Journal articles on the topic 'Microfluidic method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microfluidic method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Liu, Jingji, Boyang Zhang, Yajun Zhang, and Yiqiang Fan. "Fluid control with hydrophobic pillars in paper-based microfluidics." Journal of Micromechanics and Microengineering 31, no. 12 (2021): 127002. http://dx.doi.org/10.1088/1361-6439/ac35c9.
Full textKunjumon, Mekha, Libina Babu, and Aswathy Boss. "Microfluidics Relevant Approaches in Drug Delivery System Treatment of Cancer – A Review." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 09 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem37596.
Full textLI, CHIYU, WANG LI, CHUNYANG GENG, HAIJUN REN, XIAOHUI YU, and BO LIU. "MICROFLUIDIC CHIP FOR CANCER CELL DETECTION AND DIAGNOSIS." Journal of Mechanics in Medicine and Biology 18, no. 01 (2018): 1830001. http://dx.doi.org/10.1142/s0219519418300016.
Full textBAI, BOFENG, ZHENGYUAN LUO, TIANJIAN LU, and FENG XU. "NUMERICAL SIMULATION OF CELL ADHESION AND DETACHMENT IN MICROFLUIDICS." Journal of Mechanics in Medicine and Biology 13, no. 01 (2013): 1350002. http://dx.doi.org/10.1142/s0219519413500024.
Full textXi, Wang, Fang Kong, Joo Chuan Yeo, et al. "Soft tubular microfluidics for 2D and 3D applications." Proceedings of the National Academy of Sciences 114, no. 40 (2017): 10590–95. http://dx.doi.org/10.1073/pnas.1712195114.
Full textSwitalla, Ander, Lael Wentland, and Elain Fu. "3D printing-based microfluidic devices in fabric." Journal of Micromechanics and Microengineering 33, no. 2 (2023): 027001. http://dx.doi.org/10.1088/1361-6439/acaff1.
Full textPrajitna, Stefanus H., Christian Harito, and Brian Yuliarto. "Cost-Effective Manufacturing of Microfluidics Through the Utilization of Direct Ink Writing." Emerging Science Journal 9, no. 1 (2025): 1–11. https://doi.org/10.28991/esj-2025-09-01-01.
Full textYip, Hon Ming, John C. S. Li, Kai Xie, et al. "Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method." Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/608184.
Full textSoitu, Cristian, Alexander Feuerborn, Cyril Deroy, Alfonso A. Castrejón-Pita, Peter R. Cook, and Edmond J. Walsh. "Raising fluid walls around living cells." Science Advances 5, no. 6 (2019): eaav8002. http://dx.doi.org/10.1126/sciadv.aav8002.
Full textHamad, Eyad M., Ahmed Albagdady, Samer Al-Gharabli, et al. "Optimizing Rapid Prototype Development Through Femtosecond Laser Ablation and Finite Element Method Simulation for Enhanced Separation in Microfluidics." Journal of Nanofluids 12, no. 7 (2023): 1868–79. http://dx.doi.org/10.1166/jon.2023.2102.
Full textAcosta-Cuevas, José M., Mario A. García-Ramírez, Gabriela Hinojosa-Ventura, Álvaro J. Martínez-Gómez, Víctor H. Pérez-Luna, and Orfil González-Reynoso. "Surface Roughness Analysis of Microchannels Featuring Microfluidic Devices Fabricated by Three Different Materials and Methods." Coatings 13, no. 10 (2023): 1676. http://dx.doi.org/10.3390/coatings13101676.
Full textBogseth, Amanda, Jian Zhou, and Ian Papautsky. "Evaluation of Performance and Tunability of a Co-Flow Inertial Microfluidic Device." Micromachines 11, no. 3 (2020): 287. http://dx.doi.org/10.3390/mi11030287.
