Academic literature on the topic 'Kaplan-Turbine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kaplan-Turbine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Kaplan-Turbine"

1

Bauer, Christian, and Stefan Gössinger. "Die Entwicklung der Kaplan-Turbine." WASSERWIRTSCHAFT 104, no. 6 (May 24, 2014): 26–32. http://dx.doi.org/10.1365/s35147-014-1051-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

AMANO, Ryoichi. "Investigation on Kaplan Hydro Turbine." Proceedings of Mechanical Engineering Congress, Japan 2019 (2019): J05323. http://dx.doi.org/10.1299/jsmemecj.2019.j05323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Acevedo, Hernando González. "Robust Control Design for Kaplan Turbine." Journal of Physics: Conference Series 2141, no. 1 (December 1, 2021): 012006. http://dx.doi.org/10.1088/1742-6596/2141/1/012006.

Full text
Abstract:
Abstract The paper presents the dynamic model of a Kaplan turbine coupled to a DC generator, which is part of the H112D didactic system. A robust controller is designed using two different techniques: H ∞ mixed sensitivity and Quantitative feedback Theory (QFT). The robustness of the controller was analysed with three indicators: analysis of parameter uncertainties, transient response given a variable reference signal and robustness against disturbances.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Jie, Li Wang, Dichen Liu, Jun Wang, Yu Zhao, Tian Liu, and Haoyu Wang. "Dynamic Model of Kaplan Turbine Regulating System Suitable for Power System Analysis." Mathematical Problems in Engineering 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/294523.

Full text
Abstract:
Accurate modeling of Kaplan turbine regulating system is of great significance for grid security and stability analysis. In this paper, Kaplan turbine regulating system model is divided into the governor system model, the blade control system model, and the turbine and water diversion system model. The Kaplan turbine has its particularity, and the on-cam relationship between the wicket gate opening and the runner blade angle under a certain water head on the whole range was obtained by high-order curve fitting method. Progressively the linearized Kaplan turbine model, improved ideal Kaplan turbine model, and nonlinear Kaplan turbine model were developed. The nonlinear Kaplan turbine model considered the correction function of the blade angle on the turbine power, thereby improving the model simulation accuracy. The model parameters were calculated or obtained by the improved particle swarm optimization (IPSO) algorithm. For the blade control system model, the default blade servomotor time constant given by value of one simplified the modeling and experimental work. Further studies combined with measured test data verified the established model accuracy and laid a foundation for further research into the influence of Kaplan turbine connecting to the grid.
APA, Harvard, Vancouver, ISO, and other styles
5

Šmátralová, Magdalena, Jana Kosňovská, and Gabriela Rožnovská. "Analysis of Crack in Kaplan Turbine Blade." Key Engineering Materials 635 (December 2014): 131–34. http://dx.doi.org/10.4028/www.scientific.net/kem.635.131.

Full text
Abstract:
The paper deals with the analysis of the crack detected in the Kaplan turbine blade. In order to keep the blade integrity the sample was removed by using small sample method. Fractographic and metallographic analyses were used to determine the cause of a detected crack appearance and propagation. The material of the turbine blade was made in 1937 and its structure containing numerous eutectic sulphide inclusions corresponded to the steelmaking technology of that time. Numerous occurrences of sulphide inclusions and sulphide eutectics were identified as the main cause of material failure. Regardless of these non-metallic inclusions the blade was repaired by welding and nowadays the repaired blade has been under safe operation for more than 9 years.
APA, Harvard, Vancouver, ISO, and other styles
6

Gurugubelli, Sasidhar. "Fabrication and Installation of Mini Kaplan Turbine." International Journal for Research in Applied Science and Engineering Technology 6, no. 2 (February 28, 2018): 273–77. http://dx.doi.org/10.22214/ijraset.2018.2042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fritsch, Rudolf, Jürgen Schiffer, and Reinhard Fritsch. "Ejektorwirkung bei Überwasser mit Vertikaler Kaplan-Turbine." WASSERWIRTSCHAFT 105, no. 10 (October 2015): 32–35. http://dx.doi.org/10.1007/s35147-015-0615-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heninger, Leopold, and Hermann Schweickert. "Viktor Kaplan und seine Turbine bei Voith." WASSERWIRTSCHAFT 104, no. 6 (May 24, 2014): 39–45. http://dx.doi.org/10.1365/s35147-014-1053-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thirriot, C. "Comparaison entre turbine Kaplan et groupe bulbe." La Houille Blanche, no. 3 (March 1987): 187–98. http://dx.doi.org/10.1051/lhb/1987018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghenaiet, Adel, and Mustapha Bakour. "Hydrodynamic Characterization of Small-Size Kaplan Turbine." Journal of Hydraulic Engineering 147, no. 2 (February 2021): 06020019. http://dx.doi.org/10.1061/(asce)hy.1943-7900.0001844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Kaplan-Turbine"

1

Helali, Assia. "Optimisation d'une turbine de type Kaplan." Grenoble INPG, 2006. http://www.theses.fr/2006INPG0078.

