To see the other types of publications on this topic, follow the link: Germanium poreux.

Journal articles on the topic 'Germanium poreux'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Germanium poreux.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko та ін. "RAMAN SPECTRА OF SILICON/GERMANIUM ALLOY THIN FILMS BASED ON POROUS SILICON". Journal of Applied Spectroscopy 89, № 5 (2022): 614–20. http://dx.doi.org/10.47612/0514-7506-2022-89-5-614-620.

Full text
Abstract:
The regularities of composition changes of silicon/germanium alloy thin films formed on a monocrystalline silicon substrate by electrochemical deposition of germanium into a porous silicon matrix with subsequent rapid thermal annealing (RTA) at a temperature of 750–950°C are studied. An analysis of the samples by Raman spectroscopy showed that an increase of RTA temperature leads to a decrease in the germanium concentration in the formed film. A decrease of the RTA duration at a given temperature makes it possible to obtain films with a higher concentration of germanium and to control the comp
APA, Harvard, Vancouver, ISO, and other styles
2

Garralaga Rojas, Enrique, Jan Hensen, Jürgen Carstensen, Helmut Föll, and Rolf Brendel. "Porous germanium multilayers." physica status solidi (c) 8, no. 6 (2011): 1731–33. http://dx.doi.org/10.1002/pssc.201000130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grevtsov, Nikita, Eugene Chubenko, Vitaly Bondarenko, Ilya Gavrilin, Alexey Dronov, and Sergey Gavrilov. "Germanium electrodeposition into porous silicon for silicon-germanium alloying." Materialia 26 (December 2022): 101558. http://dx.doi.org/10.1016/j.mtla.2022.101558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amato, G., A. M. Rossi, L. Boarino, and N. Brunetto. "On the role of germanium in porous silicon-germanium luminescence." Philosophical Magazine B 76, no. 3 (1997): 395–403. http://dx.doi.org/10.1080/01418639708241102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Xiu, Wei Guo, Qian Wan, and Jianmin Ma. "Porous amorphous Ge/C composites with excellent electrochemical properties." RSC Advances 5, no. 36 (2015): 28111–14. http://dx.doi.org/10.1039/c5ra02459e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Jing, Thanh-Dinh Nguyen, Kai Xie, Wadood Y. Hamad, and Mark J. MacLachlan. "Chiral nematic porous germania and germanium/carbon films." Nanoscale 7, no. 31 (2015): 13215–23. http://dx.doi.org/10.1039/c5nr02520f.

Full text
Abstract:
Co-assembly of cellulose nanocrystals (CNCs) with germanium(iv) alkoxide in a mixed solvent system produces chiral nematic photonic GeO<sub>2</sub>/CNC composites, which were converted to semiconducting, mesoporous GeO<sub>2</sub>/C and Ge/C replicas.
APA, Harvard, Vancouver, ISO, and other styles
7

Yin, Huayi, Wei Xiao, Xuhui Mao, Hua Zhu, and Dihua Wang. "Preparation of a porous nanostructured germanium from GeO2via a “reduction–alloying–dealloying” approach." Journal of Materials Chemistry A 3, no. 4 (2015): 1427–30. http://dx.doi.org/10.1039/c4ta05244g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rojas, E. Garralaga, J. Hensen, J. Carstensen, H. Föll, and R. Brendel. "Lift-off of Porous Germanium Layers." Journal of The Electrochemical Society 158, no. 6 (2011): D408. http://dx.doi.org/10.1149/1.3583645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Isaiev, M., S. Tutashkonko, V. Jean, et al. "Thermal conductivity of meso-porous germanium." Applied Physics Letters 105, no. 3 (2014): 031912. http://dx.doi.org/10.1063/1.4891196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Platonov, Nikolay, Nail Suleimanov, and Valery Bazarov. "Study of the electrophysical properties of nanostructured porous germanium as a promising material for electrodes of electrochemical capacitors." E3S Web of Conferences 288 (2021): 01073. http://dx.doi.org/10.1051/e3sconf/202128801073.

