To see the other types of publications on this topic, follow the link: Microfluidic method.

Journal articles on the topic 'Microfluidic method'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Microfluidic method.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu, Jingji, Boyang Zhang, Yajun Zhang, and Yiqiang Fan. "Fluid control with hydrophobic pillars in paper-based microfluidics." Journal of Micromechanics and Microengineering 31, no. 12 (2021): 127002. http://dx.doi.org/10.1088/1361-6439/ac35c9.

Full text
Abstract:
Abstract Paper-based microfluidics has been widely used in chemical and medical analysis applications. In the conventional paper-based microfluidic approach, fluid is propagating inside the porous structure, and the flow direction of the fluid propagation is usually controlled with the pre-defined hydrophobic barrier (e.g. wax). However, the fluid propagation velocity inside the paper-based microfluidic devices largely depends on the material properties of paper and fluid, the relative control method is rarely reported. In this study, a fluid propagation velocity control method is proposed for
APA, Harvard, Vancouver, ISO, and other styles
2

Kunjumon, Mekha, Libina Babu, and Aswathy Boss. "Microfluidics Relevant Approaches in Drug Delivery System Treatment of Cancer – A Review." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 09 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem37596.

Full text
Abstract:
Microfluidics technology is a promising method for creating advanced drug delivery systems, particularly in cancer detection and treatment. These systems provide accurate, efficient, and user-friendly methods for cancer detection and treatment by examining small samples. Microfluidic devices can produce nanoparticles for medication administration and identify cancer-diagnostic variables from biological fluids. Due to their high sensitivity, high throughput, and low cost, microfluidics may be useful in cancer study. While not currently used in clinical settings, microfluidic systems are expecte
APA, Harvard, Vancouver, ISO, and other styles
3

LI, CHIYU, WANG LI, CHUNYANG GENG, HAIJUN REN, XIAOHUI YU, and BO LIU. "MICROFLUIDIC CHIP FOR CANCER CELL DETECTION AND DIAGNOSIS." Journal of Mechanics in Medicine and Biology 18, no. 01 (2018): 1830001. http://dx.doi.org/10.1142/s0219519418300016.

Full text
Abstract:
Since cancer becomes the most deadly disease to our health, research on early detection on cancer cells is necessary for clinical treatment. The combination of microfluidic device with cell biology has shown a unique method for cancer cell research. In the present review, recent development on microfluidic chip for cancer cell detection and diagnosis will be addressed. Some typical microfluidic chips focussed on cancer cells and their advantages for different kinds of cancer cell detection and diagnosis will be listed, and the cell capture methods within the microfluidics will be simultaneousl
APA, Harvard, Vancouver, ISO, and other styles
4

BAI, BOFENG, ZHENGYUAN LUO, TIANJIAN LU, and FENG XU. "NUMERICAL SIMULATION OF CELL ADHESION AND DETACHMENT IN MICROFLUIDICS." Journal of Mechanics in Medicine and Biology 13, no. 01 (2013): 1350002. http://dx.doi.org/10.1142/s0219519413500024.

Full text
Abstract:
Inspired by the complex biophysical processes of cell adhesion and detachment under blood flow in vivo, numerous novel microfluidic devices have been developed to manipulate, capture, and separate bio-particles for various applications, such as cell analysis and cell enumeration. However, the underlying physical mechanisms are yet unclear, which has limited the further development of microfluidic devices and point-of-care (POC) systems. Mathematical modeling is an enabling tool to study the physical mechanisms of biological processes for its relative simplicity, low cost, and high efficiency.
APA, Harvard, Vancouver, ISO, and other styles
5

Xi, Wang, Fang Kong, Joo Chuan Yeo, et al. "Soft tubular microfluidics for 2D and 3D applications." Proceedings of the National Academy of Sciences 114, no. 40 (2017): 10590–95. http://dx.doi.org/10.1073/pnas.1712195114.

Full text
Abstract:
Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements
APA, Harvard, Vancouver, ISO, and other styles
6

Switalla, Ander, Lael Wentland, and Elain Fu. "3D printing-based microfluidic devices in fabric." Journal of Micromechanics and Microengineering 33, no. 2 (2023): 027001. http://dx.doi.org/10.1088/1361-6439/acaff1.

Full text
Abstract:
Abstract Fabric-based microfluidics is a growing sub-field of porous materials-based microfluidics. 3D printing has been demonstrated as a useful fabrication method for open channel microfluidic devices, and also in the context of porous substates such as cellulose. In the current report, we describe a straightforward method for 3D printing fabric-based microfluidic devices. We demonstrate the ability to create both full and partial barriers in fabric, characterizing minimum channel and barrier widths, as well as reproducibility of the method using the metric of flow time repeatability through
APA, Harvard, Vancouver, ISO, and other styles
7

Prajitna, Stefanus H., Christian Harito, and Brian Yuliarto. "Cost-Effective Manufacturing of Microfluidics Through the Utilization of Direct Ink Writing." Emerging Science Journal 9, no. 1 (2025): 1–11. https://doi.org/10.28991/esj-2025-09-01-01.

