Journal articles on the topic 'Interface conductivity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interface conductivity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Liu, Ying-Guang, Xin-Qiang Xue, Jin-Wen Zhang, and Guo-Liang Ren. "Thermal conductivity of materials based on interfacial atomic mixing." Acta Physica Sinica 71, no. 9 (2022): 093102. http://dx.doi.org/10.7498/aps.71.20211451.
Full textLiang, J.-J., and P. W.-C. Kung. "Toward Rational Design of Fast Ion Conductors: Molecular Dynamics Modeling of Interfaces of Nanoscale Planar Heterostructures." Journal of Materials Research 17, no. 7 (2002): 1686–91. http://dx.doi.org/10.1557/jmr.2002.0248.
Full textWang, Xiaoyu, Cynthia J. Jameson, and Sohail Murad. "Interfacial Thermal Conductivity and Its Anisotropy." Processes 8, no. 1 (2019): 27. http://dx.doi.org/10.3390/pr8010027.
Full textChen, G. "Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures." Journal of Heat Transfer 119, no. 2 (1997): 220–29. http://dx.doi.org/10.1115/1.2824212.
Full textZhang, Mei, and Peng Cheng Zhai. "Effective Thermal Conductivity of Composites with Different Particle Geometries and Interfacial Thermal Resistance." Advanced Materials Research 152-153 (October 2010): 269–73. http://dx.doi.org/10.4028/www.scientific.net/amr.152-153.269.
Full textChen, T., C. H. Hsieh, and P. C. Chuang. "A Spherical Inclusion with Inhomogeneous Interface in Conduction." Journal of Mechanics 19, no. 1 (2003): 1–8. http://dx.doi.org/10.1017/s1727719100004135.
Full textWan, Li-Kai, Yi-Xuan Xue, Jin-Wu Jiang, and Harold S. Park. "Machine learning accelerated search of the strongest graphene/h-BN interface with designed fracture properties." Journal of Applied Physics 133, no. 2 (2023): 024302. http://dx.doi.org/10.1063/5.0131576.
Full textZhao, Xiang Fu, Ping Han, Shelley Scott, and Max G. Lagally. "Influence of Surface and Interface Properties on the Electrical Conductivity of Silicon Nanomembranes." Advanced Materials Research 383-390 (November 2011): 7220–23. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.7220.
Full textMohamed, Mazlan, Mohd Nazri Omar, Mohamad Shaiful Ashrul Ishak, Rozyanty Rahman, Zaiazmin Y.N, and Zairi Ismael Rizman. "Thermal Properties of the Graphene Composites: Application of Thermal Interface Materials." International Journal of Engineering & Technology 7, no. 4.33 (2018): 530. http://dx.doi.org/10.14419/ijet.v7i4.33.28169.
Full textCheng, Yajuan, Shiyun Xiong, and Tao Zhang. "Enhancing the Coherent Phonon Transport in SiGe Nanowires with Dense Si/Ge Interfaces." Nanomaterials 12, no. 24 (2022): 4373. http://dx.doi.org/10.3390/nano12244373.
Full textMohamed, Mazlan, Mohd Nazri Omar, Mohamad Shaiful Ashrul Ishak, et al. "Comparison between CNT Thermal Interface Materials with Graphene Thermal Interface Material in Term of Thermal Conductivity." Materials Science Forum 1010 (September 2020): 160–65. http://dx.doi.org/10.4028/www.scientific.net/msf.1010.160.
Full textNenuwe, O. N., and O. E. Agbalagba. "Thermal transport properties in GaAs (110)/GaAs (100) and GaAs/InAs interfaces by Reverse Non-equilibrium Molecular Dynamics." Journal of Applied Sciences and Environmental Management 23, no. 10 (2019): 1901–6. http://dx.doi.org/10.4314/jasem.v23i10.21.
