Academic literature on the topic 'Images de télédétection – Classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Images de télédétection – Classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Images de télédétection – Classification"
Matsaguim Nguimdo, Cédric Aurélien, and Emmanuel D. Tiomo. "FORET D'ARBRES ALEATOIRES ET CLASSIFICATION D'IMAGES SATELLITES : RELATION ENTRE LA PRECISION DU MODELE D'ENTRAINEMENT ET LA PRECISION GLOBALE DE LA CLASSIFICATION." Revue Française de Photogrammétrie et de Télédétection, no. 222 (November 26, 2020): 3–14. http://dx.doi.org/10.52638/rfpt.2020.477.
Full textHarris, Jeff R., Juan X. He, Robert Rainbird, and Pouran Behnia. "A Comparison of Different Remotely Sensed Data for Classifying Bedrock Types in Canada’s Arctic: Application of the Robust Classification Method and Random Forests." Geoscience Canada 41, no. 4 (December 3, 2014): 557. http://dx.doi.org/10.12789/geocanj.2014.41.062.
Full textBenmostefa, Soumia, and Hadria Fizazi. "Classification automatique des images satellitaires optimisée par l'algorithme des chauves-souris." Revue Française de Photogrammétrie et de Télédétection, no. 203 (April 8, 2014): 11–17. http://dx.doi.org/10.52638/rfpt.2013.25.
Full textGasmi, Anis, Antoine Masse, Danielle Ducrot, and Hédi Zouari. "Télédétection et photogrammétrie pour l'étude de la dynamique de l'occupation du sol dans le bassin versant de l'oued Chiba (Cap-Bon, Tunisie)." Revue Française de Photogrammétrie et de Télédétection, no. 215 (August 16, 2017): 43–51. http://dx.doi.org/10.52638/rfpt.2017.344.
Full textTegno Nguekam, Eric Wilson, Salomon C. Nguemhe Fils, Joachim Etouna, and Simon Njeudeng Tenku. "ANALYSE DE LA DEFORESTATION DANS LA PERIPHERIE OUEST DE LA RESERVE DE BIOSPHERE DU DJA AU CAMEROUN, A PARTIR D'UNE SERIE MULTI-ANNUELLE D'IMAGES LANDSAT." Revue Française de Photogrammétrie et de Télédétection, no. 222 (November 26, 2020): 31–41. http://dx.doi.org/10.52638/rfpt.2020.434.
Full textDechaïcha, Assoule, and Djamel Alkama. "DÉTECTION DU CHANGEMENT DE L’ÉTALEMENT URBAIN AU BAS-SAHARA ALGÉRIEN : APPORT DE LA TÉLÉDÉTECTION SPATIALE ET DES SIG. CAS DE LA VILLE DE BISKRA (ALGÉRIE)." Revue Française de Photogrammétrie et de Télédétection, no. 222 (November 26, 2020): 43–51. http://dx.doi.org/10.52638/rfpt.2020.486.
Full textHili, Aïman, Rachid Bissour, Farid Jaa, Hanane Reddad, and Yassine El Jouhary. "Etude de la dynamique spatio-temporelle de la forêt des Ait Daoud ou Ali (Haut Atlas central, Maroc) en utilisant les techniques géospatiales." Revista de Estudios Andaluces, no. 43 (2022): 208–25. http://dx.doi.org/10.12795/rea.2022.i43.11.
Full textAouragh, Mbark, Bernard Lacaze, Micheline Hotyat, Rachid Ragala, and Ahmed El Aboudi. "Cartographie et suivi de la densité des arbres de l'arganeraie (sud-ouest du Maroc) à partir d'images de télédétection à haute résolution spatiale." Revue Française de Photogrammétrie et de Télédétection, no. 203 (April 8, 2014): 3–9. http://dx.doi.org/10.52638/rfpt.2013.24.
Full textMessner, François, Jeannine Corbonnois, and Fanny Stella Tchitouo Ntenzou. "Analyse de l'incertitude et de la précision thématique de classifications GEOBIA d'une image WorldView-2." Revue Française de Photogrammétrie et de Télédétection, no. 216 (April 19, 2018): 19–37. http://dx.doi.org/10.52638/rfpt.2018.310.
