Dissertations / Theses on the topic 'Functionally Graded Material (FGM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Functionally Graded Material (FGM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hosseinzadeh, Delandar Arash. "Finite element analysis of thermally induced residual stresses in functionally graded materials." Thesis, KTH, Materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-92519.
Full textMellachervu, Krishnaveni. "Study of the honeycomb structures and functionally graded materials using the BEM and FEM." Cincinnati, Ohio : University of Cincinnati, 2008. http://rave.ohiolink.edu/etdc/view.cgi?acc_num=ucin1206460053.
Full textAdvisor: Yijun Liu. Title from electronic thesis title page (viewed Feb.25, 2009). Includes abstract. Keywords: Honeycomb; FGM; BEM; FEM. Includes bibliographical references.
DESHMUKH, PUSHKARAJ M. "MODELING ERROR ESTIMATION AND ADAPTIVE MODELING OF FUNCTIONALLY GRADED MATERIALS." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1096036755.
Full textCetin, Suat. "Analytical Solution Of A Crack Problem In A Radially Graded Fgm." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12609120/index.pdf.
Full textOkubo, Hitoshi, Hideki Shumiya, Masahiro Ito, and Katsumi Kato. "Insulation Performance of Permittivity Graded FGM (Functionally Graded Materials) in SF6 Gas under Lightning Impulse Conditions." IEEE, 2006. http://hdl.handle.net/2237/9496.
Full textOkubo, Hitoshi, Masafumi Takei, Yoshikazu Hoshina, Masahiro Hanai, Katsumi Kato, and Muneaki Kurimoto. "Application of Functionally Graded Material for Reducing Electric Field on Electrode and Spacer Interface." IEEE, 2010. http://hdl.handle.net/2237/14528.
Full textInce, Ismet. "Periodic Crack Problem For An Fgm Coated Half Plane." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614376/index.pdf.
Full textOdorczyk, Marcos Fernando. "Uma estratégia numérica para análise termoelástica de sólidos recobertos com filmes de material funcionalmente gradado (FGM)." Universidade do Estado de Santa Catarina, 2011. http://tede.udesc.br/handle/handle/1796.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The finite element method has been traditionally applied in solving problems of elasticity and heat transfer, being widely used in cases with homogeneous isotropic materials. With the advent of new technologies, it has been more frequent to use components with more than one material, aiming to get the most out of each phase. A common example is the application of coating films, with optimal properties, on a substrate. These coating films may be homogeneous or functionally graded (FGM). The latter presents a continuous variation of properties through the geometry, allowing to reduce differences at the interface with the substrate. It is important to analyze the behavior of stresses along the interface between film and substrate, a region prone for the occurrence of failure. As current commercial finite element programs have limitations to handle FGM's, especially at the interfaces, one of the motivations of this dissertation is to develop a method for stress and flux nodal recovery, adequate to work with this type of material. The work presents the analysis of a component made of steel or aluminum coated with a titanium nitride film (homogeneous or FGM) under thermo-mechanical loading. The thermal part of the problem is set in an Eulerian description, leading to heat transfer by conduction and convection in the solid. The mechanical (elasticity) part is set in the usual Lagrangean description. A staggered thermo-mechanical approach is implemented and promising results are obtained.
O método de elementos finitos tem sido tradicionalmente aplicado na solução de problemas de elasticidade e transferência de calor, sendo amplamente utilizado em casos com materiais homogêneos e isotrópicos. Com o advento de novas tecnologias tem sido mais freqüente a utilização de componentes com mais de um material, onde se procura obter o máximo proveito de cada fase. Um exemplo comum é a aplicação de filmes de revestimento com propriedades ótimas sobre um substrato. Estes filmes de revestimento podem ser homogêneos ou funcionalmente gradados (FGM), sendo que o último tem variação continua de propriedades ao longo da geometria, permitindo atenuar diferenças na interface com o substrato. A análise do comportamento das tensões ao longo da interface entre filme e substrato é de suma importância, pois esta é uma região potencial para ocorrência de falhas. Dado que programas comerciais de elementos finitos atuais apresentam limitações para lidar com FGM s, principalmente na região de interface, uma das motivações desta dissertação é desenvolver um método de pós-processamento de tensões e fluxos capaz de trabalhar adequadamente com este tipo de material. O trabalho apresenta a análise de um componente de aço ou alumínio revestido com filme de nitreto de titânio (homogêneo ou funcionalmente gradado), sob carregamento termomecânico. A parte térmica do problema é descrita usando uma abordagem Euleriana, que resulta em condução de calor por convecção e condução no sólido. A parte mecânica (elasticidade) é descrita pela tradicional abordagem Lagrangeana. Um procedimento de solução termomecânica aninhada (staggered) é implementado e resultados promissores são obtidos.
