference papers on the topic "Dynamic Voltage and Frequency Scaling (DVFS)"
Garg, Deepak, and Rajender Sharma. "Low Power Multiplier using Dynamic Voltage and Frequency Scaling (DVFS)." In 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2014. http://dx.doi.org/10.1109/icacci.2014.6968494.
Full textJeabin Lee, Byeong-Gyu Nam, and Hoi-Jun Yoo. "Dynamic Voltage and Frequency Scaling (DVFS) scheme for multi-domains power management." In 2007 IEEE Asian Solid-State Circuits Conference. IEEE, 2007. http://dx.doi.org/10.1109/asscc.2007.4425705.
Full textChen, Yen-Hao, Yi-Lun Tang, Yi-Yu Liu, Allen C.-H. Wu, and TingTing Hwang. "A Novel Cache-Utilization Based Dynamic Voltage Frequency Scaling (DVFS) Mechanism for Reliability Enhancements." In Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/9783981537079_0067.
Full textMelo, Renato, and Vinicius Petrucci. "Eficiência Energética em Navegação Web usando DVFS." In Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/sbrc.2018.2412.
Full textCosta, Mariana, Sandro Marques, Thiarles Medeiros, Fábio Rossi, Marcelo Luizelli, Antonio Carlos Beck, and Arthur Lorenzon. "PampaFreq: Otimizando o EDP de Aplicações Paralelas em Processadores AMD." In XXI Simpósio em Sistemas Computacionais de Alto Desempenho. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/wscad.2020.14057.
Full textZhao, Shuze, Ibrahim Ahmed, Carl Lamoureux, Ashraf Lotfi, Vaughn Betz, and Olivier Trescases. "A universal self-calibrating Dynamic Voltage and Frequency Scaling (DVFS) scheme with thermal compensation for energy savings in FPGAs." In 2016 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2016. http://dx.doi.org/10.1109/apec.2016.7468125.
Full textMoons, Bert, Roel Uytterhoeven, Wim Dehaene, and Marian Verhelst. "DVAFS: Trading computational accuracy for energy through dynamic-voltage-accuracy-frequency-scaling." In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2017. http://dx.doi.org/10.23919/date.2017.7927038.
Full textNobuaki Kobayashi and Tadayoshi Enomoto. "A low power 90-nm CMOS motion estimation processor implementing dynamic voltage and frequency scaling (DVFS) and fast motion estimation algorithm." In 2008 IEEE International Symposium on Circuits and Systems - ISCAS 2008. IEEE, 2008. http://dx.doi.org/10.1109/iscas.2008.4541757.
Full textAit El Mahjoub, Youssef, Leo Le Corre, and Hind Castel-Taleb. "Stochastic Modeling And Optimization For Power And Performance Control In DVFS Systems." In 37th ECMS International Conference on Modelling and Simulation. ECMS, 2023. http://dx.doi.org/10.7148/2023-0497.
Full textBrandalero, Marcelo, and Antonio Carlos Beck. "MuTARe: A Multi-Target, Adaptive Reconfigurable Architecture." In XX Simpósio em Sistemas Computacionais de Alto Desempenho. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/wscad_estendido.2019.8706.
Full text