Full textBoubacar, Ouedraogo, Dibi N’Da Hyppolite, and Nanan Noël Kouman Kouassi. "Apport des Donnees d’Observation de la Terre Dans l’Evaluation du Potentiel Forester de la Reserve Narutelle Mabi- Yaya au Sud-est de la Cote d’Ivoire." European Scientific Journal, ESJ 19, no. 21 (July 31, 2023): 210. http://dx.doi.org/10.19044/esj.2023.v19n21p210.
Full textDissertations / Theses on the topic "Images de télédétection – Classification"
Maggiori, Emmanuel. "Approches d'apprentissage pour la classification à large échelle d'images de télédétection." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4041/document.
Full textThe analysis of airborne and satellite images is one of the core subjects in remote sensing. In recent years, technological developments have facilitated the availability of large-scale sources of data, which cover significant extents of the earth’s surface, often at impressive spatial resolutions. In addition to the evident computational complexity issues that arise, one of the current challenges is to handle the variability in the appearance of the objects across different geographic regions. For this, it is necessary to design classification methods that go beyond the analysis of individual pixel spectra, introducing higher-level contextual information in the process. In this thesis, we first propose a method to perform classification with shape priors, based on the optimization of a hierarchical subdivision data structure. We then delve into the use of the increasingly popular convolutional neural networks (CNNs) to learn deep hierarchical contextual features. We investigate CNNs from multiple angles, in order to address the different points required to adapt them to our problem. Among other subjects, we propose different solutions to output high-resolution classification maps and we study the acquisition of training data. We also created a dataset of aerial images over dissimilar locations, and assess the generalization capabilities of CNNs. Finally, we propose a technique to polygonize the output classification maps, so as to integrate them into operational geographic information systems, thus completing the typical processing pipeline observed in a wide number of applications. Throughout this thesis, we experiment on hyperspectral, atellite and aerial images, with scalability, generalization and applicability goals in mind
El, Ghouat Mohamed Abdelwafi. "Classification markovienne pyramidale adaptation de l'algorithme ICM aux images de télédétection." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq26379.pdf.
Full textTrias-Sanz, Roger. "Semi-automatic rural land cover classification from high resolution remote sensing images." Paris 5, 2006. http://www.theses.fr/2006PA05S005.
Full textThis thesis presents a complete image analisys system which, from high-resolution 3 or 4-channel digital images (50 cm, colour and optionally near infrared), and using the cadastre database, segments the images into agriculturally-homogeneous regions, (fields, forests, vines, and so on) and classifies these regions, tagging each classified region with a confidence measure which indicates the system's confidence in each classification. It includes a study of the value of texture features and transformed colour spaces for segmentation and classification, two methods for registering a graph onto an image, a novel probability model and associated per-region classification algorithms, and a high precision period and orientation estimator
Quirin, Arnaud. "Découverte de règles de classification par approche évolutive : Application aux images de télédétection." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. http://www.theses.fr/2005STR13193.
Full textAudebert, Nicolas. "Classification de données massives de télédétection." Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS502/document.
Full textThanks to high resolution imaging systems and multiplication of data sources, earth observation(EO) with satellite or aerial images has entered the age of big data. This allows the development of new applications (EO data mining, large-scale land-use classification, etc.) and the use of tools from information retrieval, statistical learning and computer vision that were not possible before due to the lack of data. This project is about designing an efficient classification scheme that can benefit from very high resolution and large datasets (if possible labelled) for creating thematic maps. Targeted applications include urban land use, geology and vegetation for industrial purposes.The PhD thesis objective will be to develop new statistical tools for classification of aerial andsatellite image. Beyond state-of-art approaches that combine a local spatial characterization of the image content and supervised learning, machine learning approaches which take benefit from large labeled datasets for training classifiers such that Deep Neural Networks will be particularly investigated. The main issues are (a) structured prediction (how to incorporate knowledge about the underlying spatial and contextual structure), (b) data fusion from various sensors (how to merge heterogeneous data such as SAR, hyperspectral and Lidar into the learning process ?), (c) physical plausibility of the analysis (how to include prior physical knowledge in the classifier ?) and (d) scalability (how to make the proposed solutions tractable in presence of Big RemoteSensing Data ?)