Sivakumar, V. "Processing, Characterization And Evaluation Of A Functionally Graded Ai - 4.6% Cu Alloy." Thesis, Indian Institute of Science, 2000. https://etd.iisc.ac.in/handle/2005/183.
Full textSivakumar, V. "Processing, Characterization And Evaluation Of A Functionally Graded Ai - 4.6% Cu Alloy." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/183.
Full textKosker, Sadik. "Three Dimensional Mixed Mode Fracture Analysis Of Functionally Graded Materials." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608795/index.pdf.
Full text#8211
aluminum&
#8211
zirconium (NiCrAlY) bond coat between the FGM coating and substrate. Metal-rich, linear variation, ceramic-rich and homogeneous ceramic FGM coating types are considered in the analyses. The inclined semi-elliptic surface crack problem in the FGM coating-bond coat-substrate system is analyzed under transient thermal loading. This problem is modeled and analyzed by utilizing three dimensional finite elements. Strain singularity around the crack front is simulated using collapsed 20 &
#8211
node quarter &
#8211
point brick elements. Three &
#8211
dimensional displacement correlation technique is utilized to extract the mixed mode stress intensity factors around the crack front for different inclination angles of the semi-elliptic surface crack. The energy release rates around the crack front are also calculated by using the evaluated mixed mode stress intensity factors. The results obtained in this study are the peak values of mixed mode stress intensity factors and energy release rates around the crack front for various inclination angles of the semi-elliptic surface crack embedded in the FGM coating of the composite structure subjected to transient thermal loading.
Kose, Ayse. "Thermal Stress Problem For An Fgm Strip Containing Periodic Cracks." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615697/index.pdf.
Full texts modulus and thermal conductivity are assumed to be varying exponentially across the thickness, whereas Poisson ratio and thermal diffusivity are taken as constant. First, one dimensional transient and steady state conduction problems are solved (heat flux being across the thickness) to determine the temperature distribution and the thermal stresses in a crack free layer. Then, the thermal stress distributions at the locations of the cracks are applied as crack surface tractions in the elasticity problem to find the stress intensity factors. By defining an appropriate auxiliary variable, elasticity problem is reduced to a singular integral equation, which is solved numerically. The influence of such parameters as the grading, crack length and crack period on the stress intensity factors is investigated.
Musuva, Mutinda. "The multiscale wavelet finite element method for structural dynamics." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/12468.
Full textBoidot, Mathieu. "Élaboration de revêtements γ-γ' et de systèmes barrière thermique par Spark Plasma Sintering : tenue au cyclage thermique et propriétés d’usage." Phd thesis, Toulouse, INPT, 2010. http://oatao.univ-toulouse.fr/11972/1/boidot.pdf.
Full textCarbonari, Ronny Calixto. "Projeto de multi-atuadores piezelétricos homogêneos e gradados utilizando o método de otimização topológica." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-04102016-093909/.