Full textKhodamoradi, Maedeh, Saeed Rafizadeh Tafti, Seyed Ali Mousavi Shaegh, Behrouz Aflatoonian, Mostafa Azimzadeh, and Patricia Khashayar. "Recent Microfluidic Innovations for Sperm Sorting." Chemosensors 9, no. 6 (2021): 126. http://dx.doi.org/10.3390/chemosensors9060126.
Full textZeng, Jin, Hang Xu, Ze-Rui Song, et al. "High Frequency and Addressable Impedance Measurement System for On-Site Droplet Analysis in Digital Microfluidics." Electronics 13, no. 14 (2024): 2810. http://dx.doi.org/10.3390/electronics13142810.
Full textYou, Jae Bem, Byungjin Lee, Yunho Choi, et al. "Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device." BioTechniques 69, no. 1 (2020): 46–51. http://dx.doi.org/10.2144/btn-2020-0025.
Full textObaid, Rusl Mahdi, and Khdeeja Jabbar Ali. "New Spectrophotometric Reduction–Oxidation System for Methyldopa Determination in Different Pharmaceutical Models." Methods and Objects of Chemical Analysis 19, no. 1 (2024): 45–53. http://dx.doi.org/10.17721/moca.2024.45-53.
Full textArebalo, Raymond J., Augustin J. Sanchez, and Nathan Tompkins. "Same Day Microfluidics: From Design to Device in Under Three Hours." Nanomanufacturing 5, no. 3 (2025): 9. https://doi.org/10.3390/nanomanufacturing5030009.
Full textYuan, Rodger, Jaemyon Lee, Hao-Wei Su, et al. "Microfluidics in structured multimaterial fibers." Proceedings of the National Academy of Sciences 115, no. 46 (2018): E10830—E10838. http://dx.doi.org/10.1073/pnas.1809459115.
Full textCai, Jianchen, Jiaxi Jiang, Jinyun Jiang, et al. "Fabrication of Transparent and Flexible Digital Microfluidics Devices." Micromachines 13, no. 4 (2022): 498. http://dx.doi.org/10.3390/mi13040498.
Full textGao, Feng, Haoyu Sun, Xiang Li, and Pingnian He. "Leveraging avidin-biotin interaction to quantify permeability property of microvessels-on-a-chip networks." American Journal of Physiology-Heart and Circulatory Physiology 322, no. 1 (2022): H71—H86. http://dx.doi.org/10.1152/ajpheart.00478.2021.
Full textZhao, Xihong, Mei Li, and Yao Liu. "Microfluidic-Based Approaches for Foodborne Pathogen Detection." Microorganisms 7, no. 10 (2019): 381. http://dx.doi.org/10.3390/microorganisms7100381.
Full textTanjaya, Hengky, and Christian Harito. "Integrating Microfluidic and Biosensors: A Mini Review." Journal of Physics: Conference Series 2705, no. 1 (2024): 012018. http://dx.doi.org/10.1088/1742-6596/2705/1/012018.
Full textAhmed, Isteaque, Katherine Sullivan, and Aashish Priye. "Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components." Biosensors 12, no. 8 (2022): 652. http://dx.doi.org/10.3390/bios12080652.
Full textJames, Matthew, Richard A. Revia, Zachary Stephen, and Miqin Zhang. "Microfluidic Synthesis of Iron Oxide Nanoparticles." Nanomaterials 10, no. 11 (2020): 2113. http://dx.doi.org/10.3390/nano10112113.
Full textAdamopoulos, Christos, Asmaysinh Gharia, Ali Niknejad, Vladimir Stojanović, and Mekhail Anwar. "Microfluidic Packaging Integration with Electronic-Photonic Biosensors Using 3D Printed Transfer Molding." Biosensors 10, no. 11 (2020): 177. http://dx.doi.org/10.3390/bios10110177.
Full textYang, Ning, Pan Wang, Chen Pan, Chang-Hua Xiang, Liang-Liang Xie, and Han-Ping Mao. "Compensation method of error caused from maladjustment of optical path based on microfluidic chip." Modern Physics Letters B 32, no. 34n36 (2018): 1840081. http://dx.doi.org/10.1142/s021798491840081x.