Full text
Abstract:
Confrontés au problème d'optimisation des turbomachines, le souci des constructeurs est de disposer de méthodes de tracé rapides, fiables et suffisamment précises. Le présent travail de recherche, s'inscrit dans ce contexte. Ainsi nous avons mis au point une démarche complète de conception et d'optimisation des géométries du distributeur et de la roue d'une turbine axiale de type Kaplan. Cette démarche emploie des codes numériques pour l'analyse de l'écoulement et également un outil d'optimisation. La première étape de ce travail consiste à étudier l'écoulement tridimensionnel à l'aide de logiciels de CFD (Numeca). En second lieu, nous avons procédé à l'optimisation de la géométrie du distributeur ainsi que celle de la roue en utilisant le logiciel EASY basé sur les algorithmes évolutionnaires
Confronted with the problem of optimization in turbo-machinery, the principal concern and requirement of industrial designers is to possess fast, reliable and accurate design methods. The present research work joins in this context. Indeed, we have developed a complete method of design and optimization of the geometries of the guide vane and rotor of Kaplan turbine. For this purpose, we have used sorne numerical codes for the flow analysis as weil as an optimization tool. The first step of this work consists in studying the three-dimensional flow behavior using CFD software of Numeca group. Ln the second step, we proceeded to the optimization of the geometry of the guide vane and the rotor using the EASY software which is based on the evolutionary algorithms
APA, Harvard, Vancouver, ISO, and other styles
2

Fjærvold, Lars. "Improvements of a Kaplan type small turbine : Forbedre og vidreutvikle en Kaplan småturbin." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16774.

Full text
Abstract:
The goal with this master thesis was to establish Hill diagrams and improve a Kaplan turbine intended for use in Afghanistan. The turbine efficiency has been tested in setting 1 and 2. Turbine efficiency in setting 3 and 4 could not be tested because the runner blades interfere with the housing making it impossible to rotate the turbine. The efficiency was tested with an effective pressure head ranging from 2 to 8 meters. Best efficiency point was not reached because of limitations in the test rig making it impossible to reach a lower effective head. The best efficiencies tested in the two different settings are presented in the table below together with the uncertainty in the actual test point. All tests are done according to the IEC standard for model testing of hydraulic turbines. The computational fluid dynamics (CFD) simulations done on the inlet bend indicates that the bend should be rounded and flow controllers should be extended over the entire bend. This should be considered to get a more even velocity distribution at the inlet of the guide vane. An alternative placement of the lower bearing was designed but is discarded because of the disadvantages the modification leads to. High wear due to sand erosion on the seals causing high maintenance and costly stops makes the solution not optimal for use in water with high sand content. The runner blade design is checked against the design procedure presented by Professor Hermod Brekke in Pumper og Turbiner and found to be satisfying. It is concluded that time should rather be spent on optimizing the inlet of the turbine. Fluctuations in the measurements make it necessary to change the measuring equipment or search for error in the existing equipment before further tests can be carried out. In order to be able to test in setting 3 and 4 the runner needs to be placed while the blades are fixed in setting 4.
APA, Harvard, Vancouver, ISO, and other styles
3

Bergström, Stina. "Added Properties in Kaplan Turbine - a preliminary investigation." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-60925.