Full textNakamura, Y., T. Ishibe, T. Taniguchi, T. Terada, R. Hosoda, and Sh Sakane. "Semiconductor Nanostructure Design for Thermoelectric Property Control." International Journal of Nanoscience 18, no. 03n04 (2019): 1940036. http://dx.doi.org/10.1142/s0219581x19400362.
Full textZhang, Debin, Xiaofang Cheng, and Peiqi Wang. "Theoretical research on the discontinuity of temperature gradient under interfacial heat transfer." Journal of Physics: Conference Series 2360, no. 1 (2022): 012034. http://dx.doi.org/10.1088/1742-6596/2360/1/012034.
Full textLiu, Ji-Chuan. "Shape Reconstruction of Conductivity Interface Problems." International Journal of Computational Methods 16, no. 01 (2018): 1850092. http://dx.doi.org/10.1142/s0219876218500925.
Full textGilbert, Simeon J., Samantha G. Rosenberg, Paul G. Kotula, Thomas G. Kmieciak, Laura B. Biedermann, and Michael P. Siegal. "The effect of metal–insulator interface interactions on electrical transport in granular metals." Journal of Physics: Condensed Matter 34, no. 20 (2022): 204007. http://dx.doi.org/10.1088/1361-648x/ac5706.
Full textAmmari, Habib, Hyeonbae Kang, Mikyoung Lim, and Habib Zribi. "Conductivity interface problems. Part I: Small perturbations of an interface." Transactions of the American Mathematical Society 362, no. 5 (2009): 2435–49. http://dx.doi.org/10.1090/s0002-9947-09-04842-9.
Full textAbramson, Alexis R., Chang-Lin Tien, and Arun Majumdar. "Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study." Journal of Heat Transfer 124, no. 5 (2002): 963–70. http://dx.doi.org/10.1115/1.1495516.
Full textGuo, Xiaojie, Weiwei Zhao, Yi Zeng, Chucheng Lin, and Jimei Zhang. "Effects of Splat Interfaces, Monoclinic Phase and Grain Boundaries on the Thermal Conductivity of Plasma Sprayed Yttria-Stabilized Zirconia Coatings." Coatings 9, no. 1 (2019): 26. http://dx.doi.org/10.3390/coatings9010026.
Full textIMDEA, Materials. "Insights into Thermal Conductivity at the MOF-Polymer Interface." ACS Applied Materials & Interfaces 16, no. 41 (2024): 56221–31. https://doi.org/10.1021/acsami.4c08522.
Full textDo, Duc Phi, and Dashnor Hoxha. "Temperature and Pressure Dependence of the Effective Thermal Conductivity of Geomaterials: Numerical Investigation by the Immersed Interface Method." Journal of Applied Mathematics 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/456931.
Full textNguyen, Van-Luat. "Estimating the effective conductivity for ellipse-inclusion model with Kapitza thermal resistance." EPJ Applied Metamaterials 8 (2021): 16. http://dx.doi.org/10.1051/epjam/2021010.
Full textGupta, Anshu, Ajit Singh, Chandan Bera, and Suvankar Chakraverty. "Light-matter interaction of the polar-polar interface LaVO3-KTaO3 (111)." Journal of Physics: Conference Series 2518, no. 1 (2023): 012009. http://dx.doi.org/10.1088/1742-6596/2518/1/012009.
Full textYao, Chi, Chen He, Jianhua Yang, Qinghui Jiang, Jinsong Huang, and Chuangbing Zhou. "A Novel Numerical Model for Fluid Flow in 3D Fractured Porous Media Based on an Equivalent Matrix-Fracture Network." Geofluids 2019 (January 3, 2019): 1–13. http://dx.doi.org/10.1155/2019/9736729.
Full textZhang, Yong, Baohua Wen, Liang Ma, and Xiaolin Liu. "Determination of damage zone in fatigued lead zirconate titanate ceramics by complex impedance analysis." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, CICMT (2012): 000592–96. http://dx.doi.org/10.4071/cicmt-2012-tha22.