Full text
Abstract:
Microfluidics is essential for precise manipulation of fluids in small channels. However, conventional manufacturing processes for microfluidic devices are expensive, time-consuming, and require specialized equipment in a clean room. While recent studies have improved the cost-effectiveness of this device, there is still a need for further advancement in cost efficiency. Therefore, this study aimed to develop a custom-built direct-ink writing (DIW) printer for manufacturing microfluidic devices that is more affordable. Custom-built DIW directly printed microfluidic channels onto microscope sli
APA, Harvard, Vancouver, ISO, and other styles
8

Yip, Hon Ming, John C. S. Li, Kai Xie, et al. "Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method." Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/608184.

Full text
Abstract:
As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back
APA, Harvard, Vancouver, ISO, and other styles
9

Soitu, Cristian, Alexander Feuerborn, Cyril Deroy, Alfonso A. Castrejón-Pita, Peter R. Cook, and Edmond J. Walsh. "Raising fluid walls around living cells." Science Advances 5, no. 6 (2019): eaav8002. http://dx.doi.org/10.1126/sciadv.aav8002.

Full text
Abstract:
An effective transformation of the cell culture dishes that biologists use every day into microfluidic devices would open many avenues for miniaturizing cell-based workflows. In this article, we report a simple method for creating microfluidic arrangements around cells already growing on the surface of standard petri dishes, using the interface between immiscible fluids as a “building material.” Conventional dishes are repurposed into sophisticated microfluidic devices by reshaping, on demand, the fluid structures around living cells. Moreover, these microfluidic arrangements can be further re
APA, Harvard, Vancouver, ISO, and other styles
10

Hamad, Eyad M., Ahmed Albagdady, Samer Al-Gharabli, et al. "Optimizing Rapid Prototype Development Through Femtosecond Laser Ablation and Finite Element Method Simulation for Enhanced Separation in Microfluidics." Journal of Nanofluids 12, no. 7 (2023): 1868–79. http://dx.doi.org/10.1166/jon.2023.2102.

Full text
Abstract:
In recent years, microfluidic systems have emerged as promising tools for blood separation and analysis. However, conventional methods for prototyping microfluidic systems can be slow and expensive. In this study, we present a novel approach to rapid prototyping that combines femtosecond laser ablation and finite element method (FEM) simulation. The optimization of the prototyping process was achieved through systematic characterization of the laser ablation process and the application of FEM simulation to predict the flow behavior of the microfluidic devices. Using a dean-coupled inertial flo
APA, Harvard, Vancouver, ISO, and other styles
11

Acosta-Cuevas, José M., Mario A. García-Ramírez, Gabriela Hinojosa-Ventura, Álvaro J. Martínez-Gómez, Víctor H. Pérez-Luna, and Orfil González-Reynoso. "Surface Roughness Analysis of Microchannels Featuring Microfluidic Devices Fabricated by Three Different Materials and Methods." Coatings 13, no. 10 (2023): 1676. http://dx.doi.org/10.3390/coatings13101676.

Full text
Abstract:
In recent years, the utilization of microfluidic devices for precise manipulation of small flows has significantly increased. The effective management of microfluidics is closely associated with microchannel fabrication. The fabrication method employed for microfluidic devices directly impacts the roughness of the microchannels, consequently influencing the flows within them. In this study, the surface roughness of microchannels was investigated through three different fabrication processes: PDMS lithography, PLA printing, and UV resin printing. This research compared and analyzed the surface
APA, Harvard, Vancouver, ISO, and other styles
12

Bogseth, Amanda, Jian Zhou, and Ian Papautsky. "Evaluation of Performance and Tunability of a Co-Flow Inertial Microfluidic Device." Micromachines 11, no. 3 (2020): 287. http://dx.doi.org/10.3390/mi11030287.

Full text
Abstract:
Microfluidics has gained a lot of attention for biological sample separation and purification methods over recent years. From many active and passive microfluidic techniques, inertial microfluidics offers a simple and efficient method to demonstrate various biological applications. One prevalent limitation of this method is its lack of tunability for different applications once the microfluidic devices are fabricated. In this work, we develop and characterize a co-flow inertial microfluidic device that is tunable in multiple ways for adaptation to different application requirements. In particu
APA, Harvard, Vancouver, ISO, and other styles
13

Khodamoradi, Maedeh, Saeed Rafizadeh Tafti, Seyed Ali Mousavi Shaegh, Behrouz Aflatoonian, Mostafa Azimzadeh, and Patricia Khashayar. "Recent Microfluidic Innovations for Sperm Sorting." Chemosensors 9, no. 6 (2021): 126. http://dx.doi.org/10.3390/chemosensors9060126.

Full text
Abstract:
Sperm selection is a clinical need for guided fertilization in men with low-quality semen. In this regard, microfluidics can provide an enabling platform for the precise manipulation and separation of high-quality sperm cells through applying various stimuli, including chemical agents, mechanical forces, and thermal gradients. In addition, microfluidic platforms can help to guide sperms and oocytes for controlled in vitro fertilization or sperm sorting using both passive and active methods. Herein, we present a detailed review of the use of various microfluidic methods for sorting and categori
APA, Harvard, Vancouver, ISO, and other styles
14

Zeng, Jin, Hang Xu, Ze-Rui Song, et al. "High Frequency and Addressable Impedance Measurement System for On-Site Droplet Analysis in Digital Microfluidics." Electronics 13, no. 14 (2024): 2810. http://dx.doi.org/10.3390/electronics13142810.