Full text
Abstract:
A preliminary investigation of the added properties called added mass, added damping and added stiffness have been performed for a Kaplan turbine. The magnitude of dimensionless numbers have been used in order to classify the interaction of the fluid and the solid. The classification is done to bring clarity in which of the added properties are of importance for the system. The diameter of the runner and the hub have been calculated using the power output and the head for a Kaplan turbine. These dimensions have been used to determine the magnitude of the dimensionless numbers along with the velocity of the fluid. It turned out that all added properties affect the turbine, however, the magnitude of them are quite different. The magnitude of the added mass and the added damping are greater than the added stiffness, which often is neglected. The added mass can be determined if the natural frequencies of the structure in air and in water are known. The difference in natural frequencies can be used to determine the added mass factor and thereby the added mass of the system. The added damping can be determined by the change in damping ratio for different surrounding fluids. This was done using the simulation software ANSYS Workbench v.17.1, where two different types of simulation were used, ”acoustic coupled simulation” and ”two way coupled simulation”. The complexity of the geometry of the Kaplan turbine was simplified to a disc and a shaft. The result for the added mass was validated using results from an experiment [1]. The added damping could be determined, but not validated. The different types of simulation have been compared and it turned out that the added mass could be determined using ”acoustic coupled simulation” and ”two way coupled simulation”, but the added damping could only be determined using the ”two way coupled simulation”.
En preliminär undersökning av de adderade egenskaperna kallade, adderad massa, adderad dämpning och adderad styvhet har utförts för en Kaplan turbin. Magnituden av dimensionslösa tal har använts för att klassificera interaktionen av fluiden och soliden. Klassificeringen görs för att bringa klarhet i vilka av de adderade egenskaperna är av betydelse för systemet. Diametrarna för löphjulet och navet har beräknats utifrån effekt och fallhöjd för en Kaplan turbin. Dessa längder har använts för att bestämma magnituden av de dimensionslösa talen tillsammans med fluidens hastighet. Det visade sig att alla adderade egenskaper påverkar turbinen, men omfattningen av dem är helt annorlunda. Magnituden av den adderade massan och den adderade dämpningen är större än den adderade styvheten, som ofta försummas. Den adderade massan kan bestämmas om de naturliga frekvenserna av strukturen i luft och vatten är kända. Skillnaden i egenfrekvenser kan användas för att bestämma faktorn av den adderade massan och därigenom den adderade massan. Den adderade dämpningen kan bestämmas genom ändringen i dämpningsförhållande för olika omgivande fluider. Detta gjordes med hjälp av simuleringsprogrammet ANSYS Workbench v.17.1, där två olika typer av simulering användes, ”acoustic coupled simulation” och ”two way coupled simulation”. Komplexiteten i geometrin för en Kaplan turbin förenklades till en skiva och en axel. Resultatet för den adderade massan validerades med resultat från ett experiment [1]. Den adderade dämpningen kunde bestämmas, men inte valideras. De olika typerna av simulering har jämförts och det visade sig att den adderade massan kan bestämmas med hjälp av både ”acoustic coupled simulation” och ”two way coupled simulation”, men den adderade dämpningen kunde endast bestämmas med hjälp av ”two way coupled simulation”.
APA, Harvard, Vancouver, ISO, and other styles
4

Böhm, Christian. "Numerische Simulation des Fischdurchgangs durch Wasserturbinen." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974170887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gustafsson, Martin. "Improved Governing of Kaplan Turbine Hydropower Plants Operating Island Grids." Thesis, KTH, Reglerteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-125805.

Full text
Abstract:
To reduce the consequences of a major fault in the electric power grid, functioning parts of the grid can be divided into smaller grid islands. The grid islands are operated isolated from the power network, which places new demands on a faster frequency regulation. This thesis investigates a Kaplan turbine hydropower plant operating an island grid. The Kaplan turbine has two control signals, the wicket gate and the turbine blade positions, controlling the mechanical power. The inputs are combined to achieve maximum turbine efficiency at all operating points. In relative terms, the wicket gate has a fast dynamic but small effect on the mechanical power, while the turbine blade has slow dynamic and large effect on the output, seen around an operating point. The proposed method to get a faster frequency control uses a different combination of the turbine inputs, transferring control effect from the turbine blades to the wicket gates at the cost of loss of turbine efficiency. The method is investigated with time domain simulations on a model containing all essential parts of a Kaplan turbine hydropower plant.
APA, Harvard, Vancouver, ISO, and other styles
6

Bijukchhe, Vijaya. "Comparison of experimental results of horizontal kaplan turbine with computational fluid dynamics." Thesis, University of Iowa, 2012. https://ir.uiowa.edu/etd/3263.

Full text
Abstract:
Hydropower has been the source of renewable energy for more than a century leading to reduction in burning of fossil fuels which has impact on the environment. More and more efficient hydro turbines have been developing for the power production with focus on the hydrodynamic behavior of the turbines. Emerging numerical codes specially designed to evaluate the efficiency of the turbine these days has made design of turbine a step ahead. This project is contracted by AMJET Turbine System to evaluate the hydrodynamic, electrical and mechanical properties of a turbine prototype scaled to 1:7.828. The test stand was installed at the Hydraulic Model Annex#2 and the experimental fluid dynamics and data acquisition was performed by Joseph Longo, Research Engineer in IIHR - Hydroscience & Engineering. The work on this thesis describes the numerical simulation of the prototype turbine at full load and partial load condition and comparison of the result with the experimental values for 30 feet of head at the runner outlet. Gridgen V15 and ANSYS Turbogrid has been used for high density mesh generation with total nodes of 1.3 million and ANSYS CFX 12.1 has been used to perform steady state analysis with backward Euler Scheme and Shear stress Transport as a turbulence model. Simulated results seemed to be best compared with experimental results for the optimum point and over predicted for over load condition. Therefore, another set of simulations were run for cases where the turbine was making maximum power at heads from 20 ft to 50 ft. For these values the output from the simulation follows the curve nature of the experiment. Total pressure on the mid span of the blade shows pressure below vapor pressure at the suction side of the blade at the leading edge which is due to the high flow velocity which creates low pressure at those regions.
APA, Harvard, Vancouver, ISO, and other styles
7

Turi, Flavia. "Prédiction de l'influence de la cavitation sur les performances d'une turbine Kaplan." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI051.