Full text
Abstract:
Electrochemical capacitors (ECC) are a fast charging devices, with high power density, capacity and increased life time. Nanostructured semiconductors are now considered as the promising materials for electrodes of such devices due to its conductive properties and effective surface. One of such materials is the porous germanium which can be used as an electrode in electrochemical capacitors. In this article the novel approach based on the method of ion implantation was developed to grow these structures. This method allows to obtain a structures up to 1 μm thick. The object of this work was th
APA, Harvard, Vancouver, ISO, and other styles
11

Jing, Chengbin, Chuanjian Zhang, Xiaodan Zang, et al. "Fabrication and characteristics of porous germanium films." Science and Technology of Advanced Materials 10, no. 6 (2009): 065001. http://dx.doi.org/10.1088/1468-6996/10/6/065001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Steinbach, T., and W. Wesch. "Porous structure formation in ion irradiated germanium." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 319 (January 2014): 112–16. http://dx.doi.org/10.1016/j.nimb.2013.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Fässler, Thomas F. "Germanium(cF136): A New Crystalline Modification of Germanium with the Porous Clathrate-II Structure." Angewandte Chemie International Edition 46, no. 15 (2007): 2572–75. http://dx.doi.org/10.1002/anie.200604586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yang, Chenglong, Yu Jiang, Xiaowu Liu, Xiongwu Zhong, and Yan Yu. "Germanium encapsulated in sulfur and nitrogen co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries." Journal of Materials Chemistry A 4, no. 48 (2016): 18711–16. http://dx.doi.org/10.1039/c6ta08681k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ngo, Duc Tung, Hang T. T. Le, Ramchandra S. Kalubarme, Jae-Young Lee, Choong-Nyeon Park, and Chan-Jin Park. "Uniform GeO2 dispersed in nitrogen-doped porous carbon core–shell architecture: an anode material for lithium ion batteries." Journal of Materials Chemistry A 3, no. 43 (2015): 21722–32. http://dx.doi.org/10.1039/c5ta05145b.

Full text
Abstract:
Germanium oxide (GeO<sub>2</sub>), which possesses great potential as a high-capacity anode material for lithium ion batteries, has suffered from its poor capacity retention and rate capability due to significant volume changes during lithiation and delithiation.
APA, Harvard, Vancouver, ISO, and other styles
16

Choi, Hee Cheul, and Jillian M. Buriak. "Preparation and functionalization of hydride terminated porous germanium." Chemical Communications, no. 17 (2000): 1669–70. http://dx.doi.org/10.1039/b004011h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Akkari, Emna, Oualid Touayar, and Brahim Bessais. "Reflectivity, Absorption and Structural Studies of Porous Germanium." Sensor Letters 9, no. 6 (2011): 2295–98. http://dx.doi.org/10.1166/sl.2011.1752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Guzmán, David, Miguel Cruz, and Chumin Wang. "Electronic and optical properties of ordered porous germanium." Microelectronics Journal 39, no. 3-4 (2008): 523–25. http://dx.doi.org/10.1016/j.mejo.2007.07.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Miyazaki, S., K. Sakamoto, K. Shiba, and M. Hirose. "Photoluminescence from anodized and thermally oxidized porous germanium." Thin Solid Films 255, no. 1-2 (1995): 99–102. http://dx.doi.org/10.1016/0040-6090(94)05630-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shieh, J., H. L. Chen, T. S. Ko, H. C. Cheng, and T. C. Chu. "Nanoparticle-Assisted Growth of Porous Germanium Thin Films." Advanced Materials 16, no. 13 (2004): 1121–24. http://dx.doi.org/10.1002/adma.200306541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, et al. "Observation of nanocrystals in porous stain-etched germanium." physica status solidi (a) 197, no. 1 (2003): 144–49. http://dx.doi.org/10.1002/pssa.200306490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Grevtsov, N. L. "Synthesis of Silicon-Germanium Film Alloys Based on Chemically Formed Porous Silicon Layers." Doklady BGUIR 23, no. 2 (2025): 20–27. https://doi.org/10.35596/1729-7648-2025-23-2-20-27.