Full textDong, Z. C., L. Sheng, Weiyi Zhang, D. Y. Xing, and Jinming Dong. "Effects of Interface Scattering on the Electronic Conductivity of Bimetallic Films." International Journal of Modern Physics B 11, no. 20 (1997): 2393–404. http://dx.doi.org/10.1142/s0217979297001210.
Full textKalabukhov, A., T. Claeson, P. P. Aurino, et al. "Electrical and structural properties of ABO3/SrTiO3 interfaces." MRS Proceedings 1454 (2012): 167–72. http://dx.doi.org/10.1557/opl.2012.925.
Full textDing, Zijing, and Teck Neng Wong. "Electrohydrodynamic instability of miscible core–annular flows with electrical conductivity stratification." Journal of Fluid Mechanics 764 (January 8, 2015): 488–512. http://dx.doi.org/10.1017/jfm.2014.720.
Full textJia, S. Q., and F. Yang. "High thermal conductive copper/diamond composites: state of the art." Journal of Materials Science 56, no. 3 (2020): 2241–74. http://dx.doi.org/10.1007/s10853-020-05443-3.
Full textToller, Erik A. L., and Otto D. L. Strack. "Interface Flow With Vertically Varying Hydraulic Conductivity." Water Resources Research 55, no. 11 (2019): 8514–25. http://dx.doi.org/10.1029/2019wr024927.
Full textShibuya, Keisuke, Tsuyoshi Ohnishi, Mikk Lippmaa, and Masaharu Oshima. "Metallic conductivity at the CaHfO3∕SrTiO3 interface." Applied Physics Letters 91, no. 23 (2007): 232106. http://dx.doi.org/10.1063/1.2816907.
Full textOliver, D. J., J. Maassen, M. El Ouali, et al. "Conductivity of an atomically defined metallic interface." Proceedings of the National Academy of Sciences 109, no. 47 (2012): 19097–102. http://dx.doi.org/10.1073/pnas.1208699109.
Full textSharma, P., S. Ryu, J. D. Burton, et al. "Mechanical Tuning of LaAlO3/SrTiO3 Interface Conductivity." Nano Letters 15, no. 5 (2015): 3547–51. http://dx.doi.org/10.1021/acs.nanolett.5b01021.
Full textAlvarez-Zauco, E., H. Sobral, and E. Martínez-Loran. "Morphological, Optical and Electrical Characterization of the Interfaces in Fullerene-Porphyrin Thin Films." Journal of Nanoscience and Nanotechnology 20, no. 3 (2020): 1732–39. http://dx.doi.org/10.1166/jnn.2020.17138.
Full textZhang, Bo, Yang Zhang, Jiulin Hu, Meng Lei, Zong-Yang Shen, and Chilin Li. "Lithiation-induced conductivity modulation in Prussian blue interlayer for stable Li/garnet solid-state batteries." Applied Physics Letters 122, no. 3 (2023): 033901. http://dx.doi.org/10.1063/5.0109575.
Full textRyabko A. A., Mazing D.S., Bobkov A. A., et al. "Interface doping of zinc oxide nanorods." Physics of the Solid State 64, no. 11 (2022): 1657. http://dx.doi.org/10.21883/pss.2022.11.54187.408.
Full textShu, Dengfeng, Jiachen Sun, Fei Huang, Wenbo Qin, Chengbiao Wang, and Wen Yue. "Boron Nitride/Carbon Fiber High-Oriented Thermal Conductivity Material with Leaves–Branches Structure." Materials 17, no. 10 (2024): 2183. http://dx.doi.org/10.3390/ma17102183.
Full textDesai, Anand, Sanket Mahajan, Ganesh Subbarayan, Wayne Jones, James Geer, and Bahgat Sammakia. "A Numerical Study of Transport in a Thermal Interface Material Enhanced With Carbon Nanotubes." Journal of Electronic Packaging 128, no. 1 (2005): 92–97. http://dx.doi.org/10.1115/1.2161231.