Full text
Abstract:
La présence de structures de vapeur dans la machine peut provoquer des dommages structurels et altérer les performances de la turbine. Ainsi, l’étude de la cavitation dans les machines hydrauliques est d’un très grand intérêt pour les industriels. Parmi les turbines hydrauliques, les turbines Kaplan sont réputées pour leur flexibilité. En effet, l’ouverture des directrices et la position des aubes de la roue peuvent être régulées en continu pendant l’utilisation de la machine, optimisant son rendement sur une large plage de fonctionnement. En contrepartie, Cela implique la présence de jeux entre les parties fixes et mobiles des turbines Kaplanà qui conduit à des structures de cavitation supplémentaires à ce niveau des machines. Dans ce contexte, l’objectif principal de cette thèse est de développer une méthodologie numérique capable de prédire et de caractériser la cavitation dans des turbines Kaplan et son impact sur les performances de la machine. Dans cette thèse, un modèle réduit de turbine Kaplan à 5 pales a été analysé. Les équations RANS/URANS ont été résolues,modélisant l’écoulement cavitant à l’aide d’une approche homogène et d’une loi d’état de type barotrope. Tout d’abord, la méthodologie a été définie pour des conditions de fonctionnement optimales, puis elle a été testée également sur un point de fonctionnement à forte charge. La méthode numérique de prédiction de la cavitation qui a été développée a pu être validée à l’aide de données expérimentales. Les prédictions numériques des performances et de l’évolution des structures de vapeur obtenues en appliquant la nouvelle stratégie de calcul de la cavitation sont en très bon accord quantitatif et qualitatif avec les données expérimentales. Une fois que la méthodologie numérique a été définie, des analyses approfondies de l’évolution des écoulements cavitants dans la machine ont été effectuées. L’approche développée apparaît très fiable, robuste et précise
The presence of cavitation phenomena in hydraulic machines cause several structural damages and alter the machine performances. Hence, the investigation of the cavitation in hydraulic turbine is of great industrial interest. Amongthe hydraulic turbine, Kaplan turbine are known for their flexibility. The guide vane opening and the runner blade position can be continuously regulated during machine operation maximizing the efficiency for a large range of operating conditions. This implies the presence of shroud and hub gaps that leads to additional cavitation structures in the runner. In this context, the principal aim of this thesis is the development of a numerical methodology able to predict and characterize the cavitation in Kaplan turbine and its impact on the machine performance. The analysis refers to a scale model of a 5-blades Kaplan turbine. RANS/URANS equations have been solved modeling the cavitating flow by using a homogeneous approach and a barotropic state law. The methodology have been defined for optimal operating conditions and, after has been tested also on the full load operating point. Experimental data have been used to validate the developed numerical method of cavitation prediction. The numerical predictions of the performances and the vapor structures obtained by applying the new cavitation calculations strategy are in very good quantitative and qualitative agreement with the available experimental data. Once the numerical methodology has been defined in-deep analyses of the cavitating flow evolution in the machine have been performed. The developed approach appears to be very reliable, robust and precise
APA, Harvard, Vancouver, ISO, and other styles
8

Nyman, Timmy. "Experimental Investigation of Added Mass and Damping on a Model Kaplan Turbine for Rotor Dynamic Analysis." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-67573.

Full text
Abstract:
The concept of added hydrodynamic properties such as added mass is of importance in modern hydropower development, mainly for rotor dynamic calculations. Added mass could result in reduced natural frequencies and altered mode compared to existing simulation models. It is of importance to quantify added mass but also added damping to make the simulation models more accurate. Experiments are conducted on a model Kaplan turbine, D = 0,5 m, and a steel cube, S = 0,2 m, for linear vibrations in still water confined in a cylindrical tank. The experiments are conducted in air and water for evaluation of added forces. The vibrations are generated with an electrodynamic vibration exciter with a frequency range of approximately 1-10 Hz with amplitudes 0,5-3 mm. The experiments were repeated to check test rig reliability. Each individual working point [frequency, amplitude] were in total tested 40 times in 15 s intervals. The added mass was found to be function of acceleration for the model Kaplan with an increase in added mass from 10 % at 4 m/s2 to 35 % at 0,5 m/s2. The damping forces was at best measured at ±30 %, making added damping calculations unreliable. The cube experiments resulted in small differences between water and air. Cube results must be interpreted with caution due to test rig uncertainties.
APA, Harvard, Vancouver, ISO, and other styles
9

Gustafsson, Annica. "Analysis of uncertainties in fatigue load assessment : a study on one Kaplan hydro turbine during start operation." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264237.