Full text
Abstract:
Formation of silicon-germanium alloy films by electrochemically filling a porous silicon matrix with germanium and subjecting it to rapid thermal processing at 950 °C in argon flow is investigated. Low-porosity porous silicon layers are obtained using metal-assisted chemical etching of lightly-doped silicon wafers. It is shown that the alloy film formed in the employed temperature regime is always located on a residual porous underlayer. The difference in the thickness of the initial porous silicon layer determines not only the thickness of this underlayer, but also that of the alloy film itse
APA, Harvard, Vancouver, ISO, and other styles
23

Stepanov, A. L., V. V. Vorob’ev, V. I. Nuzhdin, V. F. Valeev, and Yu N. Osin. "Formation of Porous Germanium Layers by Silver-Ion Implantation." Technical Physics Letters 44, no. 4 (2018): 354–57. http://dx.doi.org/10.1134/s1063785018040260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rogov, R. M., V. I. Nuzhdin, V. F. Valeev, et al. "Porous germanium with copper nanoparticles formed by ion implantation." Vacuum 166 (August 2019): 84–87. http://dx.doi.org/10.1016/j.vacuum.2019.04.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rogov, A. M., A. I. Gumarov, L. R. Tagirov, and A. L. Stepanov. "Swelling and sputtering of porous germanium by silver ions." Composites Communications 16 (December 2019): 57–60. http://dx.doi.org/10.1016/j.coco.2019.08.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Rogov, A. M., Y. N. Osin, V. I. Nuzhdin, V. F. Valeev, and A. L. Stepanov. "Porous germanium with Ag nanoparticles formed by ion implantation." Journal of Physics: Conference Series 1092 (September 2018): 012125. http://dx.doi.org/10.1088/1742-6596/1092/1/012125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Akkari, E., Z. Benachour, S. Aouida, O. Touayar, B. Bessais, and J. Benbrahim. "Study and characterization of porous germanium for radiometric measurements." physica status solidi (c) 6, no. 7 (2009): 1685–88. http://dx.doi.org/10.1002/pssc.200881099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gorokhov, E. B., K. N. Astankova, I. A. Azarov, V. A. Volodin, and A. V. Latyshev. "New method of porous Ge layer fabrication: structure and optical properties." Физика и техника полупроводников 52, no. 5 (2018): 517. http://dx.doi.org/10.21883/ftp.2018.05.45861.50.

Full text
Abstract:
AbstractPorous germanium films were produced by selective removal of the GeO_2 matrix from the GeO_2&lt;Ge–NCs&gt; heterolayer in deionized water or HF. On the basis of Raman and infrared spectroscopy data it was supposed that a stable skeletal framework from agglomerated Ge nanoparticles (amorphous or crystalline) was formed after the selective etching of GeO_2&lt;Ge–NCs&gt; heterolayers. The kinetics of air oxidation of amorphous porous Ge layers was investigated by scanning ellipsometry. Spectral ellipsometry allowed estimating the porosity of amorphous and crystalline porous Ge layers, whi
APA, Harvard, Vancouver, ISO, and other styles
29

Stepanov, A. L., Yu N. Osin, V. I. Nuzhdin, V. F. Valeev, and V. V. Vorob’ev. "Synthesis of Porous Germanium with Silver Nanoparticles by Ion Implantation." Nanotechnologies in Russia 12, no. 9-10 (2017): 508–13. http://dx.doi.org/10.1134/s1995078017050123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ko, T. S., J. Shieh, M. C. Yang, T. C. Lu, H. C. Kuo, and S. C. Wang. "Phase transformation and optical characteristics of porous germanium thin film." Thin Solid Films 516, no. 10 (2008): 2934–38. http://dx.doi.org/10.1016/j.tsf.2007.06.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Abdullahi, Yusuf Zuntu, and Fatih Ersan. "Theoretical design of porous dodecagonal germanium carbide (d-GeC) monolayer." RSC Advances 13, no. 5 (2023): 3290–94. http://dx.doi.org/10.1039/d2ra07841d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zegadi, Rami, Nathalie Lorrain, Sofiane Meziani, et al. "Theoretical Demonstration of the Interest of Using Porous Germanium to Fabricate Multilayer Vertical Optical Structures for the Detection of SF6 Gas in the Mid-Infrared." Sensors 22, no. 3 (2022): 844. http://dx.doi.org/10.3390/s22030844.

