To see the other types of publications on this topic, follow the link: Semiconductors II-VI.

Journal articles on the topic 'Semiconductors II-VI'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Semiconductors II-VI.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gunshor, Robert L., and Arto V. Nurmikko. "II-VI Blue-Green Laser Diodes: A Frontier of Materials Research." MRS Bulletin 20, no. 7 (1995): 15–19. http://dx.doi.org/10.1557/s088376940003712x.

Full text
Abstract:
The current interest in the wide bandgap II-VI semiconductor compounds can be traced back to the initial developments in semiconductor optoelectronic device physics that occurred in the early 1960s. The II-VI semiconductors were the object of intense research in both industrial and university laboratories for many years. The motivation for their exploration was the expectation that, possessing direct bandgaps from infrared to ultraviolet, the wide bandgap II-VI compound semiconductors could be the basis for a variety of efficient light-emitting devices spanning the entire range of the visible
APA, Harvard, Vancouver, ISO, and other styles
2

Dietl, Tomasz, and Hideo Ohno. "Ferromagnetic III–V and II–VI Semiconductors." MRS Bulletin 28, no. 10 (2003): 714–19. http://dx.doi.org/10.1557/mrs2003.211.

Full text
Abstract:
AbstractRecent years have witnessed extensive research aimed at developing functional, tetrahedrally coordinated ferromagnetic semiconductors that could combine the resources of semiconductor quantum structures and ferromagnetic materials systems and thus lay the foundation for semiconductor spintronics. Spin-injection capabilities and tunability of magnetization by light and electric field in Mn-based III–V and II–VI diluted magnetic semiconductors are examples of noteworthy accomplishments. This article reviews the present understanding of carrier-controlled ferromagnetism in these compounds
APA, Harvard, Vancouver, ISO, and other styles
3

Miles, R. H., J. O. McCaldin, and T. C. McGill. "Superlattices of II–VI semiconductors." Journal of Crystal Growth 85, no. 1-2 (1987): 188–93. http://dx.doi.org/10.1016/0022-0248(87)90221-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Akimoto, K., H. Okuyama, M. Ikeda, and Y. Mori. "Isoelectronic oxygen in II‐VI semiconductors." Applied Physics Letters 60, no. 1 (1992): 91–93. http://dx.doi.org/10.1063/1.107385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gunshor, Robert L., Masakazu Kobayashi, and Arto V. Nurmikko. "II – VI semiconductors come of age." Physics World 5, no. 3 (1992): 46–49. http://dx.doi.org/10.1088/2058-7058/5/3/31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Razbirin, B. S., D. K. Nel'son, J. Erland, K. H. Pantke, V. G. Lyssenko, and J. M. Hvan. "Bound biexcitons in II–VI semiconductors." Solid State Communications 93, no. 1 (1995): 65–70. http://dx.doi.org/10.1016/0038-1098(94)00543-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Twardowski, A. "Cr-Based II-VI Semimagnetic Semiconductors." Acta Physica Polonica A 87, no. 1 (1995): 85–93. http://dx.doi.org/10.12693/aphyspola.87.85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kalt, H., S. Wachter, D. Lüerssen, and J. Hoffmann. "Ultrafast Phenomena in II-VI Semiconductors." Acta Physica Polonica A 94, no. 2 (1998): 139–46. http://dx.doi.org/10.12693/aphyspola.94.139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sohn, S. H., D. G. Hyun, M. Noma, S. Hosomi, and Y. Hamakawa. "Effective charges in II–VI semiconductors." Journal of Crystal Growth 117, no. 1-4 (1992): 907–12. http://dx.doi.org/10.1016/0022-0248(92)90882-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Watkins, G. D. "Intrinsic defects in II–VI semiconductors." Journal of Crystal Growth 159, no. 1-4 (1996): 338–44. http://dx.doi.org/10.1016/0022-0248(95)00680-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mycielski, A., L. Kowalczyk, R. R. Gałązka, et al. "Applications of II–VI semimagnetic semiconductors." Journal of Alloys and Compounds 423, no. 1-2 (2006): 163–68. http://dx.doi.org/10.1016/j.jallcom.2005.12.116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Batstone, Joanna L. "TEM and cathodoluminescence of precipitates in II-VI semiconductors." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 488–89. http://dx.doi.org/10.1017/s0424820100104509.

