Academic literature on the topic 'Opposed piston engine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Opposed piston engine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Opposed piston engine"
Parker, J. K., S. R. Bell, and D. M. Davis. "An Opposed-Piston Diesel Engine." Journal of Engineering for Gas Turbines and Power 115, no. 4 (October 1, 1993): 734–41. http://dx.doi.org/10.1115/1.2906767.
Full textGregório, Jorge P., and Francisco M. Brójo. "Development of a 4 stroke spark ignition opposed piston engine." Open Engineering 8, no. 1 (November 3, 2018): 337–43. http://dx.doi.org/10.1515/eng-2018-0039.
Full textPietrykowski, K., and M. Biały. "Multibody analysis of the opposed-piston aircraft engine vibrations." Journal of Physics: Conference Series 2130, no. 1 (December 1, 2021): 012005. http://dx.doi.org/10.1088/1742-6596/2130/1/012005.
Full textPietrykowski, K. "FEM analysis of the opposed-piston aircraft engine block." Journal of Physics: Conference Series 2130, no. 1 (December 1, 2021): 012034. http://dx.doi.org/10.1088/1742-6596/2130/1/012034.
Full textTULWIN, Tytus, Mirosław WENDEKER, and Zbigniew CZYŻ. "The swirl ratio influence on combustion process and heat transfer in the opposed piston compression-ignition engine." Combustion Engines 170, no. 3 (August 1, 2017): 3–7. http://dx.doi.org/10.19206/ce-2017-301.
Full textKudo, Shokiku. "Full port opposed piston engine (FOP)." Proceedings of the National Symposium on Power and Energy Systems 2021.25 (2021): D124. http://dx.doi.org/10.1299/jsmepes.2021.25.d124.
Full textShokrollahihassanbarough, Farzad, Ali Alqahtani, and Mirosław Wyszynski. "Thermodynamic simulation comparison of opposed two-stroke and conventional four-stroke engines." Combustion Engines 162, no. 3 (August 1, 2015): 78–84. http://dx.doi.org/10.19206/ce-116867.
Full textHofbauer, Peter, and Diana D. Brehob. "Opposed-Piston Opposed-Cylinder Engine for Heavy-Duty Trucks." MTZ worldwide 73, no. 4 (April 2012): 48–54. http://dx.doi.org/10.1007/s38313-012-0266-7.
Full textOPALIŃSKI, Marcin, Andrzej TEODORCZYK, and Jakub KALKE. "The closed-cycle model numerical analysis of the impact of crank mechanism design on engine efficiency." Combustion Engines 168, no. 1 (February 1, 2017): 153–60. http://dx.doi.org/10.19206/ce-2017-125.
Full textHebbalkar, Sunil S., and Kaushik Kumar. "Designing of a Balanced Opposed Piston Engine." Applied Mechanics and Materials 852 (September 2016): 719–23. http://dx.doi.org/10.4028/www.scientific.net/amm.852.719.
Full textDissertations / Theses on the topic "Opposed piston engine"
Battistini, Davide. "Soluzioni per il futuro dei motori a combustione interna: opposed piston engine e split cycle combustion engine." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22080/.
Full textBoyd, Michael. "Development of a fuel injection system for an opposed piston two stroke HCCI engine." Thesis, KTH, Maskinkonstruktion (Inst.), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143615.