Full text
Abstract:
Digital microfluidics is a novel technique for manipulating discrete droplets with the advantages of programmability, small device size, low cost, and easy integration. The development of droplet sensing methods advances the automation control of digital microfluidics. Impedance measurement emerges as a promising technique for droplet localization and characterization due to its non-invasive nature, high sensitivity, simplicity, and cost-effectiveness. However, traditional impedance measurement approaches in digital microfluidics based on the high-voltage actuating signal are limited in sensin
APA, Harvard, Vancouver, ISO, and other styles
15

You, Jae Bem, Byungjin Lee, Yunho Choi, et al. "Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device." BioTechniques 69, no. 1 (2020): 46–51. http://dx.doi.org/10.2144/btn-2020-0025.

Full text
Abstract:
Poly(dimethylsiloxane) (PDMS) is widely used as a microfluidics platform material; however, it absorbs various molecules, perturbing specific chemical concentrations in microfluidic channels. We present a simple solution to prevent adsorption into a PDMS microfluidic device. We used a vapor-phase-deposited nanoadhesive layer to seal PDMS microfluidic channels. Absorption of fluorescent molecules into PDMS was efficiently prevented in the nanolayer-treated PDMS device. Importantly, when cultured in a nanolayer-treated PDMS device, yeast cells exhibited the expected concentration-dependent respo
APA, Harvard, Vancouver, ISO, and other styles
16

Obaid, Rusl Mahdi, and Khdeeja Jabbar Ali. "New Spectrophotometric Reduction–Oxidation System for Methyldopa Determination in Different Pharmaceutical Models." Methods and Objects of Chemical Analysis 19, no. 1 (2024): 45–53. http://dx.doi.org/10.17721/moca.2024.45-53.

Full text
Abstract:
Two spectrophotometric methods have been developed for the determination of methyldopa in the pure form and pharmaceutical formulations, both two methods based on the oxidation of the drug with an excess of N-Bromosuccinimide (NBS) and then reduction with 3,3-Diaminobenzidine (DAB), Absorbance of the resulting Magenta colored product is measured at 513 nm, the linearity ranged between (0.5 to 10) mg L−1 for the first spectroscopy method, and (0.5 to 15) mg L−1 for the second microfluid method. The detection limits (LOD) are 0.171, and 0.180 μg mL-1 for methyldopa in two methods spectroscopies,
APA, Harvard, Vancouver, ISO, and other styles
17

Arebalo, Raymond J., Augustin J. Sanchez, and Nathan Tompkins. "Same Day Microfluidics: From Design to Device in Under Three Hours." Nanomanufacturing 5, no. 3 (2025): 9. https://doi.org/10.3390/nanomanufacturing5030009.

Full text
Abstract:
Microfluidic devices are used in numerous scientific fields and research areas, but device fabrication is still a time- and resource-intensive process largely confined to the cleanroom or a similarly well-equipped laboratory. This paper presents a method to create microfluidic devices in under three hours using the silicone polymer polydimethylsiloxane (PDMS) and a laser cut positive master using PDMS double casting without a cleanroom or other large capital equipment. This method can be utilized by an undergraduate student with minimal training in a laboratory with a modest budget. This paper
APA, Harvard, Vancouver, ISO, and other styles
18

Yuan, Rodger, Jaemyon Lee, Hao-Wei Su, et al. "Microfluidics in structured multimaterial fibers." Proceedings of the National Academy of Sciences 115, no. 46 (2018): E10830—E10838. http://dx.doi.org/10.1073/pnas.1809459115.

Full text
Abstract:
Traditional fabrication techniques for microfluidic devices utilize a planar chip format that possesses limited control over the geometry of and materials placement around microchannel cross-sections. This imposes restrictions on the design of flow fields and external forces (electric, magnetic, piezoelectric, etc.) that can be imposed onto fluids and particles. Here we report a method of fabricating microfluidic channels with complex cross-sections. A scaled-up version of a microchannel is dimensionally reduced through a thermal drawing process, enabling the fabrication of meters-long microfl
APA, Harvard, Vancouver, ISO, and other styles
19

Cai, Jianchen, Jiaxi Jiang, Jinyun Jiang, et al. "Fabrication of Transparent and Flexible Digital Microfluidics Devices." Micromachines 13, no. 4 (2022): 498. http://dx.doi.org/10.3390/mi13040498.

Full text
Abstract:
This study proposed a fabrication method for thin, film-based, transparent, and flexible digital microfluidic devices. A series of characterizations were also conducted with the fabricated digital microfluidic devices. For the device fabrication, the electrodes were patterned by laser ablation of 220 nm-thick indium tin oxide (ITO) layer on a 175 μm-thick polyethylene terephthalate (PET) substrate. The electrodes were insulated with a layer of 12 μm-thick polyethylene (PE) film as the dielectric layer, and finally, a surface treatment was conducted on PE film in order to enhance the hydrophobi
APA, Harvard, Vancouver, ISO, and other styles
20

Gao, Feng, Haoyu Sun, Xiang Li, and Pingnian He. "Leveraging avidin-biotin interaction to quantify permeability property of microvessels-on-a-chip networks." American Journal of Physiology-Heart and Circulatory Physiology 322, no. 1 (2022): H71—H86. http://dx.doi.org/10.1152/ajpheart.00478.2021.

