Journal articles on the topic 'Neural organoids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Neural organoids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yu, Xiyao, Xiaoting Meng, Zhe Pei, et al. "Physiological Electric Field: A Potential Construction Regulator of Human Brain Organoids." International Journal of Molecular Sciences 23, no. 7 (2022): 3877. http://dx.doi.org/10.3390/ijms23073877.
Full textPflug, Florian G., Simon Haendeler, Christopher Esk, Dominik Lindenhofer, Jürgen A. Knoblich, and Arndt von Haeseler. "Neutral competition explains the clonal composition of neural organoids." PLOS Computational Biology 20, no. 4 (2024): e1012054. http://dx.doi.org/10.1371/journal.pcbi.1012054.
Full textLogan, Sarah, Thiago Arzua, Yasheng Yan, et al. "Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles." Cells 9, no. 5 (2020): 1301. http://dx.doi.org/10.3390/cells9051301.
Full textKim, Soo-hyun, and Mi-Yoon Chang. "Application of Human Brain Organoids—Opportunities and Challenges in Modeling Human Brain Development and Neurodevelopmental Diseases." International Journal of Molecular Sciences 24, no. 15 (2023): 12528. http://dx.doi.org/10.3390/ijms241512528.
Full textMensah-Brown, Kobina G., James Lim, Dennis Jgamadze, et al. "96101 Temporal Evolution of Neural Activity in Human Brain Organoids." Journal of Clinical and Translational Science 5, s1 (2021): 23. http://dx.doi.org/10.1017/cts.2021.464.
Full textBirch, Jonathan. "When is a brain organoid a sentience candidate?" Molecular Psychology: Brain, Behavior, and Society 2 (October 18, 2023): 22. http://dx.doi.org/10.12688/molpsychol.17524.1.
Full textTanaka, Yoshiaki, and In-Hyun Park. "Regional specification and complementation with non-neuroectodermal cells in human brain organoids." Journal of Molecular Medicine 99, no. 4 (2021): 489–500. http://dx.doi.org/10.1007/s00109-021-02051-9.
Full textKatayama, Masafumi, Manabu Onuma, Noriko Kato, Nobuyoshi Nakajima, and Tomokazu Fukuda. "Organoids containing neural-like cells derived from chicken iPSCs respond to poly:IC through the RLR family." PLOS ONE 18, no. 5 (2023): e0285356. http://dx.doi.org/10.1371/journal.pone.0285356.
Full textZhou, Gang, Siyuan Pang, Yongning Li, and Jun Gao. "Progress in the generation of spinal cord organoids over the past decade and future perspectives." Neural Regeneration Research 19, no. 5 (2023): 1013–19. http://dx.doi.org/10.4103/1673-5374.385280.
Full textLuo, Kevin. "Application of neural organoids in studying neurodegenerative diseases." Theoretical and Natural Science 15, no. 1 (2023): 166–70. http://dx.doi.org/10.54254/2753-8818/15/20240474.
Full textKiaee, Kiavash, Yasamin A. Jodat, Nicole J. Bassous, Navneet Matharu, and Su Ryon Shin. "Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models." Cells 10, no. 12 (2021): 3422. http://dx.doi.org/10.3390/cells10123422.
Full textSureshkumar, Akash, Shilpa Bisht, and Hariharan Easwaran. "Abstract 230: Deep learning embedding-based segmentation for morphological analysis in organoids." Cancer Research 84, no. 6_Supplement (2024): 230. http://dx.doi.org/10.1158/1538-7445.am2024-230.
Full textBao, Zhongyuan, Kaiheng Fang, Zong Miao, et al. "Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice." Oxidative Medicine and Cellular Longevity 2021 (November 22, 2021): 1–16. http://dx.doi.org/10.1155/2021/6338722.
Full textCamp, J. Gray, Farhath Badsha, Marta Florio, et al. "Human cerebral organoids recapitulate gene expression programs of fetal neocortex development." Proceedings of the National Academy of Sciences 112, no. 51 (2015): 15672–77. http://dx.doi.org/10.1073/pnas.1520760112.
Full textHarary, Paul M., Rachel Blue, Mackenzie Castellanos, et al. "Human brain organoid transplantation: ethical implications of enhancing specific cerebral functions in small-animal models." Molecular Psychology: Brain, Behavior, and Society 2 (June 6, 2023): 14. http://dx.doi.org/10.12688/molpsychol.17544.1.
Full textda Silva, Bárbara, Ryan K. Mathew, Euan S. Polson, Jennifer Williams, and Heiko Wurdak. "Spontaneous Glioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain Tumor Invasion." SLAS DISCOVERY: Advancing the Science of Drug Discovery 23, no. 8 (2018): 862–68. http://dx.doi.org/10.1177/2472555218764623.
Full textHopkins, Hannah K., Elizabeth M. Traverse, and Kelli L. Barr. "Methodologies for Generating Brain Organoids to Model Viral Pathogenesis in the CNS." Pathogens 10, no. 11 (2021): 1510. http://dx.doi.org/10.3390/pathogens10111510.