Full text
Abstract:
Interest in II-VI semiconductors centres around optoelectronic device applications. The wide band gap II-VI semiconductors such as ZnS, ZnSe and ZnTe have been used in lasers and electroluminescent displays yielding room temperature blue luminescence. The narrow gap II-VI semiconductors such as CdTe and HgxCd1-x Te are currently used for infrared detectors, where the band gap can be varied continuously by changing the alloy composition x.Two major sources of precipitation can be identified in II-VI materials; (i) dopant introduction leading to local variations in concentration and subsequent p
APA, Harvard, Vancouver, ISO, and other styles
13

SAPRA, SAMEER, RANJANI VISWANATHA, and D. D. SARMA. "ELECTRONIC STRUCTURE OF SEMICONDUCTOR NANOCRYSTALS: AN ACCURATE TIGHT-BINDING DESCRIPTION." International Journal of Nanoscience 04, no. 05n06 (2005): 893–99. http://dx.doi.org/10.1142/s0219581x05003851.

Full text
Abstract:
We report a quantitatively accurate description of the electronic structure of semiconductor nanocrystals using the sp3d5 orbital basis with the nearest neighbor and the next nearest neighbor interactions. The use of this model for II–VI and III–V semiconductors is reviewed in article. The excellent agreement of the theoretical predictions with the experimental results establishes the feasibility of using this model for semiconductor nanocrystals.
APA, Harvard, Vancouver, ISO, and other styles
14

SHARMA, ASHUTOSH, SWETALI NIMJE, AKSHAYKUMAR SALIMATH, and BAHNIMAN GHOSH. "MONTE CARLO SIMULATION OF SPIN RELAXATION IN NANOWIRES AND 2-D CHANNELS OF II–VI SEMICONDUCTORS." SPIN 02, no. 02 (2012): 1250007. http://dx.doi.org/10.1142/s2010324712500075.

Full text
Abstract:
We have analyzed spin relaxation behavior of various II–VI semiconductors for nanowire structure and 2-D channel by simulating spin polarized transport through a semiclassical approach. Monte Carlo simulation method has been applied to simulate our model. D'yakonov–Perel mechanism and Elliot–Yafet mechanism are dominant for spin relaxation in II–VI semiconductors. Variation in spin relaxation length with external field has been analyzed and comparison is drawn between nanowire and 2-D channels. Spin relaxation lengths of various II–VI semiconductors are compared at an external field of 1 kV/cm
APA, Harvard, Vancouver, ISO, and other styles
15