Dos, santos Jefersson Alex. "Semi-automatic Classification of Remote Sensing Images." Phd thesis, Université de Cergy Pontoise, 2013. http://tel.archives-ouvertes.fr/tel-00878612.
Full textLagrange, Adrien. "From representation learning to thematic classification - Application to hierarchical analysis of hyperspectral images." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0095.
Full textNumerous frameworks have been developed in order to analyze the increasing amount of available image data. Among those methods, supervised classification has received considerable attention leading to the development of state-of-the-art classification methods. These methods aim at inferring the class of each observation given a specific class nomenclature by exploiting a set of labeled observations. Thanks to extensive research efforts of the community, classification methods have become very efficient. Nevertheless, the results of a classification remains a highlevel interpretation of the scene since it only gives a single class to summarize all information in a given pixel. Contrary to classification methods, representation learning methods are model-based approaches designed especially to handle high-dimensional data and extract meaningful latent variables. By using physic-based models, these methods allow the user to extract very meaningful variables and get a very detailed interpretation of the considered image. The main objective of this thesis is to develop a unified framework for classification and representation learning. These two methods provide complementary approaches allowing to address the problem using a hierarchical modeling approach. The representation learning approach is used to build a low-level model of the data whereas classification is used to incorporate supervised information and may be seen as a high-level interpretation of the data. Two different paradigms, namely Bayesian models and optimization approaches, are explored to set up this hierarchical model. The proposed models are then tested in the specific context of hyperspectral imaging where the representation learning task is specified as a spectral unmixing problem
DUPUIS, XAVIER ROLAND GEORGES. "Etude de modeles non-lineaires dans le cadre de l'imagerie coherente. Application a la classification et a l'interferometrie d'image radar a ouverture synthetique." Nice, 1999. http://www.theses.fr/1999NICE5342.
Full textBlansché, Alexandre. "Classification non supervisée avec pondération d'attributs par des méthodes évolutionnaires." Université Louis Pasteur (Strasbourg) (1971-2008), 2006. https://publication-theses.unistra.fr/public/theses_doctorat/2006/BLANSCHE_Alexandre_2006.pdf.
Full textLehureau, Gabrielle. "Fusion de données optique et radar à haute résolution en milieu urbain." Paris, Télécom ParisTech, 2010. http://www.theses.fr/2010ENST0035.
Full textThe increasing quality of satellite images has generated interest in extracting man-made structures. Optical and radar sensors deliver images with unlike physical properties, thus it is interesting to fuse such images in order to benefit from joint observation. Such a process begins with registration of these images. We propose an automatic registration of radar and optical images without using sensors parameters. First, a rigid transformation is determined using a multi-scale pyramid of features representing the contours of roads and buildings. Secondly, a polynomial transformation is determined. The coefficients are obtained by associating points in both images using mutual information. We also developped a classification process in order to identify all scene objects. This method used both information from optical and radar images and svm classifier. We proved in this part a good robustness to segmentation and the interest of using both data to improve the classification, especially for roads and buildings. Finally we present an original method of fine registration for the buildings based on the assumption that “a trained classifier can recognize registrated buildings from unregistrated“. So, buildings are classified considering many translations in order to determine the good one. We also show the importance of contextual information to improve the fine registration, especially for buildings
Books on the topic "Images de télédétection – Classification"
Létourneau, Guy. Description des données brutes de télédétection. Montréal, Qué: Centre Saint-Laurent, Conservation de l'environnement, Environnement Canada, 1996.
Find full textM, Benning Vivien, and Ching Neville P, eds. Classification of remotely sensed images. Bristol: A. Hilger, 1987.
Find full textMinvielle, Erwann. L' analyse statistique et spatiale: Statistiques, cartographie, télédétection, SIG. Nantes [France]: Éditions du Temps, 2003.
Find full textJenicka, S. Land Cover Classification of Remotely Sensed Images. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66595-1.
Full textLalonde, Sophie. Milieux humides du lac Saint-Pierre: Évolution temporelle. Montréal, Qué: Centre Saint-Laurent, Conservation de l'environnement, Environnement Canada, 1996.
Find full textYin, Xiao-Xia, Sillas Hadjiloucas, and Yanchun Zhang. Pattern Classification of Medical Images: Computer Aided Diagnosis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57027-3.
Full textLétourneau, Guy. Cartographie des marais, marécages et herbiers aquatiques le long du Saint-Laurent par télédétection aéroportée. Montréal, Qué: Centre Saint-Laurent, Conservation de l'environnement, Environnement Canada, 1996.
Find full textLétourneau, Guy. Marais, marécages et herbiers le long du Saint-Laurent. Montréal, Qué: Centre Saint-Laurent, Conservation de l'environnement, Environnement Canada, 1996.
Find full textLehmann, Thomas Martin. The IRMA code for unique classification of medical images. Aachen: Universitätsbibliothek der RWTH Aachen, 2016.
Find full textLétourneau, Guy. Hydrodynamique et dynamique sédimentaire du lac Saint-François. Montréal, Qué: Centre Saint-Laurent, Conservation de l'environnement, Environnement Canada, 1996.
Find full textBook chapters on the topic "Images de télédétection – Classification"
Knoblauch, Kenneth, and Laurence T. Maloney. "Classification Images." In Modeling Psychophysical Data in R, 167–94. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4475-6_6.
Full textKoprowski, Robert. "Classification." In Processing of Hyperspectral Medical Images, 83–109. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50490-2_5.
Full textManohar, N., M. A. Pranav, S. Aksha, and T. K. Mytravarun. "Classification of Satellite Images." In Information and Communication Technology for Intelligent Systems, 703–13. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7078-0_70.
Full textPeters, James F. "Pattern-Based Picture Classification." In Topology of Digital Images, 317–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53845-2_12.
Full textYin, Xiao-Xia, Sillas Hadjiloucas, and Yanchun Zhang. "Pattern Classification." In Pattern Classification of Medical Images: Computer Aided Diagnosis, 93–128. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57027-3_4.
Full textCastillo-Rosado, Katy, and José Hernández-Palancar. "Rolled-Plain Fingerprint Images Classification." In Advanced Information Systems Engineering, 556–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-319-12568-8_68.
Full textWhite, Richard L. "Object Classification in Astronomical Images." In Statistical Challenges in Modern Astronomy II, 135–51. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1968-2_8.
Full textYanai, Keiji. "Image Classification by Web Images." In Lecture Notes in Computer Science, 613–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45683-x_83.
Full textde la Calleja, Jorge, and Olac Fuentes. "Automated Classification of Galaxy Images." In Lecture Notes in Computer Science, 411–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30134-9_55.
Full textFreire, Daniela L., André Carlos Ponce de Leon Ferreira de Carvalho, Leonardo Carneiro Feltran, Lara Ayumi Nagamatsu, Kelly Cristina Ramos da Silva, Claudemir Firmino, João Eduardo Ferreira, et al. "Lawsuits Document Images Processing Classification." In Progress in Artificial Intelligence, 41–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16474-3_4.
Full textConference papers on the topic "Images de télédétection – Classification"
Malkauthekar, Mahananda D. "Classification of facial images." In 2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT 2011). IEEE, 2011. http://dx.doi.org/10.1109/icetect.2011.5760168.
Full textAl-Hujazi, Ezzet H., and Arun K. Sood. "Classification of range images." In Orlando '90, 16-20 April, edited by Mohan M. Trivedi. SPIE, 1990. http://dx.doi.org/10.1117/12.21063.