Full textKim, Min Soo, Da-Hyun Kim, Hyun Kyoung Kang, Myung Geun Kook, Soon Won Choi, and Kyung-Sun Kang. "Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids." Cells 10, no. 2 (2021): 234. http://dx.doi.org/10.3390/cells10020234.
Full textMukashyaka, Patience, Pooja Kumar, Dave Mellert, et al. "Abstract 186: Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology." Cancer Research 83, no. 7_Supplement (2023): 186. http://dx.doi.org/10.1158/1538-7445.am2023-186.
Full textWu, Yihui, Jin Qiu, Shuilian Chen, et al. "Comparison of the Response to the CXCR4 Antagonist AMD3100 during the Development of Retinal Organoids Derived from ES Cells and Zebrafish Retina." International Journal of Molecular Sciences 23, no. 13 (2022): 7088. http://dx.doi.org/10.3390/ijms23137088.
Full textSapir, Gal, Daniel J. Steinberg, Rami I. Aqeilan, and Rachel Katz-Brull. "Real-Time Non-Invasive and Direct Determination of Lactate Dehydrogenase Activity in Cerebral Organoids—A New Method to Characterize the Metabolism of Brain Organoids?" Pharmaceuticals 14, no. 9 (2021): 878. http://dx.doi.org/10.3390/ph14090878.
Full textTomaskovic-Crook, Eva, Sarah Liza Higginbottom, Binbin Zhang, Justin Bourke, Gordon George Wallace, and Jeremy Micah Crook. "Defined, Simplified, Scalable, and Clinically Compatible Hydrogel-Based Production of Human Brain Organoids." Organoids 2, no. 1 (2023): 20–36. http://dx.doi.org/10.3390/organoids2010002.
Full textCarpena, Nathaniel T., So-Young Chang, Ji-Eun Choi, Jae Yun Jung, and Min Young Lee. "Wnt Modulation Enhances Otic Differentiation by Facilitating the Enucleation Process but Develops Unnecessary Cardiac Structures." International Journal of Molecular Sciences 22, no. 19 (2021): 10306. http://dx.doi.org/10.3390/ijms221910306.
Full textRevah, Omer, Felicity Gore, Kevin W. Kelley, et al. "Maturation and circuit integration of transplanted human cortical organoids." Nature 610, no. 7931 (2022): 319–26. http://dx.doi.org/10.1038/s41586-022-05277-w.
Full textPeterson, James C. "Evangelicals, Neural Organoids, and Chimeras." Perspectives on Science and Christian Faith 73, no. 1 (2021): 1–3. http://dx.doi.org/10.56315/pscf3-21peterson.
Full textHan, Yilin, Marianne King, Evgenii Tikhomirov, et al. "Towards 3D Bioprinted Spinal Cord Organoids." International Journal of Molecular Sciences 23, no. 10 (2022): 5788. http://dx.doi.org/10.3390/ijms23105788.
Full textRiedel, Nicole, Flavia W. De Faria, Carolin Walter, Jan M. Bruder, and Kornelius Kerl. "MODL-10. Tumor-brain-organoids as a model for pediatric brain tumors research." Neuro-Oncology 24, Supplement_1 (2022): i170. http://dx.doi.org/10.1093/neuonc/noac079.633.
Full textConforti, P., D. Besusso, V. D. Bocchi, et al. "Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes." Proceedings of the National Academy of Sciences 115, no. 4 (2018): E762—E771. http://dx.doi.org/10.1073/pnas.1715865115.
Full textLayrolle, Pierre, Pierre Payoux, and Stéphane Chavanas. "Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids." Biomolecules 13, no. 1 (2022): 25. http://dx.doi.org/10.3390/biom13010025.
Full textMatsui, Takeshi K., Yuichiro Tsuru, Koichi Hasegawa, and Ken-ichiro Kuwako. "Vascularization of Human Brain Organoids." Stem Cells 39, no. 8 (2021): 1017–24. http://dx.doi.org/10.1002/stem.3368.
Full textZhang, Ru, Juan Lu, Gang Pei та Shichao Huang. "Galangin Rescues Alzheimer’s Amyloid-β Induced Mitophagy and Brain Organoid Growth Impairment". International Journal of Molecular Sciences 24, № 4 (2023): 3398. http://dx.doi.org/10.3390/ijms24043398.
Full textDelepine, Chloe, Vincent A. Pham, Hayley W. S. Tsang, and Mriganka Sur. "GSK3ß inhibitor CHIR 99021 modulates cerebral organoid development through dose-dependent regulation of apoptosis, proliferation, differentiation and migration." PLOS ONE 16, no. 5 (2021): e0251173. http://dx.doi.org/10.1371/journal.pone.0251173.
Full textBombieri, Cristina, Andrea Corsi, Elisabetta Trabetti, et al. "Advanced Cellular Models for Rare Disease Study: Exploring Neural, Muscle and Skeletal Organoids." International Journal of Molecular Sciences 25, no. 2 (2024): 1014. http://dx.doi.org/10.3390/ijms25021014.