Full text
Abstract:
Our study developed a novel method that allows permeability coefficient to be measured in microvessels developed in nonpermeable microfluidic platforms using avidin-biotin technology. It overcomes the major limitation of nonpermeable microfluidic system and provides a simply designed easily executed and highly reproducible in vitro microvessel model with permeability accessibility. This model with in vivo-like endothelial junctions, glycocalyx, and permeability properties advances microfluidics in microvascular research, suitable for a wide range of biomedical and clinical applications.
APA, Harvard, Vancouver, ISO, and other styles
21

Zhao, Xihong, Mei Li, and Yao Liu. "Microfluidic-Based Approaches for Foodborne Pathogen Detection." Microorganisms 7, no. 10 (2019): 381. http://dx.doi.org/10.3390/microorganisms7100381.

Full text
Abstract:
Food safety is of obvious importance, but there are frequent problems caused by foodborne pathogens that threaten the safety and health of human beings worldwide. Although the most classic method for detecting bacteria is the plate counting method, it takes almost three to seven days to get the bacterial results for the detection. Additionally, there are many existing technologies for accurate determination of pathogens, such as polymerase chain reaction (PCR), enzyme linked immunosorbent assay (ELISA), or loop-mediated isothermal amplification (LAMP), but they are not suitable for timely and
APA, Harvard, Vancouver, ISO, and other styles
22

Tanjaya, Hengky, and Christian Harito. "Integrating Microfluidic and Biosensors: A Mini Review." Journal of Physics: Conference Series 2705, no. 1 (2024): 012018. http://dx.doi.org/10.1088/1742-6596/2705/1/012018.

Full text
Abstract:
Abstract In recent years, the field of analytical research has witnessed a significant transformation driven by the emergence of integrated microfluidic sensors. This ground-breaking technology has been extensively studied, resulting in the resolution of diverse challenges and a revolutionary impact on experiments, particularly in the biomedical domain. By combining the biosensors with microfluidics, there is a tremendous potential to enhance measurement accuracy and expand the capacity of specimens utilized in biomedical applications and experiments. The integration of biosensors with microfl
APA, Harvard, Vancouver, ISO, and other styles
23

Ahmed, Isteaque, Katherine Sullivan, and Aashish Priye. "Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components." Biosensors 12, no. 8 (2022): 652. http://dx.doi.org/10.3390/bios12080652.

Full text
Abstract:
Stereolithography based 3D printing of microfluidics for prototyping has gained a lot of attention due to several advantages such as fast production, cost-effectiveness, and versatility over traditional photolithography-based microfabrication techniques. However, existing consumer focused SLA 3D printers struggle to fabricate functional microfluidic devices due to several challenges associated with micron-scale 3D printing. Here, we explore the origins and mechanism of the associated failure modes followed by presenting guidelines to overcome these challenges. The prescribed method works compl
APA, Harvard, Vancouver, ISO, and other styles
24

James, Matthew, Richard A. Revia, Zachary Stephen, and Miqin Zhang. "Microfluidic Synthesis of Iron Oxide Nanoparticles." Nanomaterials 10, no. 11 (2020): 2113. http://dx.doi.org/10.3390/nano10112113.

Full text
Abstract:
Research efforts into the production and application of iron oxide nanoparticles (IONPs) in recent decades have shown IONPs to be promising for a range of biomedical applications. Many synthesis techniques have been developed to produce high-quality IONPs that are safe for in vivo environments while also being able to perform useful biological functions. Among them, coprecipitation is the most commonly used method but has several limitations such as polydisperse IONPs, long synthesis times, and batch-to-batch variations. Recent efforts at addressing these limitations have led to the developmen
APA, Harvard, Vancouver, ISO, and other styles
25

Adamopoulos, Christos, Asmaysinh Gharia, Ali Niknejad, Vladimir Stojanović, and Mekhail Anwar. "Microfluidic Packaging Integration with Electronic-Photonic Biosensors Using 3D Printed Transfer Molding." Biosensors 10, no. 11 (2020): 177. http://dx.doi.org/10.3390/bios10110177.

Full text
Abstract:
Multiplexed sensing in integrated silicon electronic-photonic platforms requires microfluidics with both high density micro-scale channels and meso-scale features to accommodate for optical, electrical, and fluidic coupling in small, millimeter-scale areas. Three-dimensional (3D) printed transfer molding offers a facile and rapid method to create both micro and meso-scale features in complex multilayer microfluidics in order to integrate with monolithic electronic-photonic system-on-chips with multiplexed rows of 5 μm radius micro-ring resonators (MRRs), allowing for simultaneous optical, elec
APA, Harvard, Vancouver, ISO, and other styles
26

Yang, Ning, Pan Wang, Chen Pan, Chang-Hua Xiang, Liang-Liang Xie, and Han-Ping Mao. "Compensation method of error caused from maladjustment of optical path based on microfluidic chip." Modern Physics Letters B 32, no. 34n36 (2018): 1840081. http://dx.doi.org/10.1142/s021798491840081x.