Full textHCCI förbränningsmotorer kan ge hög verkningsgrad med låga NOx-utsläpp jämfört med SI och CI-motorer på grund av sin magra förbränning, högt kompressionsförhållande och låg förbränningstemperatur. Nackdelen med HCCI är att den är svår att kontrollera. Behovet av ett optimerat bränsleinsprutningssystem är avgörande för utformningen av en HCCI motor för att uppnå önskvärt och kontrollerbart resultat. Syftet med detta examensarbete var att utveckla och optimera bränsleinsprutningssystemet för en 2-takts, motkolvs bensinmotor och därmed fortsätta utvecklingen av motorn för att uppnå en stabil HCCI förbränning. Motorn och de komponenter som utgör bränsletillförseln analyserades med hjälp av experimentella och teoretiska metoder. Den matematiska ideala massan bränsle och den ideala insprutningsvinkeln bestämdes (när både insugs-och avgas portarna var stängda). Insprutningsfördröjning kontra ”electrical on-time” och spänningskänslighet bestämdes. Olika utformningar av deflektorn som används för att avleda bränsleflödet i sidled längs cylindern studerades, prototyper tillverkas och testades. Motorn kördes därefter med nya inställningar och ny deflektor och resultaten analyserades. Det visade sig att ”L-cut ”designen gav de bästa spray egenskaperna i denna situation. En ”L-cut” design med två inre tätningar gav den mest fördelaktiga sprayvinkeln och finfördelningen. En massekvation skapades som länkade den insprutade massan till ”elektrical on-time” i ECUn med hänsyn till den varierande matningsspänningen. Genom att använda massekvationen och samtidigt ta hänsyn till fördröjningen kunde en ideal insprutningsvinkel hittas. Implementering av den nya deflektorn tillsammans med förbättrad insprutningsvinkel gjorde att motorn kunde köras jämnt med den teoretiska massan som krävs för λ = 1 vid 6000rpm, och samtidigt producera effekt om 0,28 kW. Det var en märkbar förbättring jämfört med tidigare motortester som krävde dubbla bränslemängden för stabil förbränning. Sammanfattningsvis erhölls data som gjorde förbättringarna av insprutningsvinkel och bränslekontrollen möjlig. Motorn kördes med mycket mer exakt insprutad bränslemassa och insprutningsvinkel. Deflektorn förbättrade finfördelningen och optimerade sprayvinkeln. De data som insamlas från tester och analyser kan implementeras i motorns ECU kod för automatiserad insprutningstidpunkt och bränsle massa. Detta har tillsammans med den förbättrade sprayprofilen bidragit till den fortsatta utvecklingen av motorn mot en stabil, effektiv HCCI förbränning.
Svoboda, Tomáš. "Konstrukce vznětového leteckého jednoválcového motoru s protiběžnými písty." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230581.
Full textAlqahtani, Ali Mubark. "Computational studies of homogeneous charge compression ignition, spark ignition and opposed piston single cylinder engines." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7899/.
Full textNunes, Alexandre José Rosa. "Development of an opposed piston geared hypocycloid engine." Master's thesis, 2017. http://hdl.handle.net/10400.6/7914.
Full textO motor convencional biela-manivela domina a indústria com escassas alternativas a conseguirem terem sucesso comercial. Em aplicações aeronáuticas onde o balanceamento do motor é crítico para reduzir as vibrações induzidas, motores com a configuração ‘boxer’ foram desenvolvidos para minimizar este problema. O crescente custo de combustível e preocupação com as emissões de gases poluentes levou a um aumento no interesse por motores alternativos onde os ambos os motores de pistões opostos e engrenagem hipocicloidal apresentam algumas vantagens sobre os motores de biela-manivela convencionais. Neste estudo é feita uma comparação entre dois motores de pistões opostos, o primeiro com um conjunto biela-manivela e o segundo com engrenagem hipocicloidal, seguido de uma proposta de desenho de um motor de pistões opostos hipocicloidal para ser usado em aplicações aeronáuticas. Verificou-se que o desempenho do motor com engrenagem hipocicloidal foi semelhante ao do motor com biela-manivela em todas as características de desempenho consideradas neste estudo, mesmo excluindo as perdas mecânicas por fricção entre o pistão e o cilindro. Assim, se considerarmos a potencial redução nas perdas por fricção, o motor com engrenagem hipocicloidal deverá alcançar uma eficiência superior. Verificou-se também que o desenvolvimento de um motor é uma tarefa complexa que normalmente é feita com base na experiência e relações empíricas sendo necessário muito trabalho experimental para melhor desenvolver e caracterizar o desempenho do motor. Apesar disso, neste estudo não foi feito qualquer trabalho experimental.
Olis, Daniel R. "Prototype design of an opposed free-piston direct injection diesel engine." 1998. http://catalog.hathitrust.org/api/volumes/oclc/41890957.html.