Full textAbrishamkar, Afshin, Azadeh Nilghaz, Maryam Saadatmand, Mohammadreza Naeimirad, and Andrew J. deMello. "Microfluidic-assisted fiber production: Potentials, limitations, and prospects." Biomicrofluidics 16, no. 6 (2022): 061504. http://dx.doi.org/10.1063/5.0129108.
Full textMORDUS, O. N., A. V. MARDAS, and I. M. KARPEYCHICK. "MICROFLUIDICS AS AN ALTERNATIVE METHOD OF SPERM PROCESSING TO IMPROVE ASSISTED REPRODUCTIVE TECHNOLOGIES (ART) OUTCOMES." MODERN PERINATAL MEDICAL TECHNOLOGIES IN SOLVING THE PROBLEM OF DEMOGRAPHIC SECURITY, no. 17 (December 2024): 151–57. https://doi.org/10.63030/2307-4795/2024.17.a.22.
Full textWang, Ji-Xiang, Wei Yu, Zhe Wu, Xiangdong Liu, and Yongping Chen. "Physics-based statistical learning perspectives on droplet formation characteristics in microfluidic cross-junctions." Applied Physics Letters 120, no. 20 (2022): 204101. http://dx.doi.org/10.1063/5.0086933.
Full textNguyen, Duong Thanh, Van Thi Thanh Tran, Huy Trung Nguyen, Hong Thi Cao, Thai Quoc Vu, and Dung Quang Trinh. "Preparation of microfluidics device from PMMA for liposome synthesis." Vietnam Journal of Science and Technology 61, no. 1 (2023): 84–90. http://dx.doi.org/10.15625/2525-2518/16577.
Full textTian, Yishen, Rong Hu, Guangshi Du, and Na Xu. "Microfluidic Chips: Emerging Technologies for Adoptive Cell Immunotherapy." Micromachines 14, no. 4 (2023): 877. http://dx.doi.org/10.3390/mi14040877.
Full textPeñaherrera-Pazmiño, Ana Belén, Gustavo Rosero, Dario Ruarte, et al. "Activation and Expansion of Human T-Cells Using Microfluidic Devices." Biosensors 15, no. 5 (2025): 270. https://doi.org/10.3390/bios15050270.
Full textKotz, Frederik, Markus Mader, Nils Dellen, et al. "Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate." Micromachines 11, no. 9 (2020): 873. http://dx.doi.org/10.3390/mi11090873.
Full textKaal, Joris, Nicolas Feltin, Marc Lelong, et al. "Comparison of Measurement Protocols for Internal Channels of Transparent Microfluidic Devices." Metrology 5, no. 1 (2025): 4. https://doi.org/10.3390/metrology5010004.
Full textLiu, Xiao Wei, Xiao Wei Han, He Zhang, Xi Yun Jiang, and Lin Zhao. "A Microfluidic Chip Microwave Bonding Method Based on the PMMA." Key Engineering Materials 562-565 (July 2013): 561–65. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.561.
Full textHu, Zengliang, Minghai Li, and Xiaohui Jia. "Process Study on 3D Printing of Polymethyl Methacrylate Microfluidic Chips for Chemical Engineering." Micromachines 16, no. 4 (2025): 385. https://doi.org/10.3390/mi16040385.
Full textKatherine, S. Elvira, and Fabrice Gielen. "Materials and methods for droplet microfluidic device fabrication." Lab on a Chip, no. 22 (October 2, 2024): 859. https://doi.org/10.1039/d1lc00836f.
Full textMd Sahin Ali. "Machine Learning-Based Computational Framework for Microfluidic Device Design and Simulation." Journal of Information Systems Engineering and Management 10, no. 28s (2025): 100–116. https://doi.org/10.52783/jisem.v10i28s.4296.