Full text
Abstract:
Photometric detection plays a significant role in microfluidics technology. However, the mismatch between the solution concentration and the optical path length will increase detection error. In this study, we proposed a round microfluidic chip for concentration detection to obtain the continuous gradient distribution of concentration. The optimum absorbance can be found by dynamic accurately searching. The solution concentration will be accurately calculated finally according to the relationship between arc length and solution concentration. The overall detection process runs automatically. U
APA, Harvard, Vancouver, ISO, and other styles
27

Abrishamkar, Afshin, Azadeh Nilghaz, Maryam Saadatmand, Mohammadreza Naeimirad, and Andrew J. deMello. "Microfluidic-assisted fiber production: Potentials, limitations, and prospects." Biomicrofluidics 16, no. 6 (2022): 061504. http://dx.doi.org/10.1063/5.0129108.

Full text
Abstract:
Besides the conventional fiber production methods, microfluidics has emerged as a promising approach for the engineered spinning of fibrous materials and offers excellent potential for fiber manufacturing in a controlled and straightforward manner. This method facilitates low-speed prototype synthesis of fibers for diverse applications while providing superior control over reaction conditions, efficient use of precursor solutions, reagent mixing, and process parameters. This article reviews recent advances in microfluidic technology for the fabrication of fibrous materials with different morph
APA, Harvard, Vancouver, ISO, and other styles
28

MORDUS, O. N., A. V. MARDAS, and I. M. KARPEYCHICK. "MICROFLUIDICS AS AN ALTERNATIVE METHOD OF SPERM PROCESSING TO IMPROVE ASSISTED REPRODUCTIVE TECHNOLOGIES (ART) OUTCOMES." MODERN PERINATAL MEDICAL TECHNOLOGIES IN SOLVING THE PROBLEM OF DEMOGRAPHIC SECURITY, no. 17 (December 2024): 151–57. https://doi.org/10.63030/2307-4795/2024.17.a.22.

Full text
Abstract:
An important stage in the development of assisted reproductive technologies (ART) is the introduction of new methods for both fertilization and sperm selection into clinical practice. This article presents a comparative analysis of IVF/ICSI protocols using different sperm selection technologies. The clinical outcomes of cycles employing gradient centrifugation method (GCM), vertical microfluidics method (MVM) using the microfluidic chip Fertile Plus, and horizontal microfluidics method (MHM) were evaluated based on fertilization rates, quality, and quantity of embryos by the fifth day of culti
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Ji-Xiang, Wei Yu, Zhe Wu, Xiangdong Liu, and Yongping Chen. "Physics-based statistical learning perspectives on droplet formation characteristics in microfluidic cross-junctions." Applied Physics Letters 120, no. 20 (2022): 204101. http://dx.doi.org/10.1063/5.0086933.

Full text
Abstract:
Size-controllable micro-droplets obtained in microfluidic cross-junctions are significant in microfluidics. Modeling and predictions in microfluidic-based droplet formation characteristics to date using various traditional theoretical or empirical correlations are far from satisfactory. Driven by unprecedented data volumes from microfluidic experiments and simulations, statistical learning can offer a powerful technique to extract data that can be interpreted into underlying fluid physics and modeling. This Letter historically combines the current experimental data and experimental/numerical d
APA, Harvard, Vancouver, ISO, and other styles
30

Nguyen, Duong Thanh, Van Thi Thanh Tran, Huy Trung Nguyen, Hong Thi Cao, Thai Quoc Vu, and Dung Quang Trinh. "Preparation of microfluidics device from PMMA for liposome synthesis." Vietnam Journal of Science and Technology 61, no. 1 (2023): 84–90. http://dx.doi.org/10.15625/2525-2518/16577.

Full text
Abstract:
Microfluidics has emerged in recent years as a technology that has advantages and is well suited for studying chemistry, biology, and physics at the microscale. A common material which has been widely use to fabricate the microfluidic system is thermoplastic materials. The method of fabricating microfluidic devices has been growing because of advantages such as high-quality feature replication, inexpensiveness, and ease of use. However, the major barrier to the utilization of thermoplastics is the lack of bonding methods for different plastic layers to close the microchannels. Therefore, this
APA, Harvard, Vancouver, ISO, and other styles
31

Tian, Yishen, Rong Hu, Guangshi Du, and Na Xu. "Microfluidic Chips: Emerging Technologies for Adoptive Cell Immunotherapy." Micromachines 14, no. 4 (2023): 877. http://dx.doi.org/10.3390/mi14040877.

Full text
Abstract:
Adoptive cell therapy (ACT) is a personalized therapy that has shown great success in treating hematologic malignancies in clinic, and has also demonstrated potential applications for solid tumors. The process of ACT involves multiple steps, including the separation of desired cells from patient tissues, cell engineering by virus vector systems, and infusion back into patients after strict tests to guarantee the quality and safety of the products. ACT is an innovative medicine in development; however, the multi-step method is time-consuming and costly, and the preparation of the targeted adopt
APA, Harvard, Vancouver, ISO, and other styles
32

Peñaherrera-Pazmiño, Ana Belén, Gustavo Rosero, Dario Ruarte, et al. "Activation and Expansion of Human T-Cells Using Microfluidic Devices." Biosensors 15, no. 5 (2025): 270. https://doi.org/10.3390/bios15050270.