Full textGonçalves, Robert Silva. "3D CFD Simulation of a Cold Flow Four-Stroke Opposed Piston Engine." Master's thesis, 2014. http://hdl.handle.net/10400.6/4931.
Full textÉ realizada uma simulação em CFD de um motor de pistão oposto a funcionar num ciclo de quatro tempos. Pretende-se avaliar o comportamento e as propriedades do escoamento dentro do cilindro, de forma a viabilizar o seu uso a nível comercial. Devido às características inerentes de um motor de pistão oposto, torna-se assim necessário dimensionar o modelo, tendo como referência o motor Jumo 205E: ambas as válvulas, bem como a câmara de combustão e as portas de escape e admissão. Uma câmara de combustão adjacente à zona do cilindro é criada de modo a poder colocar as válvulas. O software comercial Fluent 14.0 é escolhido para realizar os cálculos numéricos. Dada a complexidade do estudo, maioritariamente devido às partes móveis existentes, o uso da malha dinâmica é necessária. O modelo Standard K-E é o escolhido para o modelo da viscosidade; as portas de entrada e saída de ar são definidas como pressureinlet e pressure-outlet, respetivamente. PISO e PRESTO! são os métodos de cálculo usados para o acoplamento pressão-velocidade e discretização pressão, respetivamente. Os resultados obtidos não foram os esperados, dado o comportamento e propriedades inadequados do fluido no cilindro e portas.
Martins, Maria da Conceição Rodrigues. "3D CFD Combustion Simulation of a Four-Stroke SI Opposed Piston IC Engine." Master's thesis, 2020. http://hdl.handle.net/10400.6/10590.
Full textO motor alternativo de combustão interna desempenha um papel importante no mundo dos transportes, existindo ainda poucas configurações alternativas com sucesso comercial. Relativamente a aplicações em aeronaves ligeiras, onde as baixas vibrações são de extrema importância, os motores boxer têm predominado o mercado. O aumento do custo do combustível e o aumento da preocupação do público com as emissões de poluentes levaram a um maior interesse em novas alternativas. Nos últimos anos, com o surgimento de novas tecnologias, técnicas de pesquisa e materiais, o motor de pistões opostos surgiu como uma alternativa viável ao motor convencional de combustão interna em algumas aplicações, inclusive na área aeronáutica. Este estudo apresenta uma análise numérica do processo de combustão da mistura de octano-ar num motor de faísca a quatro tempos e de pistão oposto. O modelo utilizado nas simulações representa o volume interno do cilindro do motor UBI / UDI-OPE-BGX286. A simulação foi executada no software Fluent 16.0, dos modelos disponíveis no Fluent o modelo de transporte de espécies foi escolhido para modelar a combustão, e três diferentes velocidades de motor foram simuladas: 2000RPM,3200RPM e 4000RPM. Em relação aos resultados obtidos nas três simulações CFD, o comportamento geral e as propriedades do fluxo no cilindro e os gráficos obtidos foram considerados aceitáveis.
Books on the topic "Opposed piston engine"
Pirault, Jean-Pierre, and Martin LS Flint. Opposed Piston Engines. Warrendale, PA: SAE International, 2009. http://dx.doi.org/10.4271/r-378.
Full textPirault, Jean-Pierre. Opposed piston engines: Evolution, use, and future applications. Warrendale, PA: SAE International, 2010.
Find full textPirault, Jean-Pierre. Opposed piston engines: Evolution, use, and future applications. Warrendale, Pa: SAE International, 2010.
Find full textMartin, Flint, ed. Opposed piston engines: Evolution, use, and future applications. Warrendale, PA: SAE International, 2010.
Find full textFlint, Martin, and Jean-Pierre Pirault. Opposed Piston Engines: Evolution, Use, and Future Applications. SAE International, 2009.
Find full textBook chapters on the topic "Opposed piston engine"
Redon, Fabien, Laurence J. Fromm, and Ashwin Salvi. "Opposed-Piston Gasoline Compression Ignition Engine." In Gasoline Compression Ignition Technology, 161–81. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8735-8_6.