Full text
Abstract:
In the future, hydropower plants are expected to operate more flexibly. This will lead to a more varied operation of the turbine and the generator, such as more start and stop in order to stabilise the frequency in the grid. Studies show that these transient operations are more costly in terms of fatigue degradation, i.e. consumption of fatigue life. Vattenfall has developed a methodology with the aim to analyse fatigue loads, acting on the runner and the rotor in hydropower units during operation. With a numerical model, the loads are assessed with input data gathered from measurements together with given data on several parameters. Some of the input data are bearing structure stiffness, bearing oil properties, and point of action of forces, etc. Several of these input parameters are subject to a degree of uncertainty, which affect the assessed fatigue load, determined with the methodology. This study will focus on analysing one fatigue force component acting on the runner. The aim with this study is to answer the following research questions: (i) Which input parameters, that are subject to a degree of uncertainty, contribute the most to the combined standard uncertainty in the assessed fatigue force? (ii) How much does the combined standard uncertainty in the assessed fatigue force amount to? (iii) How does the uncertainty in the assessed fatigue force affect the fatigue damage?. The combined standard uncertainty in the fatigue force is determined with methods in uncertainty propagation. In order to evaluate the effect from the uncertainty in the fatigue load on the fatigue damage, a statistical analysis of the ratio between the fatigue damage associated with a probability of exceedance and the expected fatigue damage is conducted. From the results it can be observed that the governing uncertainty parameter is the offset of the shaft displacement signal, which amount to 40 % of the combined standard uncertainty in the fatigue force. Of the nine analysed uncertainty parameters, three parameters are bearing properties parameters, i.e. the bearing clearance, the oil film temperature and the point of action of bearing forces, which amount to 47.5 % of the combined standard uncertainty in the fatigue force. Therefore, in order to decrease the uncertainties, focus should be kept on the bearing properties. Given each parameters uncertainty, the ratio between the combined standard uncertainty in the fatigue force and the expected fatigue force amount to 7 %. This corresponds to a ratio between the standard uncertainty in the fatigue damage and the expected fatigue damage of 35 %, due to the value of the index of S-N curve of five. Given the standard uncertainty in the fatigue force together with the index of S-N-curve, the ratio between the fatigue force associated with a probability of exceedance and the expected fatigue force can be assessed, i.e. the fatigue force ratio. Consequently, the fatigue force ratio amount to 1.32 for a probability of 0.0032 %, 1.09 for a probability of 10 % and 1.04 for a probability of 30 %. These probabilities correspond to the fatigue damage ratios, i.e. the ratios between the fatigue damage associated with a probability of exceedance and the expected fatigue damage of 4, 1.56 and 1.20. Thereby, the uncertainty in the fatigue force can greatly affect the uncertainty in the fatigue damage, dependent on the value of the index of S-N-curve. The results from this study imply the importance of considering the uncertainties in fatigue load assessments. These results provide support for assessing load levels for runner dimensioning to finally, be able to derive a correct margin of safety. This in order to not underestimate fatigue damage and thereby decrease the risk for unexpected fatigue failure.