Le Traon, Jean-Yves. "II-VI — Semiconductors: Particular features and applications." Annales des Télécommunications 43, no. 7-8 (1988): 378–91. http://dx.doi.org/10.1007/bf02999708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Isshiki, Minoru. "Recent investigation on II-VI compound semiconductors." Bulletin of the Japan Institute of Metals 29, no. 4 (1990): 191–98. http://dx.doi.org/10.2320/materia1962.29.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wei, S. H., and Alex Zunger. "Role of metaldstates in II-VI semiconductors." Physical Review B 37, no. 15 (1988): 8958–81. http://dx.doi.org/10.1103/physrevb.37.8958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Berding, M. A., A. Sher, and A. ‐B Chen. "Vacancy formation energies in II–VI semiconductors." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 5 (1987): 3009–13. http://dx.doi.org/10.1116/1.574248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Irvine, S. J. C., and J. B. Mullin. "Epitaxial photochemical deposition of II–VI semiconductors." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 4 (1987): 2100–2105. http://dx.doi.org/10.1116/1.574929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pileni, M. P. "II–VI semiconductors made by soft chemistry." Catalysis Today 58, no. 2-3 (2000): 151–66. http://dx.doi.org/10.1016/s0920-5861(00)00250-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Houtepen, A. J., J. M. Gil, J. S. Lord, et al. "Muonium in nano-crystalline II–VI semiconductors." Physica B: Condensed Matter 404, no. 5-7 (2009): 837–40. http://dx.doi.org/10.1016/j.physb.2008.11.158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ahr, M., M. Biehl, and T. Volkmann. "Modeling (001) surfaces of II–VI semiconductors." Computer Physics Communications 147, no. 1-2 (2002): 107–10. http://dx.doi.org/10.1016/s0010-4655(02)00226-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Szweda, Roy. "Properties of wide bandgap II-VI semiconductors." III-Vs Review 10, no. 4 (1997): 54. http://dx.doi.org/10.1016/0961-1290(97)90251-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Benoit ála Guillaume, C. "Optical properties of II–VI semimagnetic semiconductors." Journal of Crystal Growth 86, no. 1-4 (1988): 522–27. http://dx.doi.org/10.1016/0022-0248(90)90770-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dietl, Tomasz. "Transport properties of II–VI semimagnetic semiconductors." Journal of Crystal Growth 101, no. 1-4 (1990): 808–17. http://dx.doi.org/10.1016/0022-0248(90)91085-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fleszar, A., and W. Hanke. "Dynamical density response of II-VI semiconductors." Physical Review B 56, no. 19 (1997): 12285–89. http://dx.doi.org/10.1103/physrevb.56.12285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sigmon, T. W. "Ion implantation in II–VI compound semiconductors." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 7-8 (March 1985): 402–8. http://dx.doi.org/10.1016/0168-583x(85)90588-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tedenac, J. C., J. Jun, S. Krukowski, et al. "Phase diagram determination of II-VI semiconductors." Thermochimica Acta 245 (October 1994): 207–17. http://dx.doi.org/10.1016/0040-6031(94)85080-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Davies, J. J., L. C. Smith, D. Wolverson, et al. "Excitons in motion in II-VI semiconductors." physica status solidi (b) 247, no. 6 (2010): 1521–27. http://dx.doi.org/10.1002/pssb.200983167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bhargara, Rameshwar. "Properties of Wide Bandgap II—VI Semiconductors." Crystal Research and Technology 33, no. 5 (1998): 706. http://dx.doi.org/10.1002/(sici)1521-4079(1998)33:5<706::aid-crat706>3.0.co;2-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rajeshwar, Krishnan, Efstathios Meletis, Abhishek Rawat, Fahad Danladi, and Mark C. Hersam. "Ternary Copper Vanadate Semiconductors and Alloys for Energy Applications." ECS Meeting Abstracts MA2024-02, no. 22 (2024): 1911. https://doi.org/10.1149/ma2024-02221911mtgabs.

Full text
Abstract:
Alloys offer a promising avenue for enhancing materials performance, and many examples exist for how Group III-V and II-VI compound semiconductors have revolutionized human life quality, e.g., via devices including lasers, displays, night vision technology, solar cells etc. Unlike the well-studied and technologically advanced Group III-V and Group II-VI compound semiconductor alloys, alloys of ternary metal oxide semiconductors have only recently begun to receive widespread attention. Here, we describe the effect of alkaline earth metal substitution on the optical, electronic, and photoelectro
APA, Harvard, Vancouver, ISO, and other styles
32

Yang, C. C., and S. Li. "Size Dependence of Optical Properties in Semiconductor Nanocrystals." Key Engineering Materials 444 (July 2010): 133–62. http://dx.doi.org/10.4028/www.scientific.net/kem.444.133.

Full text
Abstract:
An extension of the classic thermodynamic theory to nanometer scale has generated a new interdisciplinary theory - nanothermodynamics. It is the critical tool for the investigation of the size-dependent physicochemical properties in nanocrystals. A simple and unified nanothermodynamic model for the melting temperature of nanocrystals has been established based on Lindemann’s criterion for the melting, Mott’s expression for the vibrational melting entropy, and Shi’s model for the size dependence of the melting point. The developed model has been extensively verified in calculating a variety of
APA, Harvard, Vancouver, ISO, and other styles
33

Lashkarev, G. V., V. I. Sichkovskiyi, M. V. Radchenko, et al. "Diluted magnetic semiconductors based on II–VI, III–VI, and IV–VI compounds." Low Temperature Physics 35, no. 1 (2009): 62–70. http://dx.doi.org/10.1063/1.3064911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jones, K. M., F. S. Hasoon, A. B. Swartzlander, M. M. Al-Jassim, T. L. Chu, and S. S. Chu. "The morphology and microstructure of polycrystalline CdTe thin films for solar cell applications." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (1992): 1384–85. http://dx.doi.org/10.1017/s0424820100131553.