Full textFromm, Laurence J., Fabien Redon, and Ashwin Salvi. "Opposed-Piston Engine Potential: Low CO2 and Criteria Emissions." In Energy, Environment, and Sustainability, 57–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-8717-4_4.
Full textRegner, Gerhard, John Koszewnik, and Rishikesh Venugopal. "Optimizing combustion in an opposed-piston, two-stroke (OP2S) diesel engine." In Proceedings, 657–59. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-05016-0_39.
Full textAbani, Neerav, Michael Chiang, Isaac Thomas, Nishit Nagar, Rodrigo Zermeno, and Gerhard Regner. "Developing a 55+ BTE Commercial Heavy-Duty Opposed-Piston Engine Without a Waste Heat Recovery System." In Proceedings, 292–310. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-19012-5_17.
Full textRegner, G., A. Salvi, L. Fromm, and F. Redon. "The Opposed-Piston Engine: The Next Step in Vehicle Efficiency." In Innovative Antriebe 2016, 101–30. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783181022894-101.
Full textConference papers on the topic "Opposed piston engine"
Zhao, Zhenfeng, Fujun Zhang, Ying Huang, Zhenyu Zhang, and Dan Wu. "Study of Performance Characteristics of Opposed-Piston Folded-Cranktrain Engines." In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19198.
Full textHofbauer, Peter. "Opposed Piston Opposed Cylinder (opoc) Engine for Military Ground Vehicles." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-1548.
Full textNunes, Alexandre, and Francisco Brojo. "Development of a Novel 4-Stroke Spark Ignition Opposed Piston Engine." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70504.
Full textSchneider, Stephan, Marco Chiodi, Horst Friedrich, and Michael Bargende. "Development and Experimental Investigation of a Two-Stroke Opposed-Piston Free-Piston Engine." In SAE/JSAE 2016 Small Engine Technology Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. http://dx.doi.org/10.4271/2016-32-0046.
Full textIndig, Harry, and Arthur C. Haman. "Experimental Analysis of an Inwardly-Opposed Piston Engine." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1985. http://dx.doi.org/10.4271/850362.
Full textDrallmeier, Joseph, Jason B. Siegel, Robert Middleton, Anna G. Stefanopoulou, Ashwin Salvi, and Ming Huo. "Modeling and Control of a Hybrid Opposed Piston Engine." In ASME 2021 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icef2021-67541.
Full textHuo, Ming, Yuexin Huang, and Peter Hofbauer. "Piston Design Impact on the Scavenging and Combustion in an Opposed-Piston, Opposed-Cylinder (OPOC) Two-Stroke Engine." In SAE 2015 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2015. http://dx.doi.org/10.4271/2015-01-1269.
Full textNaik, Suramya, Fabien Redon, Gerhard Regner, and John Koszewnik. "Opposed-Piston 2-Stroke Multi-Cylinder Engine Dynamometer Demonstration." In Symposium on International Automotive Technology 2015. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2015. http://dx.doi.org/10.4271/2015-26-0038.
Full textGeca, Michal Jan, Grzegorz Baranski, Lukasz Grabowski, and Nanthagopal Kasianantham. "Vibration study of an Aircraft Diesel Opposed Piston Engine." In 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2021. http://dx.doi.org/10.1109/metroaerospace51421.2021.9511710.
Full textMoser, Sean, Brian Gainey, Benjamin Lawler, and Zoran Filipi. "Thermodynamic Analysis of Novel 4-2 Stroke Opposed Piston Engine." In 15th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2021. http://dx.doi.org/10.4271/2021-24-0096.
Full textReports on the topic "Opposed piston engine"
Edwards, K. Dean, Charles E. A. Finney, Clayton Naber, Siddhartha Banerjee, and Michael Tony Willcox. CRADA Final Report: Development of Opposed-Piston Variable Compression Ratio Engine for Automotive Applications. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1510582.
Full textWillcox, Michael A., and James M. Cleeves. Drive Cycle Fuel Economy and Engine-Out Emissions Evaluation Using an Opposed-Piston Sleeve-Valve Engine with Lean Operation and Ignition Delay for NOx Control. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9064.
Full text