Full textMudrik, Jared M., Michael D. M. Dryden, Nelson M. Lafrenière, and Aaron R. Wheeler. "Strong and small: strong cation-exchange solid-phase extractions using porous polymer monoliths on a digital microfluidic platform." Canadian Journal of Chemistry 92, no. 3 (2014): 179–85. http://dx.doi.org/10.1139/cjc-2013-0506.
Full textPeng, Xing Yue (Larry), Pengxiang Su, Yaxin Guo, Jing Zhang, Linghan Peng, and Rongrong Zhang. "A Microfluidic Experimental Method for Studying Cell-to-Cell Exosome Delivery–Taking Stem Cell–Tumor Cell Interaction as a Case." International Journal of Molecular Sciences 24, no. 17 (2023): 13419. http://dx.doi.org/10.3390/ijms241713419.
Full textT. Heng, J., and Hayder A. Abdulbari. "Study on the Effect of Different Electrode on Capacitive Deionization Microfluidic Desalination." International Journal of Engineering & Technology 7, no. 4 (2019): 5100–5104. http://dx.doi.org/10.14419/ijet.v7i4.24809.
Full textSametov, S. P., E. S. Batyrshin, and I. V. Samsonov. "DETERMINATION OF RELATIVE PHASE PERMEABILITY IN TWO-PHASE FILTRATION USING MICROFLUIDICS." Petroleum Engineering 23, no. 2 (2025): 27–37. https://doi.org/10.17122/ngdelo-2025-2-27-37.
Full textSoitu, Cristian, Alexander Feuerborn, Ann Na Tan, et al. "Microfluidic chambers using fluid walls for cell biology." Proceedings of the National Academy of Sciences 115, no. 26 (2018): E5926—E5933. http://dx.doi.org/10.1073/pnas.1805449115.
Full textSmith, Savanah, Marzhan Sypabekova, and Seunghyun Kim. "Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication." Biosensors 14, no. 5 (2024): 249. http://dx.doi.org/10.3390/bios14050249.
Full textCostantini, Francesca, Erica Cesari, Nicola Lovecchio, et al. "Microfluidic Array Enables Rapid Testing of Natural Compounds Against Xylella fastidiosa." Plants 14, no. 6 (2025): 872. https://doi.org/10.3390/plants14060872.
Full textQiu, Jingjiang, Junfu Li, Zhongwei Guo, et al. "3D Printing of Individualized Microfluidic Chips with DLP-Based Printer." Materials 16, no. 21 (2023): 6984. http://dx.doi.org/10.3390/ma16216984.
Full textRussom, Aman, Palaniappan Sethu, Daniel Irimia, et al. "Microfluidic Leukocyte Isolation for Gene Expression Analysis in Critically Ill Hospitalized Patients." Clinical Chemistry 54, no. 5 (2008): 891–900. http://dx.doi.org/10.1373/clinchem.2007.099150.
Full textYin, Zhifu, and Helin Zou. "A fast and simple bonding method for low cost microfluidic chip fabrication." Journal of Electrical Engineering 69, no. 1 (2018): 72–78. http://dx.doi.org/10.1515/jee-2018-0010.
Full textVilimi, Zsófia, Zsófia Edit Pápay, Bálint Basa, Xeniya Orekhova, Nikolett Kállai-Szabó, and István Antal. "Microfluidic Rheology: An Innovative Method for Viscosity Measurement of Gels and Various Pharmaceuticals." Gels 10, no. 7 (2024): 464. http://dx.doi.org/10.3390/gels10070464.
Full textZhao, Pei, Jianchun Wang, Yan Li, Xueying Wang, Chengmin Chen, and Guangxia Liu. "Microfluidic Technology for the Production of Well-Ordered Porous Polymer Scaffolds." Polymers 12, no. 9 (2020): 1863. http://dx.doi.org/10.3390/polym12091863.
Full text