Full textKarahan, Esin, and Cengizhan Ozturk. "Multivariate classification of fMRI images." In 2009 14th National Biomedical Engineering Meeting. IEEE, 2009. http://dx.doi.org/10.1109/biyomut.2009.5130368.
Full textThakur, Ramesh Kumar, and Chandran Saravanan. "Classification of color hazy images." In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016. http://dx.doi.org/10.1109/iceeot.2016.7755074.
Full textKannan, Anitha, Partha Pratim Talukdar, Nikhil Rasiwasia, and Qifa Ke. "Improving Product Classification Using Images." In 2011 IEEE 11th International Conference on Data Mining (ICDM). IEEE, 2011. http://dx.doi.org/10.1109/icdm.2011.79.
Full textCusano, Claudio, and Simone Santini. "Cooperative classification of shared images." In IS&T/SPIE Electronic Imaging, edited by Qian Lin, Zhigang Z. Fan, Theo Gevers, Raimondo Schettini, and Cees Snoek. SPIE, 2010. http://dx.doi.org/10.1117/12.847979.
Full textFevralev, Dmitriy V., Vladimir V. Lukin, Nikolay N. Ponomarenko, Benoit Vozel, Kacem Chehdi, Andriy Kurekin, and Lik-Kwan Shark. "Classification of filtered multichannel images." In Remote Sensing, edited by Lorenzo Bruzzone. SPIE, 2010. http://dx.doi.org/10.1117/12.864215.
Full textDinuls, Romans, and Ints Mednieks. "Nonparametric Classification of Satellite Images." In the 2018 International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3274250.3274260.
Full textSchistad Solberg Asbjørn Berg, Anne, and Are F. C. Jensen. "Robust classification of hyperspectral images." In Remote Sensing, edited by Lorenzo Bruzzone. SPIE, 2007. http://dx.doi.org/10.1117/12.753095.
Full textErol, Berna, and Jonathan J. Hull. "Semantic classification of business images." In Electronic Imaging 2006, edited by Edward Y. Chang, Alan Hanjalic, and Nicu Sebe. SPIE, 2006. http://dx.doi.org/10.1117/12.643463.
Full textReports on the topic "Images de télédétection – Classification"
Fox, Neil D., and Pi-Fuay Chen. Improving Classification Accuracy of Radar Images Using a Multiple-Stage Classifier. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada200291.
Full textBasri, Ronen, and Daphna Weinshall. Distance Metric between 3D Models and 2D Images for Recognition and Classification. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada260069.
Full textMoyer, Elisabeth, Ian Foster, James Franke, Rob Jacob, Rebecca Willett, and Takuya Kuihana. New Understanding of Cloud Processes via Unsupervised Cloud Classification in Satellite Images. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769754.
Full textMbani, Benson, Timm Schoening, and Jens Greinert. Automated and Integrated Seafloor Classification Workflow (AI-SCW). GEOMAR, May 2023. http://dx.doi.org/10.3289/sw_2_2023.
Full textGletsos, M., S. G. Mougiakakou, G. K. Matsopoulos, K. S. Nikita, and D. Kelekis. Classification of Hepatic Lesions From CT Images Using Texture Features and Neural Networks. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada412422.
Full textArun, Ramaiah, and Shanmugasundaram Singaravelan. Classification of Brain Tumour in Magnetic Resonance Images Using Hybrid Kernel Based Support Vector Machine. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, October 2019. http://dx.doi.org/10.7546/crabs.2019.10.12.
Full textRosen, David. Methods for Correcting Topographically Induced Radiometric Distortion on Landsat Thematic Mapper Images for Land Cover Classification. Portland State University Library, January 2000. http://dx.doi.org/10.15760/geogmaster.12.
Full textBecker, Sarah, Craig Daughtry, and Andrew Russ. Robust forest cover indices for multispectral images. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42760.
Full textRichardson, J. Automatic feature extraction and classification from digital x-ray images. Final report, period ending 1 May 1995. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/224901.
Full textOlivier, Jason, and Sally Shoop. Imagery classification for autonomous ground vehicle mobility in cold weather environments. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42425.
Full text