Full text
Abstract:
Porous germanium is a promising material for sensing applications in the mid-infrared wavelength range due to its biocompatibility, large internal surface area, open pores network and widely tunable refractive index, as well as its large spectral transparency window ranging from 2 to 15 μm. Multilayers, such as Bragg reflectors and microcavities, based on porous germanium material, are designed and their optical spectra are simulated to enable SF6 gas-sensing applications at a wavelength of 10.55 µm, which corresponds to its major absorption line. The impact of both the number of successive la
APA, Harvard, Vancouver, ISO, and other styles
33

Sheng, Xianhua, Zhizhong Zeng, Changxin Du, Ting Shu, and Xiangdong Meng. "Amorphous porous germanium anode with variable dimension for lithium ion batteries." Journal of Materials Science 56, no. 27 (2021): 15258–67. http://dx.doi.org/10.1007/s10853-021-06264-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Stepanov, A. L., V. I. Nuzhdin, V. F. Valeev, A. M. Rogov, V. V. Vorobev, and Y. N. Osin. "Porous germanium formed by low energy high dose Ag + -ion implantation." Vacuum 152 (June 2018): 200–204. http://dx.doi.org/10.1016/j.vacuum.2018.03.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chang, S. S., and R. E. Hummel. "Comparison of photoluminescence behavior of porous germanium and spark-processed Ge." Journal of Luminescence 86, no. 1 (2000): 33–38. http://dx.doi.org/10.1016/s0022-2313(99)00179-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lockwood, D. J., N. L. Rowell, I. Berbezier, et al. "Optical Properties of Germanium Dots Self-Assembled on Porous TiO2 Templates." ECS Transactions 33, no. 16 (2019): 147–65. http://dx.doi.org/10.1149/1.3553166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Xiao, Ying, Minhua Cao, Ling Ren, and Changwen Hu. "Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance." Nanoscale 4, no. 23 (2012): 7469. http://dx.doi.org/10.1039/c2nr31533e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Koto, Makoto, Ann F. Marshall, Irene A. Goldthorpe, and Paul C. McIntyre. "Gold-Catalyzed Vapor-Liquid-Solid Germanium-Nanowire Nucleation on Porous Silicon." Small 6, no. 9 (2010): 1032–37. http://dx.doi.org/10.1002/smll.200901764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mishra, Kuber, Xiao-Chen Liu, Fu-Sheng Ke, and Xiao-Dong Zhou. "Porous germanium enabled high areal capacity anode for lithium-ion batteries." Composites Part B: Engineering 163 (April 2019): 158–64. http://dx.doi.org/10.1016/j.compositesb.2018.10.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Al-Diabat, Ahmad M., Natheer A. Algadri, Tariq Alzoubi, et al. "Combining Germanium Quantum Dots with Porous Silicon: An Innovative Method for X-ray Detection." WSEAS TRANSACTIONS ON ELECTRONICS 15 (December 10, 2024): 128–34. https://doi.org/10.37394/232017.2024.15.15.

Full text
Abstract:
This study investigates the controlled electrochemical synthesis of porous silicon and germanium (Ge)-doped porous silicon using a 4:1 ratio of hydrofluoric acid (HF) to ethanol. Structural analysis performed with FESEM-EDX confirmed the presence of Ge in the samples. Analysis of the I-V characteristics demonstrated that increasing the bias voltage at the source led to a corresponding increase in the observed current. Additionally, effective X-ray measurements facilitated the assessment of X-ray irradiation effects on the sample detector. The experimental results indicated that the optimal con
APA, Harvard, Vancouver, ISO, and other styles
41

Kartopu, G., and Y. Ekinci. "Further evidence on the observation of compositional fluctuation in silicon–germanium alloy nanocrystals prepared in anodized porous silicon–germanium films." Thin Solid Films 473, no. 2 (2005): 213–17. http://dx.doi.org/10.1016/j.tsf.2004.04.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Xiao, Chengmao, Ning Du, Yifan Chen, Jingxue Yu, Wenjia Zhao, and Deren Yang. "Ge@C three-dimensional porous particles as high-performance anode materials of lithium-ion batteries." RSC Advances 5, no. 77 (2015): 63056–62. http://dx.doi.org/10.1039/c5ra08656f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Akkari, Emna, Oualid Touayar, F. Javier Del Campo, and Josep Montserrat. "Improved electrical characteristics of porous germanium photodiode obtained by phosphorus ion implantation." International Journal of Nanotechnology 10, no. 5/6/7 (2013): 553. http://dx.doi.org/10.1504/ijnt.2013.053524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, et al. "Raman and X-ray studies of nanocrystals in porous stain-etched germanium." Thin Solid Films 437, no. 1-2 (2003): 290–96. http://dx.doi.org/10.1016/s0040-6090(03)00158-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wolter, S. D., T. Tyler, and N. M. Jokerst. "Surface characterization of oxide growth on porous germanium films oxidized in air." Thin Solid Films 522 (November 2012): 217–22. http://dx.doi.org/10.1016/j.tsf.2012.09.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yuan, Ye, Jia Liu, Hao Ren, et al. "Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework." Journal of Materials Research 27, no. 10 (2012): 1417–20. http://dx.doi.org/10.1557/jmr.2011.433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko, et al. "Raman Spectra of Silicon/Germanium Alloy Thin Films Based on Porous Silicon." Journal of Applied Spectroscopy 89, no. 5 (2022): 829–34. http://dx.doi.org/10.1007/s10812-022-01432-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chapotot, Alexandre, Bouraoui Ilahi, Javier Arias-Zapata, et al. "Germanium surface wet-etch-reconditioning for porous lift-off and substrate reuse." Materials Science in Semiconductor Processing 168 (December 2023): 107851. http://dx.doi.org/10.1016/j.mssp.2023.107851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Grevtsov, Nikita, Eugene Chubenko, Ilya Gavrilin, et al. "Impact of porous silicon thickness on thermoelectric properties of silicon-germanium alloy films produced by electrochemical deposition of germanium into porous silicon matrices followed by rapid thermal annealing." Materials Science in Semiconductor Processing 187 (March 2025): 109148. http://dx.doi.org/10.1016/j.mssp.2024.109148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

ГОРОШКО, Д. Л., И. М. ГАВРИЛИН, А. А. ДРОНОВ, О. А. ГОРОШКО, and Л. С. ВОЛКОВА. "STRUCTURE AND THERMAL CONDUCTIVITY OF THIN FILMS OF THE SI1-XGEX ALLOY FORMED BY ELECTROCHEMICAL DEPOSITION OF GERMANIUM INTO POROUS SILICON." Автометрия 59, no. 6 (2023): 80–88. http://dx.doi.org/10.15372/aut20230609.

Full text
Abstract:
Сплошные и пористые плёнки сплавов Si1-xGex с содержанием германия около 40 % и толщиной 3-4 мкм, сформированные на монокристаллическом кремнии методом электрохимического осаждения германия в матрицу пористого кремния с последующим быстрым термическим отжигом при температуре 950 °C, исследованы методами спектроскопии комбинационного рассеяния света (КРС), оптической спектроскопии и сканирующей электронной микроскопии. На основе спектров, снятых в стоксовой и антистоксовой областях частот с использованием статистики Больцмана и закона теплопроводности Фурье, определены коэффициенты теплопроводн
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!