Det finns ett förväntat behov av att kraftproduktionen i vattenkraftverk skall vara mer flexibel i framtiden. Detta leder till mer varierande driftlägen för turbinen och generatorn, såsom fler start och stop med syfte att stabilisera frekvensen i elnätet. Studier påvisar att transienta driftlägen är mer kostsamma i form av utmattningsdegradering, d.v.s. konsumtion av utmattningsliv. Vattenfall har utvecklat en metodik för att analysera inverkan av utmattningslaster verkande på löphjulet och rotorn i vattenkraftsaggregat under drift. Med en numerisk modell kan utmattningslasterna bedömas. Den ingående datan till modellen är bland annat är uppmätta storheter och given data på parameterar. Några av de ingående storheterna är lagerstyvhet, angreppspunkter för lagerkrafter och lageroljans egenskaper, etc. Flera av dessa ingående parametrar innehar osäkerheter, vilket påverkar bedömningen av utmattningslasterna. Denna studie kommer att fokusera på en kraftkomponent verkande på löphjulet. Malet med detta arbete är att svara på följande forskningsfrågor: (i) Vilka ingående parametrar, som innehar en osäkerhet, bidrar med en styrande osäkerhet i den bedömda kraften? (ii) Hur mycket uppgår den kombinerade standardosäkerheten i den bedömda kraften till? (iii) Hur påverkar kraftens osäkerhet utmattningsskadan? Den kombinerade standardosäkerheten i kraften är beräknad med metoder i fortplantning av osäkerheter. För att kunna bedöma påverkan på delskadan givet osäkerheten i kraften, så sker en statistisk analys av förhållandet mellan delskadan sammanhängande med en sannolikhet för överskridande och den förväntade delskadan. Resultatet påvisar att den styrande ingående parametern är offset i signalen för axelförskjutning, vilken uppgår till 40 % av den kombinerade standardosäkerheten i utmattningskraften. Av de nio analyserade parametrarna härrör tre av dessa lageregenskaper, d.v.s. lagerspel, oljetemperatur och angreppspunkter för lagerkrafterna, vilka tillsammans uppgår till 47.5 % av den kombinerade standardosäkerheten i utmattningskraften. Därför, för att reducera den totala osäkerheten bör fokus ligga på lageregenskaperna. Givet alla standardosäkerheter i de analyserade parametrarna så uppgår förhållandet mellan standardosäkerheten i utmattningskraften och den förväntade utmattningskraften på löphjulet till 7 %. Detta motsvarar att förhållandet mellan standardosäkerheten i delskadan och väntevärdet för delskadan uppkommer till 35 %, givet ett index av S-N-kurvan på fem. Givet standardosäkerheten i kraften och index av S-N-kurvan, kan förhållandet mellan utmattningskraften förenad med en sannolikhet för överskridande, och den förväntade utmattningskraften, d.v.s. kvoten av utmattningskraften, utvärderas. Detta resulterar att kvoten av utmattningskraften uppgår till 1.32 för en sannolikhet för överskridande på 0.0032 %, 1.09 för en sannolikhet på 10 % och 1.04 för en sannolikhet på 30 %. Dessa sannolikheter motsvarar att kvoten av delskadan, d.v.s. kvoten mellan delskadan förenad med en sannolikhet för överskridande, och den förväntade delskadan uppgår till 4, 1.56 och 1.20. Därför kan osäkerheten i utmattningskraften påverka osäkerheten i delskadan med en betydande faktor, beroende på värdet på index av S-N-kurvan. Således, resultaten från denna studie påvisar betydelsen att beakta osäkerheterna i de ingående parameterna vid bedömning av utmattningslast. Dessa resultat tillhandahåller stöd vid bedömning av lastnivåer för dimensionering av löphjul, för att slutligen kunna erhålla en korrekt säkerhetsmarginal. Detta för att inte underskatta utmattningsskadan och därmed minska risken oför oväntat utmattningshaveri.
APA, Harvard, Vancouver, ISO, and other styles
10