Full text
Abstract:
Polycrystalline thin films of II-VI semiconductors on foreign polycrystalline (or amorphous) substrates have many applications in optoelectronic devices. In contrast to the extensive studies of the heteroepitaxial growth of compound semiconductors on single-crystal substrates, the nucleation and growth of thin films of II-VI compounds on foreign substrates have received little attention, and the properties of these films are often controlled empirically to optimize device performance. A better understanding of the nucleation, growth, and microstructure will facilitate a better control of the s
APA, Harvard, Vancouver, ISO, and other styles
35

Damulira, Edrine. "Radiation dosimetry in medicine using II-VI semiconductors." Journal of Radiation Research and Applied Sciences 15, no. 3 (2022): 72–82. http://dx.doi.org/10.1016/j.jrras.2022.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Dede, Didem, Nicholas Morgan, Nadine Gächter, et al. "Low Dimensional III-V and II-VI Semiconductors." Microscopy and Microanalysis 28, S1 (2022): 2004. http://dx.doi.org/10.1017/s1431927622007784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ren, Shang Yuan, John D. Dow, and Stefan Klemm. "Strain‐assistedp‐type doping of II‐VI semiconductors." Journal of Applied Physics 66, no. 5 (1989): 2065–68. http://dx.doi.org/10.1063/1.344297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Larson, B. E., and H. Ehrenreich. "Exchange in II‐VI‐based magnetic semiconductors (invited)." Journal of Applied Physics 67, no. 9 (1990): 5084–89. http://dx.doi.org/10.1063/1.344681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chadi, D. J. "The Problem of Doping in II-VI Semiconductors." Annual Review of Materials Science 24, no. 1 (1994): 45–62. http://dx.doi.org/10.1146/annurev.ms.24.080194.000401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pong, C., N. M. Johnson, R. A. Street, J. Walker, R. S. Feigelson, and R. C. De Mattei. "Hydrogenation of wide‐band‐gap II‐VI semiconductors." Applied Physics Letters 61, no. 25 (1992): 3026–28. http://dx.doi.org/10.1063/1.107998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ma, Christopher, Daniel Moore, Yong Ding, Jing Li, and Zhong Lin Wang. "Nanobelt and nanosaw structures of II-VI semiconductors." International Journal of Nanotechnology 1, no. 4 (2004): 431. http://dx.doi.org/10.1504/ijnt.2004.005978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Van de Walle, Chris G. "Strained-layer interfaces between II–VI compound semiconductors." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 6, no. 4 (1988): 1350. http://dx.doi.org/10.1116/1.584263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lucca, D. A., and C. J. Maggiore. "Subsurface Lattice Disorder in Polished II-VI Semiconductors." CIRP Annals 46, no. 1 (1997): 485–88. http://dx.doi.org/10.1016/s0007-8506(07)60871-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hatanaka, Y., M. Niraula, A. Nakamura, and T. Aoki. "Excimer laser doping techniques for II–VI semiconductors." Applied Surface Science 175-176 (May 2001): 462–67. http://dx.doi.org/10.1016/s0169-4332(01)00117-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Vilão, R. C., H. V. Alberto, J. Piroto Duarte, et al. "Muonium states in II–VI zinc chalcogenide semiconductors." Physica B: Condensed Matter 374-375 (March 2006): 383–86. http://dx.doi.org/10.1016/j.physb.2005.11.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chadi, D. J. "Predictor ofp-type doping in II-VI semiconductors." Physical Review B 59, no. 23 (1999): 15181–83. http://dx.doi.org/10.1103/physrevb.59.15181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Söllner, J. "Production scale MOCVD growth of II-VI semiconductors." Journal of Crystal Growth 184-185, no. 1-2 (1998): 158–62. http://dx.doi.org/10.1016/s0022-0248(97)00713-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Söllner, J., M. Deschler, H. Jürgensen, et al. "Production scale MOCVD growth of II–VI semiconductors." Journal of Crystal Growth 184-185 (February 1998): 158–62. http://dx.doi.org/10.1016/s0022-0248(98)80314-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Scholl, S., J. Gerschütz, H. Schäfer, F. Fischer, A. Waag, and G. Landwehr. "Persistent photoconductivity in CdTe-based II–VI-semiconductors." Solid State Communications 91, no. 6 (1994): 491–95. http://dx.doi.org/10.1016/0038-1098(94)90792-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jones, A. C., P. J. Wright, and B. Cockayne. "Precursors for II–VI semiconductors: requirements and developments." Journal of Crystal Growth 107, no. 1-4 (1991): 297–308. http://dx.doi.org/10.1016/0022-0248(91)90474-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!