Full textLi, Jia Nian, Yan Ma, Rui Feng, and Hui Na Ni. "Design of a Real-Time Detector for Solution Conductivity Based on Conductivity Electrode." Advanced Materials Research 986-987 (July 2014): 1477–80. http://dx.doi.org/10.4028/www.scientific.net/amr.986-987.1477.
Full textWANG, Y. R., J. A. KUBBY, and W. J. GREENE. "THIN FILM ELECTRON INTERFEROMETRY." Modern Physics Letters B 05, no. 21 (1991): 1387–405. http://dx.doi.org/10.1142/s0217984991001696.
Full textLee, Seunghyeok, Sung-Jin Jung, Gwang Min Park, et al. "ALD-Based Interface Engineering for Improving Electrical Conductivity of Nanoporous Thermoelectric Materials." ECS Meeting Abstracts MA2023-02, no. 29 (2023): 1491. http://dx.doi.org/10.1149/ma2023-02291491mtgabs.
Full textPatelka, Maciej, Sho Ikeda, Koji Sasaki, Hiroki Myodo, and Nortisuka Mizumura. "Development of High Thermally Conductive Die Attach for TIM Applications." Journal of Microelectronics and Electronic Packaging 17, no. 3 (2020): 106–9. http://dx.doi.org/10.4071/imaps.1125402.
Full textPatelka, Maciej, Sho Ikeda, Koji Sasaki, Hiroki Myodo, and Nortisuka Mizumura. "Development of High Thermally Conductive Die Attach for TIM Applications." International Symposium on Microelectronics 2019, no. 1 (2019): 000312–15. http://dx.doi.org/10.4071/2380-4505-2019.1.000312.
Full textYakovkin, I. N. "Surface and Interface Bands of the CdTe–HgTe–CdTe Heterostructure: Evidence of Metallicity." Ukrainian Journal of Physics 66, no. 7 (2021): 630. http://dx.doi.org/10.15407/ujpe66.7.630.
Full textFang, Hui, Guifeng Li, Kai Wang, and Fangjuan Wu. "Significant Improvement of Thermal Conductivity of Polyamide 6/Boron Nitride Composites by Adding a Small Amount of Stearic Acid." Polymers 15, no. 8 (2023): 1887. http://dx.doi.org/10.3390/polym15081887.
Full textLi, Guo, Yanghui Wang, Huihao Zhu, et al. "The Establishment of Thermal Conductivity Model for Linear Low-Density Polyethylene/Alumina Composites Considering the Interface Thermal Resistance." Polymers 14, no. 5 (2022): 1040. http://dx.doi.org/10.3390/polym14051040.
Full textBabenko, D. D., A. S. Dmitriev, and I. A. Mikhailova. "Active thermal interface graphene nanocomposites for thermal control of electronic and power devices." Journal of Physics: Conference Series 2150, no. 1 (2022): 012008. http://dx.doi.org/10.1088/1742-6596/2150/1/012008.
Full textWu, Shuang, Jifen Wang, Huaqing Xie, and Zhixiong Guo. "Interfacial Thermal Conductance across Graphene/MoS2 van der Waals Heterostructures." Energies 13, no. 21 (2020): 5851. http://dx.doi.org/10.3390/en13215851.
Full textChe, Q. L., X. K. Chen, Y. Q. Ji, et al. "Effect of Coating on the Thermal Conductivities of Diamond/Cu Composites Prepared by Spark Plasma Sintering (SPS)." Applied Mechanics and Materials 722 (December 2014): 25–29. http://dx.doi.org/10.4028/www.scientific.net/amm.722.25.
Full textBanerjee, Soumik, and Aniruddha Mukund Dive. "(Invited) Ion Conduction and Interface Stability of Sulfide Based Solid State Electrolytes – an Atomistic Perspective." ECS Meeting Abstracts MA2022-01, no. 38 (2022): 1662. http://dx.doi.org/10.1149/ma2022-01381662mtgabs.
Full text