Ezhov, Alexey. "Plánování a řízení projektu modernizace Kaplanovy turbíny." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2021. http://www.nusl.cz/ntk/nusl-443026.

Full text
Abstract:
This master’s thesis solving the issue of planning and management of Kaplan turbine modernization project. The first chapter deals with the basic definition of project management concepts, methods, techniques and tools used in project planning and management. This information forms theoretical basis for the following two chapters, which represent the company in which the turbine modernization project itself will be implemented in the future. The second chapter contains analyzes of external and internal environment of the company and the project. On their basis the third chapter creates a specific proposal for project solution. Results and conclusions of the master’s thesis will allow a better and more detailed understanding of Kaplan turbine modernization implementation project and all associated critical points or potential risks. The work can be beneficial not only for project managers, but also for company management, investors, other companies in the field of engineering and wide audience.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Kaplan-Turbine"

1

Kaplan Turbine with New Adjustment Gear. European Communities / Union (EUR-OP/OOPEC/OPOCE), 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolf, E. L. Wind, hydro and tides Fully sustainable energy. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198769804.003.0008.

Full text
Abstract:
Wind-turbine science and technology is outlined, following the work of Betz. Rotor design, blade construction and aspects of electric power generation are described, principally for large horizontal-axis devices, with some mention of vertical axis wind turbines. Hydropower and pumped storage are treated, with mention of Francis and Kaplan turbines. A summary of tidal energy is included. We now go into detail on some aspects of these topics. As these forms of energy come either from the Sun (in an indirect fashion) or from the motion of the Earth and Moon, they are available on an indefinite term into the future.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Kaplan-Turbine"

1

Jaberg, Helmut, Gerlind Weber, Gunter Weber, Christian Bauer, Stefan Gössinger, Leopold Heninger, Hermann Schweickert, Markus Schneeberger, and Michal Kotoul. "Kaplan-Turbine." In Wasserkraftprojekte Band II, 11–75. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-07729-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jošt, Dragica, Andrej Lipej, Kazimir Oberdank, Mateja Jamnik, and Boris Velenšek. "Numerical Flow Analysis of a Kaplan Turbine." In Hydraulic Machinery and Cavitation, 1123–32. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9_114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Shuhong, Shangfeng Wu, Michihiro Nishi, and Yulin Wu. "Flow Simulation and Performance Prediction of a Kaplan Turbine." In Fluid Machinery and Fluid Mechanics, 335–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Yanze, and Jinshi Chang. "Study on Reverse Water Hammer of the Kaplan Turbine." In Advances in Water Resources and Hydraulic Engineering, 2208–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89465-0_379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Xiaobo, Xingqi Luo, and Pengcheng Guo. "Analysis of Pressure Fluctuation in Draft Tube of Kaplan Turbine." In Fluid Machinery and Fluid Mechanics, 341–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brijkishore, Ruchi Khare, and Vishnu Prasad. "Performance Evaluation of Kaplan Turbine with Different Runner Solidity Using CFD." In Advanced Engineering Optimization Through Intelligent Techniques, 757–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8196-6_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harvey, Adam. "11. Crossflow Turbines; Reaction Turbines; The Francis Turbine; The Propeller Turbine and Kaplan; Draught Tubes; Reverse Pumps." In Micro-Hydro Design Manual, 173–86. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1993. http://dx.doi.org/10.3362/9781780445472.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tumane, Atul S., K. Kumar, Abhijeet Kulkarni, R. A. Kubde, and S. Ajai. "Validation of Blade Failure of a Kaplan Turbine Under Adverse Conditions Using Numerical Analysis." In Lecture Notes in Mechanical Engineering, 471–81. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4165-4_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Půlpitel, L., A. Skoták, and J. Koutník. "Vortices Rotating in the Vaneless Space of a Kaplan Turbine Operating under Off-Cam High Swirl Flow Conditions." In Hydraulic Machinery and Cavitation, 925–34. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9_94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Akgün, B. T., A. E. Harmanci, M. K. Sarioğlu, and M. Güleç. "SPEED CONTROL OF KAPLAN TURBINE BY USING MICROPROCESSOR." In Microcomputer Application in Process Control, 157–61. Elsevier, 1987. http://dx.doi.org/10.1016/b978-0-08-034340-2.50030-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Kaplan-Turbine"

1

Zhan, Liangliang, Yucheng Peng, and Xiyang Chen. "Cavitation Vibration Monitoring in the Kaplan Turbine." In 2009 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/appeec.2009.4918211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yen, Yi-Hsin, Tarek ElGammal, Ryoichi S. Amano, Joseph Millevolte, Bruno Lequesne, and Randal J. Mueller. "Numerical Optimization of Micro Kaplan Hydro Turbine System." In ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-7575.

Full text
Abstract:
Micro hydro turbines with capacity ranging from 5–100 kW can provide a source of renewable energy which has high potential to grow due to the sheer number of available sites with a relatively small head difference and flow rate. Such systems would complement existing conventional large-scale hydro installations. The paper presents a study of a 30 cm diameter Kaplan hydroturbine geometry with performance optimization through Computational Fluid Dynamics (CFD) method based on Large Eddy Simulation (LES) of transient turbulence modeling. The work under this study include: selection of horizontal or vertical setup, tail water head test, draft tube length test, draft tube angle test, intake tube geometry test and blade geometry combination test. All of these geometric parameters will be tested and compared based on power output, mass flow rate and efficiency. The optimized geometry was selected for system manufacturing and experimenting by Cadens LLC in a project site in Sullivan, WI.
APA, Harvard, Vancouver, ISO, and other styles
3

Olšiak, Róbert, Marta Murgašová, Marek Mlkvik, and František Ridzoň. "The identification of cavitation in Kaplan turbine runner." In 38TH MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMODYNAMICS. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Altimemy, Muhannad, Saif Watheq, Justin Caspar, and Alparslan Oztekin. "Performance of Kaplan Turbine Operating at Design Condition." In ASME 2021 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/fedsm2021-65561.