Full textMicrotools offer significant promise in a wide range of applications such as cell manipulation, microsurgery, nanotechnology processes, and many other fields. The microtools considered in this doctoral thesis essentially consist of a multi-flexible structure actuated by two or more piezoceramic devices that when each piezoceramic is actuated, it generates an output displacement and force at a specified point of the domain and direction. The multi-flexible structure acts as a mechanical transformer by amplifying and changing the direction of the piezoceramic output displacements. Thus, the development of microtools requires the design of actuated flexible structures that can perform complex movements. The development of these microtools is still in the beginning and it can be strongly enhanced by using design tools. In addition, when multiple piezoceramic devices are involved, coupling effects in their movements become critical, especially the appearance of undesired movements, which makes the design task very complex. One way to avoid such undesirable effects is the use of a systematic design method, such as topology optimization, with appropriate formulation of the optimization problem. The topology optimization method implemented is based on the CAMD (Continuous Approximation of Material Distribution) approach where fictitious densities are interpolated at each finite element, providing a continuum material distribution in the domain. The corresponding sensitivity analysis is presented using the adjoint method. Three formulations are considered. The first formulation, called Piezoelectric Multi-Actuators (PMAs), keeps fixed piezoceramic positions in the design domain and only the flexible structure is designed by distributing some non-piezoelectric material (Aluminum, for example). $XY$ Piezoelectric Nanopositioner are manufactured and experimentally analyzed to validate the results of the topology optimization obtained using this formulation. Experimental analyses are conducted using laser interferometry to measure displacement, while considering a quasi-static excitation. However, this first formulation imposes a constraint to the position of piezoelectric material in the optimization problem limiting the optimality of the solution. Thus, the second formulation presented, called LOMPs, allows the simultaneous distribution of non-piezoelectric and piezoelectric material in the design domain, to achieve certain specified actuation movements. The optimization problem is posed as the simultaneous search for an optimal topology of a flexible structure as well as the optimal position of piezoceramics in the design domain and optimal rotation angle of piezoceramic material axes that maximize output displacements or output forces at a specified point of the domain and direction. When the distribution of a non-piezoelectric conductor material and a piezoceramic material is considered in the design domain, the electrode positions are not known ``a priori\'\'. To circumvent this problem, an electric field is applied as electrical excitation. Finally, the concept of functionally graded materials (FGM) is applied to PMAs design. FGMs are special materials that possess continuously graded properties without interfaces which can increase lifetime of piezoelectric devices. Thus, a third formulation is implemented to find the optimum gradation and polarization sign variation of piezoceramic FGMs, while simultaneously optimizing the multi-flexible structural configuration. This formulation is extended to design bimorph type FGM actuators. For all developed formulations, a multi-objective function is defined that controls the stiffness and flexibility, minimizing the coupling movement of each actuated movement. The present examples are limited to two-dimensional models because most part of the applications for such micro-tools are planar devices.
Jackson, Todd Robert. "Analysis of functionally graded material object representation methods." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9032.
Full textIncludes bibliographical references (leaves 218-224).
Solid Freeform Fabrication (SFF) processes have demonstrated the ability to produce parts with locally controlled composition. To exploit this potential, methods to represent and exchange parts with varying local composition need to be proposed and evaluated. In modeling such parts efficiently, any such method should provide a concise and accurate description of all of the relevant information about the part with minimal cost in terms of storage. To address these issues, several approaches to modeling Functionally Graded Material (FGM) objects are evaluated based on their memory requirements. Through this research, an information pathway for processing FGM objects based on image processing is proposed. This pathway establishes a clear separation between design of FGM objects, their processing, and their fabrication. Similar to how an image is represented by a continuous vector valued function of the intensity of the primary colors over a two-dimensional space, an FGM object is represented by a vector valued function spanning a Material Space, defined over the three dimensional Build Space. Therefore, the Model Space for FGM objects consists of a Build Space and a Material Space. The task of modeling and designing an FGM object, therefore, is simply to accurately represent the function m(x) where x E Build Space. Data structures for representing FGM objects are then described and analyzed, including a voxel based structure, finite element method, and the extension of the Radial-Edge and Cell-Tuple-Graph data structures mains in order to represent spatially varying properties. All of the methods are capable of defining the function m(x) but each does so in a different way. Along with introducing each data structure, the storage cost for each is derived in terms of the number of instances of each of its fundamental classes required to represent an object. In order to determine the optimal data structure to model FGM objects, the storage cost associated with each data structure for representing several hypothetical models is calculated. Although these models are simple in nature, their curved geometries and regions of both piece-wise constant and non-linearly graded compositions reflect the features expected to be found in real applications. In each case, the generalized cellular methods are found to be optimal, accurately representing the intended design.
by Todd Robert Jackson.
Ph.D.
Liu, Hongye 1970. "Algorithms for design and interrogation of functionally graded material solids." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9044.
Full textIncludes bibliographical references (leaves 109-112).
A Functionally Gradient Material (FGM) part is a 3D solid object that has varied local material composition that is defined by a specifically designed function. Recently, research has been performed at MIT in order to exploit the potential of creating FGM parts using a modern fabrication process, 3D Printing, that has the capability of controlling composition to the length scale of 100 [mu]m. As part of the project of design automation of FGM parts, this thesis focuses on the issue of the development of efficient algorithms for design and composition interrogation. Starting with a finite element based 3D model, the design tool based on the distance function from the surface of the part and the design tool allowing the user to design within a .STL file require enhanced efficiency and so does the interrogation of the part. The approach for improving efficiency includes preprocessing the model with bucket sorting, digital distance transform of the buckets and an efficient point classification algorithm. Based on this approach, an efficient algorithm for distance function computation is developed for the design of FGM through distance to the surface of the part or distance to a .STL surface boundary. Also an efficient algorithm for composition evaluation at a point, along a ray or on a plane is developed. The theoretical time complexities of the developed algorithms are analyzed and experimental numerical results are provided.
by Hongye Liu.
S.M.
Imery, Buiza Jesus Alberto. "Fracture behaviour of 2124 A1-SiC functionally graded materials." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321715.
Full textJanković, Ilić Dragana. "Self formed Cu-W functionally graded material created via powder segregation." Aachen Shaker, 2008. http://d-nb.info/999932683/34.
Full textJanković, Ilić Dragana. "Self formed Cu-W functionally graded material created via powder segregation." Aachen Shaker, 2007. http://d-nb.info/987900730/04.
Full textGarbin, Turpaud Fernando, and Pachas Ángel Alfredo Lévano. "Higher-order non-local finite element bending analysis of functionally graded." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2019. http://hdl.handle.net/10757/626024.
Full textTimoshenko Beam Theory (TBT) and an Improved First Shear Deformation Theory (IFSDT) are reformulated using Eringen’s non-local constitutive equations. The use of 3D constitutive equation is presented in IFSDT. A material variation is made by the introduction of FGM power law in the elasticity modulus through the height of a rectangular section beam. The virtual work statement and numerical results are presented in order to compare both beam theories.
Tesis
Tilbrook, Matthew Thomas Materials Science & Engineering Faculty of Science UNSW. "Fatigue crack propagation in functionally graded materials." Awarded by:University of New South Wales. Materials Science & Engineering, 2005. http://handle.unsw.edu.au/1959.4/21885.
Full textLimmahakhun, Sakkadech. "Development of functionally graded materials for innovation in bone-replacement applications." Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/108053/2/Sakkadech_Limmahakhun_Thesis.pdf.
Full textPratapa, Suminar. "Synthesis and character of a functionally-graded aluminium titanate/zirconia-alumina composite." Thesis, Curtin University, 1997. http://hdl.handle.net/20.500.11937/988.
Full textLindsay, Marianne Rose. "Development of Lithium Disilicate Microstructure Graded Glass-Ceramic." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/33243.
Full textMaster of Science
Janković, Ilić Dragana [Verfasser]. "Self formed Cu-W functionally graded material created via powder segregation / Dragana Janković Ilić." Aachen : Shaker, 2008. http://d-nb.info/999932683/34.
Full textPitakthapanaphong, Sasithon. "Deformation behaviour and failure predictions of multi-layered systems with a functionally graded material." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246987.
Full textKoppanooru, Sampat Kumar Reddy. "Estimating Thermal Conductivity and Volumetric Specific Heat of a Functionally Graded Material using Photothermal Radiometry." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062896/.
Full textCaraballo, Simon. "Thermo-Mechanical Beam Element for Analyzing Stresses in Functionally Graded Materials." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3024.
Full textIlhan, Kucuk Ayse. "Mixed-mode Fracture Analysis Of Orthotropic Fgm Coatings Under Mechanical And Thermal Loads." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12608743/index.pdf.
Full textShi, Chao. "Finite Block Method and applications in engineering with Functional Graded Materials." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/39764.
Full textGokay, Kemal. "Contact Mechanics Of Graded Materials With Two Dimensional Material Property Variations." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606527/index.pdf.
Full textkay, Kemal M.S., Department of Mechanical Engineering Supervisor: Asst. Prof. Dr. Serkan Dag September 2005, 62 pages Ceramic layers used as protective coatings in tribological applications are known to be prone to cracking and debonding due to their brittle nature. Recent experiments with functionally graded ceramics however show that these material systems are particularly useful in enhancing the resistance of a surface to tribological damage. This improved behavior is attributed to the influence of the material property gradation on the stress distribution that develops at the contacting surfaces. The main interest in the present study is in the contact mechanics of a functionally graded surface with a two &ndash
dimensional spatial variation in the modulus of elasticity. Poisson&rsquo
s ratio is assumed to be constant due to its insignificant effect on the contact stress distribution [30]. In the formulation of the problem it is assumed that the functionally graded surface is in frictional sliding contact with a rigid flat stamp. Using elasticity theory and semi-infinite plane approximation for the graded medium, the problem is reduced to a singular integral equation of the second kind. Integral equation is solved numerically by expanding the unknown contact stress distribution into a series of Jacobi polynomials and using suitable collocation points. The developed method is validated by providing comparisons to a closed form solution derived for homogeneous materials. Main numerical results consist of the effects of the material nonhomogeneity parameters, coefficient of friction and stamp size and location on the contact stress distribution.
Li, Qian. "Three-dimensional analysis of functionally graded material plates, free vibration in thermal environment and thermal buckling." Thesis, University of Macau, 2008. http://umaclib3.umac.mo/record=b1783646.
Full textRichards, Mark Rowse. "Process development for IrAl coated SiC-C functionally graded material for the oxidation protection of graphite /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/10574.
Full textPratapa, Suminar. "Synthesis and character of a functionally-graded aluminium titanate/zirconia-alumina composite." Curtin University of Technology, Department of Applied Physics, 1997. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=14696.
Full textRelatively lower thermal expansion and softer surface layer in comparison to those of the core (TEC value of 5.9 x 10(subscript)-6 degrees celsius(subscript)-1 and microhardness of 6 GPa compared to 7.4 x 10(subscript)-6 degrees celsius(subscript)-1 and 12 GPa, respectively) render possibilities to implement the material to which thermal shock resistance surface but hard core, such as a metal melting crucible, are required. Load-dependent microhardness was obviously observed on the surface of the material but only slight dependence was observed in the core. This observation indicated that the material exhibit "quasi-ductile" surface but brittle core. In comparison to the reference specimen, the FGM displayed damage-tolerance and remarkable machinability.
Maruani, Jonas. "Contrôle actif des vibrations de structures élancées FGPM." Thesis, Paris 10, 2019. http://www.theses.fr/2019PA100062.
Full textThe aim of this thesis is to show the feasibility and the efficiency of active vibration control by structures made of functionally graded piezoelectric materials (FGPM). One bloc structure, made of FGPM, with piezoelectric properties embedded, is used to replace classical intelligent structures (a host structure equipped with piezoelectric patches) and to remove their disadvantages (stresses concentrations near interface, delamination of patches, …).This study focuses on the FGPM’s modelization, in particular on the graded behavior laws and on the development of finite elements of FGPM beams and plates. Two finite element are implemented, a beam element based on Timoshenko’s kinematics and a plate element based on an adaptive kinematics. Both elements have a numerical layers approximation for the electrical potential. These two elements are used for active vibration control simulations. In the beam case, the system is governed by a linear quadratic regulator. Otherwise, for the plate a fuzzy decentralized regulator is developed and used. Both systems beam and plate are observed thanks to a Luerberger’s observer. Static studies show the behavior of FGPM depending on the material gradation. In addition, active vibration simulations show the feasibility of control with both systems and the ability of fuzzy regulator to accommodate to sudden changes on external perturbations
Rodriguez, Johnnatan, Kevin Hoefer, Andre Haelsig, and Peter Mayr. "Functionally Graded SS 316L to Ni-Based Structures Produced by 3D Plasma Metal Deposition." MDPI AG, 2019. https://monarch.qucosa.de/id/qucosa%3A34781.
Full textFariborz, Jamshid. "Free Vibration of Bi-directional Functionally Graded Material Circular Beams using Shear Deformation Theory employing Logarithmic Function of Radius." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/85107.
Full textMaster of Science
Curved and straight beams of various cross-sections are one of the simplest and most fundamental structural elements that have been extensively studied because of their ubiquitous applications in civil, mechanical, biomedical and aerospace engineering. Many attempts have been made to enhance their material properties and designs for applications in harsh environments and reduce weight. One way of accomplishing this is to combine layerwise two or more distinct materials and take advantage of their directional properties. It results in a lightweight structure having overall specific strength superior to that of its constituents. Another possibility is to have volume fractions of two or more constituents gradually vary throughout the structure for enhancing its performance under anticipated applications. Functionally graded materials (FGMs) are a class of composites whose properties gradually vary along one or more space directions. In this thesis, we have numerically studied free vibrations of FGM circular beams to enhance their application domain and possibly use them for energy harvesting.
Demircivi, Bengi. "Thermal Stress Intensity Factor Evaluation For Inclined Cracks In Functionally Graded Materials Using Jk-integral Method." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607844/index.pdf.
Full textArman, Eyup Erhan. "Jk-integral Formulation And Implementation For Thermally Loaded Orthotropic Functionally Graded Materials." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12610136/index.pdf.
Full textLima, Andressa Bastos da Mota. "Desenvolvimento de eletrodo FGM a base de Ni-zircônia para célula a combustível de sólido óxido." Universidade Federal de São Carlos, 2007. https://repositorio.ufscar.br/handle/ufscar/760.
Full textUniversidade Federal de Sao Carlos
The search for alternatives sources to fossil fuel has stimulated the technological development of solid oxide fuel cell. Hydrogen is the ideal fuel for this application. However, due to technical reasons, alternatives fuels to hydrogen such as methanol and natural gas has been tested. Therefore, the use of these fuels makes necessary the substitution of the anode materials that are normally used with hydrogen. The anode materials substitution must be based on the knowledge about the relationship between anode microstructure and its performance during cell operation. This knowledge makes possible introduce new materials besides new fabrication process for solid oxide fuel cell anodes. The main characteristics of anode are: high chemical activity and durability. The durability of the anode can be attained using FGM material that makes possible to match the thermal expansion of the interfaces. Ni-8YSZ cermet is normally used as anode material. In this work it was studied the cermets Ni-8YSZ as electrodes on the YSZ electrolyte. Two types of electrodes were prepared: with and without compositional gradient along the electrode thickness. This work was developed in two steps. The first one was the development of the powder 8YSZ-NiO suspension with the appropriated rheological characteristics. The second one was the electrodes characterization by impedance spectroscopy and scanning electron microscopy. It was found that electrodes containing layers with ≤30 vol% Ni are inefficient to promote the reactions because de Ni particles are not percolated.
A busca por fontes alternativas aos combustíveis fósseis para geração de energia tem estimulado a tecnologia para a fabricação de células a combustível (CaC). Gás hidrogênio é o combustível ideal para CaC porém outros combustíveis, tais como metanol e gás natural, são testados. O material de anodo utilizado, quando se emprega hidrogênio como combustível, é o compósito Ni-8YSZ. O anodo deve atender dois requisitos: alta atividade química das reações e durabilidade. O conceito de material FGM (gradação funcional) é aplicado a eletrodo com o objetivo de aumentar a durabilidade pela compatibilização da expansão térmica do eletrólito e coletor de corrente. Nesta dissertação foram estudados eletrodos compósitos Ni-8YSZ, em eletrólitos de 8YSZ, com e sem gradiente composicional ao longo da espessura. Este trabalho foi realizado em duas etapas: desenvolvimento do processamento cerâmico e caracterização elétrica dos eletrodos. A primeira etapa consistiu no desenvolvimento de suspensões da mistura 8YSZ-NiO com características adequadas ao processo de deposição por jato de suspensão e cujo filme granular resultante fosse livre de defeitos. A segunda etapa consistiu na caracterização dos eletrodos, com e sem gradação de composição, por espectroscopia de impedância e microscopia eletrônica. Eletrodos contendo camadas ≤30%vol Ni são ineficientes para promover as reações de anodo pois as partículas de níquel não estão percoladas.
Makhecha, Dhaval Pravin. "Dynamic Fracture of Adhesively Bonded Composite Structures Using Cohesive Zone Models." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/29631.
Full textPh. D.
Tedia, Saish. "Design, Analysis and Fabrication of Complex Structures using Voxel-based modeling for Additive Manufacturing." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/89524.
Full textMS
Amigo, Ricardo Cesare Román. "Otimização e fabricação de dispositivos piezelétricos com gradação funcional de material." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-31072013-004337/.
Full textPiezoelectric devices enable precision positioning and sensing or mechanical energy harvesting based on the piezoelectric effect. In flextensional piezoelectric devices, flexible coupling structures are attached to ceramics to improve or extend the application possibilities. On the design of this kind of structure, the concept of Functionally Graded Materials (FGM) can be interesting, since it allows gradual variations of its effective properties along some direction by mixing two or more materials. Thus, in order to identify the advantages and disadvantages of using FGM, graded flexible coupling structures that maximize the performance of piezoelectric devices are obtained by implementing the Topology Optimization Method (TOM). This method combines optimization algorithms and the Finite Element Method (FEM) to distribute material inside a fixed domain. In this work, the formulation is based on the Solid Isotropic Material with Penalization (SIMP) material model adapted for the FGM concept, which can represent continuous change in material properties along the domain. Resulting optimal graded topologies of coupling structures are presented and compared with homogeneous structures. Finally, graded devices are manufactured through Spark Plasma Sintering (SPS) technique in order to be characterized, validating numerical results. The numerical results demonstrate the TOM efficacy in designing functionally graded piezoelectric devices and show, by its implementation, significant gains in graded mechanisms performance when compared with analogous homogeneous. Furthermore, the feasibility of proposed manufacturing process is confirmed, allowing the fabrication of prototypes with expected behavior.
Uygur, Pelin. "Generalized Finite Differences For The Solution Of One Dimensional Elastic Plastic Problems Of Nonhomogeneous Materials." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608224/index.pdf.
Full texts yield criterion and its associated flow rule. The numerical results are compared to those of analytical ones. Furthermore, the elastic response of an FGM tube with free ends is studied considering graded modulus of elasticity and Poisson'
s ratio. The results of these computations are compared to those of Shooting solutions. In the light of analyses and comparisons stated above, the applicability of the GFD method to the solution of similar problems is discussed. It is observed that, in purely elastic deformations the accuracy of the method is sufficient. However, in case of elastic-plastic deformations, the discrepancies between numerical and analytical results may increase in determining plastic displacements. It is also noteworthy that the predictions for tubes with two graded properties, i. e. the modulus of elasticity and the yield limit, turn out to be better than those with one graded property in this regard.
Stump, Fernando Viegas. "Otimização topológica aplicada ao projeto de estruturas tradicionais e estruturas com gradação funcional sujeitas a restrição de tensão." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-22042007-230503/.
Full textThis work presents the Topology Optimization Method (TOM) with stress constraint applied to two Engineering problems: the design of mechanical structures subjected to stress constraint and the design of material distribution in structures made of Functionally Graded Materials (FGMs). The TOM is a numerical method capable of synthesizing the basic layout of a mechanical structure accomplishing to a given design requirement, for example the maximum stress in the structure. The FGMs are materials with spatially varying properties, which are obtained through a continuum change of the microstructuremade of two different materials. In this work, the TOM was implemented with Solid Isotropic Microstructure with Penalization (SIMP) material model and the density field was parameterized with the Continuous Approximations of Material Distribution. To obtain the intermediate density stresses, the material model is applied together with a stress localization matrix. The design of mechanical structures through the TOM has two major problems: the singular topology phenomenon, which is characterized by the optimization algorithm impossibility of removing material from certain regions, where the stress overpasses the limiting stress when the density goes to zero, and the large number of constraints, once the stress is a local value that must be constrained everywhere in the structure. To deal with the first problem, it is applied the \"-realaxation concept, and for the second one two approaches are considered: one is to change the local stress constraint into a global stress constraint and the other is to apply the Augmented Lagrangian Method. Both approaches were implemented and applied to the design of plane and axisymmetric structures. In the design of material distribution in structures made of FGMs a material model based on Hashin-Shtrikman bounds is applied. From this model, stresses in each phase are obtained by the stress localization matrix. To deal with the singular topology phenomenon it is proposed a modified von Mises failure criteria index that avoids such problem. A global stress constraint is applied to deal with the large number of constraints. In both problems formulations are presented and their performance are discussed through numerical examples.
Craveiro, Flávio Gabriel da Silva. "Automated multi-material fabrication of buildings." Doctoral thesis, Universidade de Lisboa, Faculdade de Arquitetura, 2020. http://hdl.handle.net/10400.5/20170.
Full textArquitetos e engenheiros estão sob crescente pressão para melhorar a eficiência e a eficácia do setor da arquitetura, engenharia e construção, de forma a reduzir o impacto ambiental, o uso de materiais e os custos. A eficiência de recursos, baseada numa estratégia de economia circular, considera um uso eficiente da energia, assim como dos recursos naturais e materiais. A integração de tecnologias digitais nos processos de construção permitirá uma maior flexibilidade no projeto e customização, bem como a conceção de formas complexas e novos materiais. Nos últimos anos, o interesse no desenvolvimento de tecnologias de fabricação aditiva na construção cresceu, mas encontram-se limitadas ao projeto e fabrico de componentes físicos compostos por materiais com propriedades homogéneas, garantindo a segurança estrutural, mas negligenciando o uso eficiente de recursos. Para superar tais limitações, um novo sistema de fabricação aditiva foi desenvolvido para construção automatizada, permitindo a produção de materiais compósitos heterogéneos com composição espacial variável, através da replicação de processos naturais. Pretende-se, portanto, desenvolver um sistema que permita desenhar e produzir elementos de construção heterogéneos com maior desempenho. Foi desenvolvida uma ferramenta computacional, em Grasshopper, que permite a geração automática da composição do material e o controlo o equipamento de fabricação. A interface com o utilizador permite criar elementos de construção uni ou multimaterial com gradiente de porosidade ou de material, permitindo conceber o material em resposta a requisitos termomecânicos predefinidos, otimizando o seu desempenho. Um equipamento robotizado, composto por várias bombas de material, foi desenvolvido para produzir os elementos de construção heterogéneos gerados pela ferramenta computacional. A necessidade de novos materiais para viabilizar a fabricação aditiva exigiu a realização de trabalho experimental, no qual foram avaliadas as propriedades mecânicas e térmicas de várias misturas de betão de agregados finos contendo cortiça, fibras, basalto e outros resíduos industriais. Foram utilizadas diferentes percentagens de cortiça, uma matéria-prima leve, natural e sustentável, totalmente biodegradável, renovável e reciclável. As misturas de betão com maiores quantidades de cortiça apresentam menor condutividade térmica quando comparadas com as que possuem menor percentagem ou com as que não contêm cortiça, verificando-se igualmente uma redução significativa no peso do material. A utilização de um sistema de fabricação automática que permita a extrusão aditiva betão leve de composição ajustável para a produção de elementos de construção heterogénea poderá ser uma solução eficiente para reduzir os custos energéticos e proporcionar conforto térmico aos utilizadores dos edifícios.
ABSTRACT: Architects and engineers are under increasing pressure to improve the efficiency and effectiveness of the architecture, engineering and construction (AEC) sector, reducing environmental impacts, material use and costs. Resource efficiency, based on a circular economy strategy, considers an efficient use of energy, natural resources, and materials. The integration of digital technologies into construction processes will allow for a greater flexibility in design and customization, as well the emergence of complex shapes and new materials. In recent years, the interest in developing additive manufacturing (AM) technologies in the AEC has increased, though traditional AM technologies are limited to the design and fabrication of physical components with homogeneous material properties, assuring structural safety but with no efficient use of material resources. To overcome these limitations, an AM system was developed for automated fabrication, enabling the fabrication of heterogeneous composite materials with varying material distribution, simulating nature’s structural behavior. The aim is to design and fabricate functionally graded building components with increased performance. A design system, developed in grasshopper, was designed to generate the material composition variation and control the fabrication equipment. The user interface allows creating single or multi-material building components with pore size or material gradients, permitting to design the material in response to thermo-mechanical requirements, optimizing its performance. A multi-pump robot equipment was developed to produce the generated heterogeneous building components. It was necessary to develop printable materials to enable additive fabrication, so experimental work was carried out to assess the mechanical and thermal properties of fiber cement-based concrete mixtures containing cork, basalt and other residual waste. Different percentages of cork were used, as it is a natural and sustainable lightweight raw material, completely biodegradable, renewable, and recyclable. Results show that concrete mixtures with higher quantities of cork have lower thermal conductivity compared to the ones with less percentage or no cork, as well a significant reduction in material weight. The potential use of an AM system to produce printable functionally graded lightweight concretes can be an efficient solution to reduce energy costs and provide thermal comfort for building users.
N/A
Thomas, Gareth James. "Advanced materials for plasma facing components in fusion devices." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:f8ba1ae1-f303-4c32-877e-dca421a3cb5c.
Full textYeilaghi, Tamijani Ali. "Vibration and Buckling Analysis of Unitized Structure Using Meshfree Method and Kriging Model." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/37817.
Full textPh. D.
Carter, Justin B. "Vibration and Aeroelastic Prediction of Multi-Material Structures based on 3D-Printed Viscoelastic Polymers." Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1627048967306654.
Full text