Full textKanber, Deniz, Julia Woestefeld, Hannah Döpper, et al. "RB1-Negative Retinal Organoids Display Proliferation of Cone Photoreceptors and Loss of Retinal Differentiation." Cancers 14, no. 9 (2022): 2166. http://dx.doi.org/10.3390/cancers14092166.
Full textMukashyaka, Patience, Pooja Kumar, David J. Mellert, et al. "Abstract A032: Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology." Cancer Research 84, no. 3_Supplement_2 (2024): A032. http://dx.doi.org/10.1158/1538-7445.canevol23-a032.
Full textWörsdörfer, Philipp, Takashi I, Izumi Asahina, Yoshinori Sumita, and Süleyman Ergün. "Do not keep it simple: recent advances in the generation of complex organoids." Journal of Neural Transmission 127, no. 11 (2020): 1569–77. http://dx.doi.org/10.1007/s00702-020-02198-8.
Full textMrza, Muhammad Asif, Jitian He, and Youwei Wang. "Integration of iPSC-Derived Microglia into Brain Organoids for Neurological Research." International Journal of Molecular Sciences 25, no. 6 (2024): 3148. http://dx.doi.org/10.3390/ijms25063148.
Full textJones, Peter D., Tom Stumpp, Michael Mierzejewski, Domenic Pascual, and Angelika Stumpf. "Scalable mesh microelectrode arrays for neural spheroids and organoids." Current Directions in Biomedical Engineering 9, no. 1 (2023): 575–78. http://dx.doi.org/10.1515/cdbme-2023-1144.
Full textBirch, Jonathan, and Heather Browning. "Neural Organoids and the Precautionary Principle." American Journal of Bioethics 21, no. 1 (2020): 56–58. http://dx.doi.org/10.1080/15265161.2020.1845858.
Full textLeMieux, Julianna. "Neural Organoids Making Connections, Getting Real." Genetic Engineering & Biotechnology News 42, no. 11 (2022): 18–21. http://dx.doi.org/10.1089/gen.42.11.07.
Full textYan, Yuanwei, Julie Bejoy, Mark Marzano, and Yan Li. "The Use of Pluripotent Stem Cell-Derived Organoids to Study Extracellular Matrix Development during Neural Degeneration." Cells 8, no. 3 (2019): 242. http://dx.doi.org/10.3390/cells8030242.
Full textFerdaos, Nurfarhana, Sally Lowell, and John O. Mason. "Pax6 mutant cerebral organoids partially recapitulate phenotypes of Pax6 mutant mouse strains." PLOS ONE 17, no. 11 (2022): e0278147. http://dx.doi.org/10.1371/journal.pone.0278147.
Full textCostamagna, Gianluca, Giacomo Pietro Comi, and Stefania Corti. "Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids." International Journal of Molecular Sciences 22, no. 5 (2021): 2659. http://dx.doi.org/10.3390/ijms22052659.
Full textBlue, Rachel, Stephen P. Miranda, Ben Jiahe Gu, and H. Isaac Chen. "A Primer on Human Brain Organoids for the Neurosurgeon." Neurosurgery 87, no. 4 (2020): 620–29. http://dx.doi.org/10.1093/neuros/nyaa171.
Full textKhare, Sonal, Chi-Sing Ho, Madhavi Kannan, et al. "62 Applying machine vision to empower preclinical development of cell engager and adoptive cell therapeutics in patient-derived organoid models of solid tumors." Journal for ImmunoTherapy of Cancer 9, Suppl 2 (2021): A70. http://dx.doi.org/10.1136/jitc-2021-sitc2021.062.
Full textD’Aiuto, Leonardo, Jill K. Caldwell, Callen T. Wallace, et al. "The Impaired Neurodevelopment of Human Neural Rosettes in HSV-1-Infected Early Brain Organoids." Cells 11, no. 22 (2022): 3539. http://dx.doi.org/10.3390/cells11223539.
Full textRockel, Anna F., Süleyman Ergün, and Philipp Wörsdörfer. "Erzeugung menschlicher Nervengewebe in der Kulturschale." BIOspektrum 29, no. 7 (2023): 752–54. http://dx.doi.org/10.1007/s12268-023-2063-z.
Full textLi, Minghui, Heng Sun, Zongkun Hou, Shilei Hao, Liang Jin, and Bochu Wang. "Engineering the Physical Microenvironment into Neural Organoids for Neurogenesis and Neurodevelopment." Small, September 28, 2023. http://dx.doi.org/10.1002/smll.202306451.
Full textOsaki, Tatsuya, Tomoya Duenki, Siu Yu A. Chow, et al. "Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons." Nature Communications 15, no. 1 (2024). http://dx.doi.org/10.1038/s41467-024-46787-7.
Full textMajumder, Joydeb, Elizabeth E. Torr, Elizabeth A. Aisenbrey, et al. "Human induced pluripotent stem cell-derived planar neural organoids assembled on synthetic hydrogels." Journal of Tissue Engineering 15 (January 2024). http://dx.doi.org/10.1177/20417314241230633.
Full text