Full text
Abstract:
Treatment of cancer patients with autologous T-cells expressing a chimeric antigen receptor (CAR) is one of the most promising therapeutic modalities for hematological malignancy treatment. For this treatment, primary T-cell expansion is needed. Microfluidic technologies can be used to better understand T-cell activation and proliferation. Microfluidics have had a meaningful impact in the way experimental biology and biomedical research are approached in general. Furthermore, microfluidic technology allows the generation of large amounts of data and enables the use of image processing for anal
APA, Harvard, Vancouver, ISO, and other styles
33

Kotz, Frederik, Markus Mader, Nils Dellen, et al. "Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate." Micromachines 11, no. 9 (2020): 873. http://dx.doi.org/10.3390/mi11090873.

Full text
Abstract:
Polymethylmethacrylate (PMMA) is one of the most important thermoplastic materials and is a widely used material in microfluidics. However, PMMA is usually structured using industrial scale replication processes, such as hot embossing or injection molding, not compatible with rapid prototyping. In this work, we demonstrate that microfluidic chips made from PMMA can be 3D printed using fused deposition modeling (FDM). We demonstrate that using FDM microfluidic chips with a minimum channel cross-section of ~300 µm can be printed and a variety of different channel geometries and mixer structures
APA, Harvard, Vancouver, ISO, and other styles
34

Kaal, Joris, Nicolas Feltin, Marc Lelong, et al. "Comparison of Measurement Protocols for Internal Channels of Transparent Microfluidic Devices." Metrology 5, no. 1 (2025): 4. https://doi.org/10.3390/metrology5010004.

Full text
Abstract:
The microfluidic industry faces a significant challenge due to the lack of sensitive and standardized methods. One critical need is the measurement of internal channel dimensions in fully assembled chips. This study presents and compares several protocols for measuring these dimensions, including optical profilometry, optical microscopy, and tiled digital imagery. Standardized chips made from two materials commonly used in microfluidics (borosilicate glass and Cyclic Olefin Copolymer) were evaluated using each protocol. A consistency analysis using normalized error statistics identified optica
APA, Harvard, Vancouver, ISO, and other styles
35

Liu, Xiao Wei, Xiao Wei Han, He Zhang, Xi Yun Jiang, and Lin Zhao. "A Microfluidic Chip Microwave Bonding Method Based on the PMMA." Key Engineering Materials 562-565 (July 2013): 561–65. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.561.

Full text
Abstract:
A new bonding technique mainly for PMMA microfluidic chips is presented in this paper. In this technique, polymer microfluidic microchannels were bonded by microwave radiation. Its strength and time can be controlled accurately in watt and second level. There are so many techniques for mass-production of polymer microfluidic chip, such as heat bonding, ultrasonic bonding. However, we may find different kinds of shortages when we use these techniques. In this paper, the experiment result shows that microwave radiation’s strength and time have effects on microfluidic chip`s bonding strength. The
APA, Harvard, Vancouver, ISO, and other styles
36

Hu, Zengliang, Minghai Li, and Xiaohui Jia. "Process Study on 3D Printing of Polymethyl Methacrylate Microfluidic Chips for Chemical Engineering." Micromachines 16, no. 4 (2025): 385. https://doi.org/10.3390/mi16040385.

Full text
Abstract:
Microfluidic technology is an emerging interdisciplinary field that uses micropipes to handle or manipulate tiny fluids in chemistry, fluid physics, and biomedical engineering. As one of the rapid prototyping methods, the three-dimensional (3D) printing technique, which is rapid and cost-effective and has integrated molding characteristics, has become an important manufacturing technology for microfluidic chips. Polymethyl-methacrylate (PMMA), as an exceptional thermoplastic material, has found widespread application in the field of microfluidics. This paper presents a comprehensive process st
APA, Harvard, Vancouver, ISO, and other styles
37

Katherine, S. Elvira, and Fabrice Gielen. "Materials and methods for droplet microfluidic device fabrication." Lab on a Chip, no. 22 (October 2, 2024): 859. https://doi.org/10.1039/d1lc00836f.

Full text
Abstract:
Since the first reports two decades ago, droplet-based systems have emerged as a compelling tool for microbiological and (bio)chemical science, with droplet flow providing multiple advantages over standard single-phase microfluidics such as removal of Taylor dispersion, enhanced mixing, isolation of droplet contents from surfaces, and the ability to contain and address individual cells or biomolecules. Typically, a droplet microfluidic device is designed to produce droplets with well-defined sizes and compositions that flow through the device without interacting with channel walls. Successful
APA, Harvard, Vancouver, ISO, and other styles
38

Md Sahin Ali. "Machine Learning-Based Computational Framework for Microfluidic Device Design and Simulation." Journal of Information Systems Engineering and Management 10, no. 28s (2025): 100–116. https://doi.org/10.52783/jisem.v10i28s.4296.

Full text
Abstract:
To overcome the limits of traditional microfluidic design, this study provides a unique framework that combines machine learning with CFD simulations to expedite development and increase performance. By utilizing Random Forest algorithms, we developed a predictive model that analyzes a vast dataset derived from CFD simulations, capturing the complex fluid behavior within microfluidic systems. The integration of machine learning enables the prediction of key performance metrics, significantly reducing the time and computational resources traditionally required for design optimization. This meth
APA, Harvard, Vancouver, ISO, and other styles
39

Mudrik, Jared M., Michael D. M. Dryden, Nelson M. Lafrenière, and Aaron R. Wheeler. "Strong and small: strong cation-exchange solid-phase extractions using porous polymer monoliths on a digital microfluidic platform." Canadian Journal of Chemistry 92, no. 3 (2014): 179–85. http://dx.doi.org/10.1139/cjc-2013-0506.

Full text
Abstract:
We present the first method for digital microfluidics-based strong cation-exchange solid-phase extractions. Digital microfluidics is a microscale fluid handling technique in which liquid droplets are actuated over an array of electrodes by electrodynamic forces. Strong cation exchange has gained considerable importance in the field of proteomics as a separation mode for protein and peptide extractions. The marriage of these two techniques is achieved by incorporating sulphonate-functionalised porous polymer monolith discs onto digital microfluidic chips. By manipulating sample and solvent drop
APA, Harvard, Vancouver, ISO, and other styles
40

Peng, Xing Yue (Larry), Pengxiang Su, Yaxin Guo, Jing Zhang, Linghan Peng, and Rongrong Zhang. "A Microfluidic Experimental Method for Studying Cell-to-Cell Exosome Delivery–Taking Stem Cell–Tumor Cell Interaction as a Case." International Journal of Molecular Sciences 24, no. 17 (2023): 13419. http://dx.doi.org/10.3390/ijms241713419.

Full text
Abstract:
Cell-to-cell communication must occur through molecular transport in the intercellular fluid space. Nanoparticles, such as exosomes, diffuse or move more slowly in fluids than small molecules. To find a microfluidic technology for real-time exosome experiments on intercellular communication between living cells, we use the microfluidic culture dish’s quaternary ultra-slow microcirculation flow field to accumulate nanoparticles in a specific area. Taking stem cell–tumor cell interaction as an example, the ultra-slow microcirculatory flow field controls stem cell exosomes to interfere with tumor
APA, Harvard, Vancouver, ISO, and other styles
41

T. Heng, J., and Hayder A. Abdulbari. "Study on the Effect of Different Electrode on Capacitive Deionization Microfluidic Desalination." International Journal of Engineering & Technology 7, no. 4 (2019): 5100–5104. http://dx.doi.org/10.14419/ijet.v7i4.24809.

Full text
Abstract:
Recent year, microfluidics desalination technology is on its immerging path which utilizes the domination of many apparent fluids physical properties (viscosity and surface tension) in the micro-flow systems. As compared to the traditional and commercially applied desalination methods, microfluidics overcomes most of the drawbacks such as high power consumption and low separation performance. It is believed that the flow of liquids in the micro-scaled designed structures will optimize the separation efficiency and will definitely lead to higher desalination performance. In the present work, a
APA, Harvard, Vancouver, ISO, and other styles
42

Sametov, S. P., E. S. Batyrshin, and I. V. Samsonov. "DETERMINATION OF RELATIVE PHASE PERMEABILITY IN TWO-PHASE FILTRATION USING MICROFLUIDICS." Petroleum Engineering 23, no. 2 (2025): 27–37. https://doi.org/10.17122/ngdelo-2025-2-27-37.

Full text
Abstract:
Over the past decades, more and more problems of the oil and gas industry have been solved using microfluidics methods. Experimental microfluidics methods allow visualizing fluids behavior, their interaction with each other and with a solid surface in individual channels of a porous structure and also have a number of advantages over core studies during filtration experiments. The microfluidic approach is used to estimate the asphaltene content in oil, select hydraulic fracturing fluids, water control fluids, determine the paraffin formation temperature, inhibitors effectiveness, select agents
APA, Harvard, Vancouver, ISO, and other styles
43

Soitu, Cristian, Alexander Feuerborn, Ann Na Tan, et al. "Microfluidic chambers using fluid walls for cell biology." Proceedings of the National Academy of Sciences 115, no. 26 (2018): E5926—E5933. http://dx.doi.org/10.1073/pnas.1805449115.

Full text
Abstract:
Many proofs of concept have demonstrated the potential of microfluidics in cell biology. However, the technology remains inaccessible to many biologists, as it often requires complex manufacturing facilities (such as soft lithography) and uses materials foreign to cell biology (such as polydimethylsiloxane). Here, we present a method for creating microfluidic environments by simply reshaping fluids on a substrate. For applications in cell biology, we use cell media on a virgin Petri dish overlaid with an immiscible fluorocarbon. A hydrophobic/fluorophilic stylus then reshapes the media into an
APA, Harvard, Vancouver, ISO, and other styles
44

Smith, Savanah, Marzhan Sypabekova, and Seunghyun Kim. "Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication." Biosensors 14, no. 5 (2024): 249. http://dx.doi.org/10.3390/bios14050249.

Full text
Abstract:
The demand for easy-to-use, affordable, accessible, and reliable technology is increasing in biological, chemical, and medical research. Microfluidic devices have the potential to meet these standards by offering cost-effective, highly sensitive, and highly specific diagnostic tests with rapid performance and minimal sample volumes. Traditional microfluidic device fabrication methods, such as photolithography and soft lithography, are time-consuming and require specialized equipment and expertise, making them costly and less accessible to researchers and clinicians and limiting the applicabili
APA, Harvard, Vancouver, ISO, and other styles
45

Costantini, Francesca, Erica Cesari, Nicola Lovecchio, et al. "Microfluidic Array Enables Rapid Testing of Natural Compounds Against Xylella fastidiosa." Plants 14, no. 6 (2025): 872. https://doi.org/10.3390/plants14060872.

Full text
Abstract:
The bacterial pathogen Xylella fastidiosa (Xf), which causes several plant diseases with significant economic impacts on agriculture and the environment, remains a challenge to manage due to its wide host range. This study investigated the in vitro antibacterial effects of natural compounds, including Trametes versicolor extract, clove essential oil, and the resistance inducer FossilⓇ, against X. fastidiosa subsp. fastidiosa using an antibacterial susceptibility testing (AST) method based on microfluidic channels. This novel method was compared with the traditional broth macrodilution method t
APA, Harvard, Vancouver, ISO, and other styles
46

Qiu, Jingjiang, Junfu Li, Zhongwei Guo, et al. "3D Printing of Individualized Microfluidic Chips with DLP-Based Printer." Materials 16, no. 21 (2023): 6984. http://dx.doi.org/10.3390/ma16216984.

Full text
Abstract:
Microfluidic chips have shown their potential for applications in fields such as chemistry and biology, and 3D printing is increasingly utilized as the fabrication method for microfluidic chips. To address key issues such as the long printing time for conventional 3D printing of a single chip and the demand for rapid response in individualized microfluidic chip customization, we have optimized the use of DLP (digital light processing) technology, which offers faster printing speeds due to its surface exposure method. In this study, we specifically focused on developing a fast-manufacturing pro
APA, Harvard, Vancouver, ISO, and other styles
47

Russom, Aman, Palaniappan Sethu, Daniel Irimia, et al. "Microfluidic Leukocyte Isolation for Gene Expression Analysis in Critically Ill Hospitalized Patients." Clinical Chemistry 54, no. 5 (2008): 891–900. http://dx.doi.org/10.1373/clinchem.2007.099150.

Full text
Abstract:
Abstract Background: Microarray technology is becoming a powerful tool for diagnostic, therapeutic, and prognostic applications. There is at present no consensus regarding the optimal technique to isolate nucleic acids from blood leukocyte populations for subsequent expression analyses. Current collection and processing techniques pose significant challenges in the clinical setting. Here, we report the clinical validation of a novel microfluidic leukocyte nucleic acid isolation technique for gene expression analysis from critically ill, hospitalized patients that can be readily used on small v
APA, Harvard, Vancouver, ISO, and other styles
48

Yin, Zhifu, and Helin Zou. "A fast and simple bonding method for low cost microfluidic chip fabrication." Journal of Electrical Engineering 69, no. 1 (2018): 72–78. http://dx.doi.org/10.1515/jee-2018-0010.

Full text
Abstract:
Abstract With the development of the microstructure fabrication technique, microfluidic chips are widely used in biological and medical researchers. Future advances in their commercial applications depend on the mass bonding of microfluidic chip. In this study we are presenting a simple, low cost and fast way of bonding microfluidic chips at room temperature. The influence of the bonding pressure on the deformation of the microchannel and adhesive tape was analyzed by numerical simulation. By this method, the microfluidic chip can be fully sealed at low temperature and pressure without using a
APA, Harvard, Vancouver, ISO, and other styles
49

Vilimi, Zsófia, Zsófia Edit Pápay, Bálint Basa, Xeniya Orekhova, Nikolett Kállai-Szabó, and István Antal. "Microfluidic Rheology: An Innovative Method for Viscosity Measurement of Gels and Various Pharmaceuticals." Gels 10, no. 7 (2024): 464. http://dx.doi.org/10.3390/gels10070464.

Full text
Abstract:
Measuring the viscosity of pharmaceutical dosage forms is a crucial process. Viscosity provides information about the stability of the composition, the release rate of the drug, bioavailability, and, in the case of injectable drug formulations, even the force required for injection. However, measuring viscosity is a complex task with numerous challenges, especially for non-Newtonian materials, which include most pharmaceutical formulations, such as gels. Selecting the appropriate shear rate is critical. Since viscosity in many systems is highly temperature-dependent, stable temperature control
APA, Harvard, Vancouver, ISO, and other styles
50

Zhao, Pei, Jianchun Wang, Yan Li, Xueying Wang, Chengmin Chen, and Guangxia Liu. "Microfluidic Technology for the Production of Well-Ordered Porous Polymer Scaffolds." Polymers 12, no. 9 (2020): 1863. http://dx.doi.org/10.3390/polym12091863.

Full text
Abstract:
Advances in tissue engineering (TE) have revealed that porosity architectures, such as pore shape, pore size and pore interconnectivity are the key morphological properties of scaffolds. Well-ordered porous polymer scaffolds, which have uniform pore size, regular geometric shape, high porosity and good pore interconnectivity, facilitate the loading and distribution of active biomolecules, as well as cell adhesion, proliferation and migration. However, these are difficult to prepare by traditional methods and the existing well-ordered porous scaffold preparation methods require expensive experi
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!