Full text
Abstract:
Abstract Design and optimization using computational fluid dynamics to enhance the hydro turbine’s performance are becoming gradually more common because of its flexibility, minor detailed flow description, and cost-effectiveness. These features are not easily achievable in model testing. k–ω simulations conducted in OpenFOAM 7 characterize the flow structure inside an industrial-sized Kaplan turbine module operating at the peak design flowrate. The power signal, velocity, vorticity, and pressure field are presented over the blades and throughout the draft tube. Additionally, pressure fluctuations were probed along the draft tube wall. The simulation shows a tip vortex rope in the narrow gap between the blade tip and turbine casing. The strong influence of the swirl leaving the runner had a negative impact on the flow pressure fluctuation. Also, high vortical activity was presented near the draft tube wall, leading to turbine instability. It was demonstrated that the turbine generates 14.923 MW of average power. The power signal showed minor fluctuations induced by the vortical activity close to the runner region and the corresponding pressure fluctuations. The Fast Fourier Transform showed the system is dominated by low frequency, high amplitude fluctuations.
APA, Harvard, Vancouver, ISO, and other styles
5

Abeykoon, Chamil, and Tobi Hantsch. "Design and Analysis of a Kaplan Turbine Runner Wheel." In The 3rd World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2017. http://dx.doi.org/10.11159/htff17.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Keto-Tokoi, Jyrki M., Jerzy E. Matusiak, and Erno K. Keskinen. "Hydrodynamic Added Mass and Damping of the Kaplan Turbine." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62516.

Full text
Abstract:
Kaplan turbine runner rotates in water flow inside an enclosed discharge ring. The vibratory runner motion in the fluid flow induces pressure forces onto the wet runner surfaces with inertia effects conveniently described by the so-called hydrodynamic added mass and damping. These inertia effects influence the wet natural frequencies and the amplitudes. The role of the hydrodynamic added mass and damping in the Kaplan turbine shaft rotor dynamics has not been sufficiently well understood. This paper focuses on comprehensive understanding of these phenomena across the Kaplan design range. The results are based on a method derived from Theodorsen’s unsteady thin airfoil theory and on the Finite Element Method (FEM). The former method includes the water flow, the runner rotation and the circulatory effects, which makes it possible to calculate the added damping and evaluate the accuracy of FEM. The most critical vibration modes and shaft line configurations have been identified with inherent weaknesses in typical shaft line models. The added damping has been quantified. The numerical results have been compared to the experimental results.
APA, Harvard, Vancouver, ISO, and other styles
7

Amano, Ryoichi S., and Tarek ElGammal. "Study of a Cavitation Treatment in Kaplan Hydro-turbine." In AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-4408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ivanova, Ksenia A., Evgeniy N. Karuna, and Petr V. Sokolov. "Modeling of a Hydroelectric Unit with a Kaplan Turbine." In 2021 IV International Conference on Control in Technical Systems (CTS). IEEE, 2021. http://dx.doi.org/10.1109/cts53513.2021.9562866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Atta, Khalid Tourkey, Andreas Johansson, Michel J. Cervantes, and Thomas Gustafsson. "Phasor extremum seeking and its application in Kaplan turbine control." In 2014 IEEE Conference on Control Applications (CCA). IEEE, 2014. http://dx.doi.org/10.1109/cca.2014.6981362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ElGammal, Tarek, Tomoki Sakamoto, and Ryoichi S. Amano. "Cavitation Modelling in Different Designs of Micro Kaplan Hydro-Turbine." In ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/power2018-7109.

Full text
Abstract:
The paper investigates the cavitation in micro-turbomachinery, using a small-sized water system. Unsteady numerical model is architected to predict cavitating flows through a 7.5 cm axial hydro-turbine working at 2.8 m water head. Based on the validated simulations, specific turbine designs (regular design and rim-drive turbines) are simulated with cavitating flow conditions including different rotation speeds (1000–5000 rpm) and outlet pressures (0, -24, -48, -96, kPa gage). Phase change interactions (liquid water and vapor) were considered by adding the physics models of Volume of Fluid (VOF) multiphase, cavitation, and Large Eddy Simulation (LES) turbulence. Records featured spatial variation in the cavitation pattern between the two designs. Rim-drive turbine stands against cavitation along the rim integration lines, but it starts the hub cavitation earlier than the regular turbine. The proposed rim-drive bests the regular geometry before cavitation, and the relative efficiency gap increased to be 16% at extreme cavitation condition.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Kaplan-Turbine"

1

Abernethy, Cary S., Brett G. Amidan, and G. F. Cada. Simulated Passage Through A Modified Kaplan Turbine Pressure Regime: A Supplement to "Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish". Office of Scientific and Technical Information (OSTI), March 2002. http://dx.doi.org/10.2172/15001623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abernethy, C., B. Amidan, and G. Cada. Simulated passage through a modified Kaplan turbine pressure regime: A supplement to "Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish". Office of Scientific and Technical Information (OSTI), April 2002. http://dx.doi.org/10.2172/1218163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography