To see the other types of publications on this topic, follow the link: Simulation in nanoelectronics.

Dissertations / Theses on the topic 'Simulation in nanoelectronics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Simulation in nanoelectronics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Weston, Joseph. "Numerical methods for time-resolved quantum nanoelectronics." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY040/document.

Full text
Abstract:
De récents progrès dans la nanoélectronique quantique ont donné lieu à denouvelles expériences avec des sources cohérentes d'électrons unique. Lorsqu'undispositif électronique quantique est manipulé sur une échelle de temps pluscourte que le temps de vol caractéristique d'un électron à travers ledispositif, toute une gamme de possibilités qui sont conceptuellement nouvellesdeviennent possible. Pour traiter de telles situations physiques, des avancéescorrespondantes sont nécessaires dans les techniques de simulation, pour aiderà comprendre, ainsi qu'à concevoir, la prochaine génération d'expériences dansce domaine.Les techniques les plus avancées pour simuler ce genre de physique nécessitentun temps de calcul qui croît de linéairement avec la taille dusystème, mais de manière quadratique avec la durée simulée.Ceci est particulièrement problématique pour les cas où un électron restedans le dispositif pendant une durée beaucoup plus longue que le temps devol balistique. Dans cette thèse on propose d'améliorer un algorithmeexistant, basé sur des fonctions d'onde, pour traiter le transport quantiquerésolu en temps dont le temps de calcul croît linéairement avec la taille du système ainsique la durée simulée. Par la suite on exploite cet algorithme pour étudierplusieurs systèmes physiques intéressants. En particulier on trouve quel'application d'un train d'impulsions de tension à un interféromètre à électronspeut stabiliser la modification dynamique du schéma d'interférence.On exploite cet effet pour faire de la spectroscopied'états d'Andreev et de Majorana existant dans des structure hybridessupraconducteur-nanofil.Les algorithmes numériques sont implémentés en tant qu'extension du logicielde transport quantique Kwant. Cette implémentation est utilisée pour tousles résultats numériques présentés dans la thèse, ainsi que d'autres projetsde recherche couvrants une grande gamme de physique: effet Hall quantique,isolants topologiques de Floquet, interféromètres de type Fabry-Pérot, etjonctions supraconductrices
Recent technical progress in the field of quantum nanoelectronics have lead toexciting new experiments involving coherent single electron sources.When quantum electronic devices are manipulated on time scales shorterthan the characteristic time of flight of electrons through the device, a wholeclass of conceptually new possibilities become available. In order totreat such physical situations, corresponding advances in numerical techniquesand their software implementation are required both as a tool to aidunderstanding, and also to help when designing the next generation ofexperiments in this domain.Recent advances in numerical methods have lead to techniques for which thecomputation times scales linearly with the system volume, but as thesquare of the simulation time desired. This is particularly problematicfor cases where the characteristic dwell time of electrons in the centraldevice is much longer than the ballistic time of flight. Here, we proposean improvement to an existing wavefunction based algorithm fortreating time-resolved quantum transport which scales linearly in both thesystem volume and desired simulation time. We use this technique tostudy a number of interesting physical cases. In particular we find that theapplication of a train of voltage pulses to an electronic interferometercan be used to stabilise the dynamical modification of the interferencethat was recently proposed. We use this to perform spectroscopy on Majoranaand Andreev resonances in hybrid superconductor-nanowire structures.The numerical algorithms are implemented as an extension to the Kwantquantum transport software. This implementation is used for all the numericalresults presented here, in addition to other work, covering a wide varietyof physical applications: quantum Hall effect, Floquet topological insulators,Fabry-Perot interferometers and superconducting junction
APA, Harvard, Vancouver, ISO, and other styles
2

Kudrya, V. G., and D. A. Voronenko. "Designing Nanotechnology Matching Devices." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35357.

Full text
Abstract:
The work describes the features of simulation of the ultrahigh-frequency electromagnetic interaction, which forms an internal solenoid status of monolithic integrated circuits. As an example, is the study of matching devices, which are made in the form of the band-pass lines. The proposed method of modeling, to determine the dependence of the finite frequency and temporal characteristics of the cascading schemes amplifiers. Thus, the proposed method of modeling physical processes appear not only domestic but also external display spatially distributed nano-and micro-strip technology structures. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35357
APA, Harvard, Vancouver, ISO, and other styles
3

Okobiah, Oghenekarho. "Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500074/.

Full text
Abstract:
The current trend towards miniaturization of modern consumer electronic devices significantly affects their design. The demand for efficient all-in-one appliances leads to smaller, yet more complex and powerful nanoelectronic devices. The increasing complexity in the design of such nanoscale Analog/Mixed-Signal Systems-on-Chip (AMS-SoCs) presents difficult challenges to designers. One promising design method used to mitigate the burden of this design effort is the use of metamodeling (surrogate) modeling techniques. Their use significantly reduces the time for computer simulation and design space exploration and optimization. This dissertation addresses several issues of metamodeling based nanoelectronic based AMS design exploration. A surrogate modeling technique which uses geostatistical based Kriging prediction methods in creating metamodels is proposed. Kriging prediction techniques take into account the correlation effects between input parameters for performance point prediction. We propose the use of Kriging to utilize this property for the accurate modeling of process variation effects of designs in the deep nanometer region. Different Kriging methods have been explored for this work such as simple and ordinary Kriging. We also propose another metamodeling technique Kriging-Bootstrapped Neural Network that combines the accuracy and process variation awareness of Kriging with artificial neural network models for ultra-fast and accurate process aware metamodeling design. The proposed methodologies combine Kriging metamodels with selected algorithms for ultra-fast layout optimization. The selected algorithms explored are: Gravitational Search Algorithm (GSA), Simulated Annealing Optimization (SAO), and Ant Colony Optimization (ACO). Experimental results demonstrate that the proposed Kriging metamodel based methodologies can perform the optimizations with minimal computational burden compared to traditional (SPICE-based) design flows.
APA, Harvard, Vancouver, ISO, and other styles
4

Reinke, Charles M. "Design, simulation, and characterization toolset for nano-scale photonic crystal devices." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33932.

Full text
Abstract:
The objective of this research is to present a set of powerful simulation, design, and characterization tools suitable for studying novel nanophotonic devices. The simulation tools include a three-dimensional finite-difference time-domain code adapted for parallel computing that allows for a wide range of simulation conditions and material properties to be studied, as well as a semi-analytical Green's function-based complex mode technique for studying loss in photonic crystal waveguides. The design tools consist of multifunctional photonic crystal-based template that has been simulated with nonlinear effects and measured experimentally, and planar slab waveguide structure that provides highly efficient second harmonic generation is a chip-scale device suitable for photonic integrated circuit applications. The characterization tool is composed of a phase-sensitive measurement system using a lock-in amplifier and high-precision optical stages, suitable for probing the optical characteristics of nanoscale devices. The high signal-to-noise ratio and phase shift data provided by the lock-in amplifier allow for accurate transmission measurements as well as a phase spectrum that contains information about the propagation behavior of the device beyond what is provided by the amplitude spectrum alone.
APA, Harvard, Vancouver, ISO, and other styles
5

Cao, Jiang. "Transistors à effet tunnel à base de matériaux bidimensionnels." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT009/document.

Full text
Abstract:
L'isolement du graphène a suscité un grand intérêt vers la recherche d’applications potentielles de ce matériau unique et d'autres matériaux bidimensionnels (2D) pour l'électronique, l'optoélectronique, la spintronique et de nombreux autres domaines. Par rapport au graphène, les dichalcogenides de métaux de transition (TMD) 2D offrent l'avantage d'être des semi-conducteurs, ce qui permettrait de les utiliser pour des circuits logiques. Au cours des dix dernières années, de nombreux développements ont déjà été réalisés dans ce domaine où les opportunités et les défis coexistent. Cette thèse présente les résultats de simulations de transport quantique d’une nouvelle structure de dispositif logique à très faible consommation à base de matériaux bidimensionnels : le transistor à effet tunnel à base d’hétérostructures verticales de TMDs 2D. A cause de leur petite taille, ces dispositifs sont intrinsèquement dominés par des effets quantiques. Par conséquent, l’adoption d’une théorie générale du transport s’impose. Le choix se porte ici sur la méthode des fonctions de Green hors équilibre (NEGF), une approche largement utilisée pour la simulation du transport électronique dans les nanostructures. Dans la première partie de cette thèse, les matériaux 2D, leur synthèse et leurs applications sont brièvement introduits. Ensuite, le formalisme NEGF est illustré. Cette méthode est ensuite utilisée pour la simulation de deux structures de transistor à effet tunnel vertical basées sur l’hétérojonction van der Waals de Mos2 et WTe2. La description du système se base sur un modèle de masse effective calibré avec des résultats ab-initio (afin de reproduire la structure de bandes dans l’intervalle d’énergie intéressé par les simulations de transport) et aux mesures expérimentales de mobilité (pour le couplage électron-phonon). Les résultats non seulement démontrent la possibilité d’obtenir une forte pente sous seuil avec ce type de transistors, mais présentent une étude de la physique qui en détermine les performances en fonction de leur géométrie et de l’interaction entre électrons et phonons. Dans la dernière partie, les effets du malignement rotationnel entre les deux couches 2D sont investigués. Expérimentalement, ce type de désordre est difficile à éviter et peut considérablement affecter les performances du transistor. Par le moyen de simulations quantiques précises et d’analyses physiques, cette thèse montre les défis à relever dans la conception des transistors à effet tunnel à base de matériaux 2D performants
The successful isolation of graphene in 2004 has attracted great interest to search for potential applications of this unique material and other newborn members of the two-dimensional (2D) family in electronics, optoelectronics, spintronics and other fields. Compared to graphene, the 2D transition metal dichalcogenides (TMDs) have the advantage of being semiconductors, which would allow their use for logic devices. In the past ten years, significant developments have been made in this area, where opportunities and challenges co-exist.This thesis presents the results of quantum transport simulations of novel 2D-material-based tunnel field-effect transistors for ultra-low-power digital applications. Due to their size, such devices are intrinsically dominated by quantum effects. This requires the adoption of a fairly general theory of transport, such as the nonequilibrium Green's functions (NEGF) formalism, which is a method extensively used for the simulation of electron transport in nanostructures.In the first part of this thesis, a brief introduction about the 2D materials, their synthesis and applications is presented. Then, the NEGF formalism is concisely reviewed. This approach is applied to the simulation of two different models of vertical tunnel field-effect transistors based on 2D-TMD van der Waal heterojunctions (MoS2 and WTe2). To properly describe the system, a coupled effective mass Hamiltonian has been implemented and carefully calibrated to experimental measurements and density functional theory to reproduce the band structure in the energy range of interest for the simulations.This thesis not only demonstrates the ultra-steep subthreshold slope potentially expected for these devices, but also provides a physical insight into the impact of the transistor geometry on its performances. In the last and more exploratory part of the manuscript, the effect of rotational misalignment within the two layers of the heterostructure is investigated. Experimentally, such a disorder is difficult to avoid, and it can substantially affect the device performances.Through accurate quantum simulations and deep physical analysis, this study sheds light on the design challenges to be addressed for the development of efficient tunnel field-effect transistors based on 2D materials
APA, Harvard, Vancouver, ISO, and other styles
6

Rykaczewski, Konrad. "Electron beam induced deposition (EBID) of carbon interface between carbon nanotube interconnect and metal electrode." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31773.

Full text
Abstract:
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Dr. Andrei G. Fedorov; Committee Member: Dr. Azad Naeemi; Committee Member: Dr. Suresh Sitaraman; Committee Member: Dr. Vladimir V. Tsukruk; Committee Member: Dr. Yogendra Joshi. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Jae Woo. "Electrical characterization and modeling of low dimensional nanostructure FET." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENT070/document.

Full text
Abstract:
At the beginning of this thesis, basic and advanced device fabrication process which I haveexperienced during study such as top-down and bottom-up approach for the nanoscale devicefabrication technique have been described. Especially, lithography technology has beenfocused because it is base of the modern device fabrication. For the advanced device structure,etching technique has been investigated in detail.The characterization of FET has been introduced. For the practical consideration in theadvanced FET, several parameter extraction techniques have been introduced such as Yfunction,split C-V etc.FinFET is one of promising alternatives against conventional planar devices. Problem ofFinFET is surface roughness. During the fabrication, the etching process induces surfaceroughness on the sidewall surfaces. Surface roughness of channel decreases the effectivemobility by surface roughness scattering. With the low temperature measurement andmobility analysis, drain current through sidewall and top surface was separated. From theseparated currents, effective mobilities were extracted in each temperature conditions. Astemperature lowering, mobility behaviors from the transport on each surface have differenttemperature dependence. Especially, in n-type FinFET, the sidewall mobility has strongerdegradation in high gate electric field compare to top surface. Quantification of surfaceroughness was also compared between sidewall and top surface. Low temperaturemeasurement is nondestructive characterization method. Therefore this study can be a propersurface roughness measurement technique for the performance optimization of FinFET.As another quasi-1 D nanowire structure device, 3D stacked SiGe nanowire has beenintroduced. Important of strain engineering has been known for the effective mobility booster.The limitation of dopant diffusion by strain has been shown. Without strain, SiGe nanowireFET showed huge short channel effect. Subthreshold current was bigger than strained SiGechannel. Temperature dependent mobility behavior in short channel unstrained device wascompletely different from the other cases. Impurity scattering was dominant in short channelunstrained SiGe nanowire FET. Thus, it could be concluded that the strain engineering is notnecessary only for the mobility booster but also short channel effect immunity.Junctionless FET is very recently developed device compare to the others. Like as JFET,junctionless FET has volume conduction. Thus, it is less affected by interface states.Junctionless FET also has good short channel effect immunity because off-state ofjunctionless FET is dominated pinch-off of channel depletion. For this, junctionless FETshould have thin body thickness. Therefore, multi gate nanowire structure is proper to makejunctionless FET.Because of the surface area to volume ratio, quasi-1D nanowire structure is good for thesensor application. Nanowire structure has been investigated as a sensor. Using numericalsimulation, generation-recombination noise property was considered in nanowire sensor.Even though the surface area to volume ration is enhanced in the nanowire channel, devicehas sensing limitation by noise. The generation-recombination noise depended on the channelgeometry. As a design tool of nanowire sensor, noise simulation should be carried out toescape from the noise limitation in advance.The basic principles of device simulation have been discussed. Finite difference method andMonte Carlo simulation technique have been introduced for the comprehension of devicesimulation. Practical device simulation data have been shown for examples such as FinFET,strongly disordered 1D channel, OLED and E-paper
At the beginning of this thesis, basic and advanced device fabrication process which I haveexperienced during study such as top-down and bottom-up approach for the nanoscale devicefabrication technique have been described. Especially, lithography technology has beenfocused because it is base of the modern device fabrication. For the advanced device structure,etching technique has been investigated in detail.The characterization of FET has been introduced. For the practical consideration in theadvanced FET, several parameter extraction techniques have been introduced such as Yfunction,split C-V etc.FinFET is one of promising alternatives against conventional planar devices. Problem ofFinFET is surface roughness. During the fabrication, the etching process induces surfaceroughness on the sidewall surfaces. Surface roughness of channel decreases the effectivemobility by surface roughness scattering. With the low temperature measurement andmobility analysis, drain current through sidewall and top surface was separated. From theseparated currents, effective mobilities were extracted in each temperature conditions. Astemperature lowering, mobility behaviors from the transport on each surface have differenttemperature dependence. Especially, in n-type FinFET, the sidewall mobility has strongerdegradation in high gate electric field compare to top surface. Quantification of surfaceroughness was also compared between sidewall and top surface. Low temperaturemeasurement is nondestructive characterization method. Therefore this study can be a propersurface roughness measurement technique for the performance optimization of FinFET.As another quasi-1 D nanowire structure device, 3D stacked SiGe nanowire has beenintroduced. Important of strain engineering has been known for the effective mobility booster.The limitation of dopant diffusion by strain has been shown. Without strain, SiGe nanowireFET showed huge short channel effect. Subthreshold current was bigger than strained SiGechannel. Temperature dependent mobility behavior in short channel unstrained device wascompletely different from the other cases. Impurity scattering was dominant in short channelunstrained SiGe nanowire FET. Thus, it could be concluded that the strain engineering is notnecessary only for the mobility booster but also short channel effect immunity.Junctionless FET is very recently developed device compare to the others. Like as JFET,junctionless FET has volume conduction. Thus, it is less affected by interface states.Junctionless FET also has good short channel effect immunity because off-state ofjunctionless FET is dominated pinch-off of channel depletion. For this, junctionless FETshould have thin body thickness. Therefore, multi gate nanowire structure is proper to makejunctionless FET.Because of the surface area to volume ratio, quasi-1D nanowire structure is good for thesensor application. Nanowire structure has been investigated as a sensor. Using numericalsimulation, generation-recombination noise property was considered in nanowire sensor.Even though the surface area to volume ration is enhanced in the nanowire channel, devicehas sensing limitation by noise. The generation-recombination noise depended on the channelgeometry. As a design tool of nanowire sensor, noise simulation should be carried out toescape from the noise limitation in advance.The basic principles of device simulation have been discussed. Finite difference method andMonte Carlo simulation technique have been introduced for the comprehension of devicesimulation. Practical device simulation data have been shown for examples such as FinFET,strongly disordered 1D channel, OLED and E-paper
APA, Harvard, Vancouver, ISO, and other styles
8

Maassen, Jesse. "First principles simulations of nanoelectronic devices." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106463.

Full text
Abstract:
As the miniaturization of devices begins to reveal the atomic nature of materials, where chemical bonding and quantum effects are important, one must resort to a parameter-free theory for predictions. This thesis theoretically investigates the quantum transport properties of nanoelectronic devices using atomistic first principles. Our theoretical formalism employs density functional theory (DFT) in combination with Keldysh nonequilibrium Green's functions (NEGF). Self-consistently solving the DFT Hamiltonian with the NEGF charge density provides a way to simulate nonequilibrium systems without phenomenological parameters. This state-of-the-art technique was used to study three problems related to the field of nanoelectronics. First, we investigated the role of metallic contacts (Cu, Ni and Co) on the transport characteristics of graphene devices. With Cu, the graphene is simply electron-doped (Fermi level shift of −0.7 eV) which creates a unique signature in the conduction profile allowing one to extract the doping level. With Ni and Co, spin-dependent band gaps are formed in graphene's linear dispersion bands, thus leading to the prediction of high spin injection efficiencies reaching 60% and 80%, respectively. Second, we studied how controlled doping distributions in nano-scale Si transistors could suppress OFF-state leakage currents. By assuming the dopants (B and P) are confined in 1.1 nm regions in the channel, we discovered large conductance variations (Gmax/Gmin ~ 10^5) as a function of the doping location. The largest fluctuations arise when the dopants are in the vicinity of the electrodes. Our results indicate that if the dopants are located away from the leads, a distance equal to 20% of the channel length, the tunneling current can be suppressed by a factor of 2 when compared to the case of uniform doping. Thus, controlled doping engineering is found to suppress device-to-device variations and lower the undesirable leakage current. Finally, we incorporated a dephasing model into our ab initio transport formalism, which was used to study the effect of phase-breaking scattering in three different systems. Our calculations revealed the complex role of dephasing, where conduction increased or decreased depending on the system under consideration. We demon- strated that the backscattering component of this dephasing scheme also allows one to retrieve Ohm's law.
Comme la miniaturisation des dispositifs commence à révéler la nature atomique des matériaux, où les liaisons chimiques et les effets quantiques sont importants, nous devons recourir à une théorie sans paramètre pour obtenir des prédictions. Cette thèse étudie les propriétés de transport quantique des dispositifs nanoélectroniques en utilisant des méthodes ab initio atomiques. Notre formalisme théorique combine la théorie de la fonctionnelle de la densité (DFT) avec les fonctions de Green hors-équilibres (NEGF). Résoudre l'Hamiltonien DFT de manière auto-consistante avec la densité de charge NEGF permet de simuler des systèmes hors-équilibres sans utiliser des paramètres. Cette technique sophistiquée a été utilisée pour étudier trois problèmes liés au domaine de la nanoélectronique. Premièrement, nous avons étudié le rôle des contacts métalliques (Cu, Ni et Co) sur les caractéristiques de transport des dispositifs à base de graphène. Dans le cas du Cu, le graphène est simplement dopé en électrons (décalage du niveau de Fermi = −0.7 eV) ce qui crée une signature unique dans le profil de conduction permettant d'extraire le niveau de dopage. Avec Ni et Co, la formation de bandes interdites dépendantes du spin détruit la dispersion linéaire des états du graphène ce qui permet d'atteindre une efficacité d'injection de spin de 60% et 80%, respectivement. Deuxièmement, nous avons étudié comment des distributions de dopage contrôlées dans les nano-transistors en Si pourraient supprimer les courants de fuite à l'état OFF. En supposant que les dopants (B et P) sont confinés dans des régions de 1.1 nm dans le canal, nous avons découvert de grandes variations de conductances (Gmax/Gmin ~ 10^5) en fonction de l'emplacement du dopage. Les plus grandes fluctuations surviennent lorsque les dopants sont à proximité des électrodes. Nos résultats indiquent que si les dopants sont éloignés des électrodes, d'une distance égale à 20% de la longueur du canal, le courant tunnel peut être supprimé par un facteur de 2 par rapport au dopage uniforme. Ainsi, l'ingénierie du dopage pourrait réduire les variations d'un dispositif à un autre et diminuer le courant de fuite. Dernièrement, nous avons intégré un modèle de déphasage dans notre théorie de transport ab initio qui a été utilisé pour étudier l'effet des collisions dans trois systèmes différents. Nos calculs ont révélé le rôle complexe du déphasage; parfois la conduction augmente ou diminue selon le système. Nous avons démontré que la rétrodiffusion, présent dans ce modèle, permet de récupérer la loi d'Ohm.
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Jun, and 黃俊. "Efficiency enhancement for nanoelectronic transport simulations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196031.

Full text
Abstract:
Continual technology innovations make it possible to fabricate electronic devices on the order of 10nm. In this nanoscale regime, quantum physics becomes critically important, like energy quantization effects of the narrow channel and the leakage currents due to tunneling. It has also been utilized to build novel devices, such as the band-to-band tunneling field-effect transistors (FETs). Therefore, it presages accurate quantum transport simulations, which not only allow quantitative understanding of the device performances but also provide physical insight and guidelines for device optimizations. However, quantum transport simulations usually require solving repeatedly the Green’s function or the wave function of the whole device region with open boundary treatment, which are computationally cumbersome. Moreover, to overcome the short-channel effects, modern devices usually employ multi-gate structures that are three-dimensional, making the computation very challenging. It is the major target of this thesis to enhance the simulation efficiency by proposing several fast numerical algorithms. The other target is to apply these algorithms to study the physics and performances of some emerging electronic devices. First, an efficient method is implemented for real space simulations with the effective mass approximation. Based on the wave function approach, asymptotic waveform evaluation combined with a complex frequency hopping algorithm is successfully adopted to characterize electron conduction over a wide energy range. Good accuracy and efficiency are demonstrated by simulating several n-type multi-gate silicon FETs. This technique is valid for arbitrary potential distribution and device geometry, making it a powerful tool for studying n-type silicon nanowire (SiNW) FETs in the presence of charged impurity and surface roughness scattering. Second, a model order reduction (MOR) method is proposed for multiband simulation of nanowire structures. Employing three- or six-band k.p Hamiltonian, the non-equilibrium Green’s function (NEGF) equations are projected into a much smaller subspace constructed by sampling the Bloch modes of each cross-section layer. Together with special sampling schemes and Krylov subspace methods for solving the eigenmodes, large cross-section p-type SiNW FETs can be simulated. A novel device, junctionless FET, is then investigated. It is found that its doping density, channel orientation, and channel size need to be carefully optimized in order to outperform the classical inversion-mode FET. With a spurious band elimination process, the MOR method is subsequently extended to the eight-band k.p model, allowing simulation of band-to-band tunneling devices. In particular, tunneling FETs with indium arsenide (InAs) nanowire channel are studied, considering different channel orientations and configurations with source pockets. Results suggest that source pocket has no significant impact on the performances of the nanowire device due to its good electrostatic integrity. At last, improvements are made for open boundary treatment in atomistic simulations. The trick is to condense the Hamiltonian matrix of the periodic leads before calculating the surface Green’s function. It is very useful for treating leads with long unit cells.
published_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
10

Zörgiebel, Felix. "Silicon Nanowires for Biosensor Applications." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-230675.

Full text
Abstract:
Nanostrukturen haben in den letzten Jahrzehnten durch konsequente Förderung wie der im Jahr 2000 gestarteten National Nanotechnology Initiative der USA oder des deutschen Pendants Aktionsplan Nanotechnologie erhebliches Aufsehen, nicht nur in der Wissenschaft, sondern auch in der technischen und wirtschaftlichen Umsetzung erfahren. In Kombination mit biologischen Systemen, deren Funktionalität sich auf der Größenordnung von Nanometern abspielt, finden nanotechnologische Entwicklungen auf dem Gebiet der Medizin ein großes technisches Anwendungsgebiet. Diese Arbeit widmet sich der Untersuchung und technischen Entwicklung von Siliziumnanodrähten als Sensoren für zukünftige medizinische Anwendungen. Im Gegensatz zu Sensoren die auf dotierten Nanodrähten basieren, wurden hier undotierte Nanodrähte untersucht, die mit geringerem Produktionsaufwand auskommen und mittels Schottky-Barrieren als Feldeffekttransistoren nutzbar sind. Deren Eigenschaften wurden im Hinblick auf pH und Biosensorik theoretisch und experimentell untersucht, sowie technisch in ein lab-on-chip sowie ein kompaktes Multiplexer-Messgerät integriert. In einem zweiten, separaten Teil wurden die Eigenschaften undotierter Nanodrähte für die optische Spektroskopie theoretisch modelliert. Die Inhalte beider Teile werden im folgenden kurz zusammengefasst. Um die elektrischen Sensoreigenschaften der Siliziumnanodrähte zu untersuchen, wurden zunächst Computermodelle der Drähte erstellt, mit deren Hilfe der Elektronentransport in flüssiger Umgebung quantenmechanisch modelliert wurde. Die dafür erstellten Modellvorstellungen waren für die sich daran anschließenden experimentellen Untersuchungen des Rauschverhaltens, der pH-Sensitivität sowie der Biosensoreigenschaften sehr vorteilhaft. Mit Hilfe einer neu entwickelten Messmethode konnte der optimale Arbeitspunkt der Sensoren ermittelt werden, sowie die hohe Sensorqualität mittels einer empirischen mathematischen Beschreibung des zu erwartenden Sensorsignals eingeordnet werden. Weiterhin wurden für die Medizintechnik relevante Messungen von Thrombin durchgeführt. Damit ist für den hier beschriebenen Sensortyp ein proof-of-concept für neuartige medizinische Messelemente gelungen. Um die kleinen Abmessungen der Sensoren darüber hinaus technisch nutzbar zu machen, wurden sie in ein lab-on-chip System integriert, in welchem sie als Sensoren für den pH-Wert sowie die ionische Konzentration in Nanoliter-Tropfen verwendet wurden. Desweiteren wurde in Kooperation mit dem Institut für Aufbau- und Verbindungstechnik ein portables Messgerät entwickelt, welches die parallele Messung mehrerer Nanodrahtsensoren ermöglicht. Im zweiten Teil der Arbeit wird eine theoretische Untersuchung zur Eignung von Silizium-Nanodrähten als Messsonden (Probes) für die optische Spektroskopie vorgestellt. Dazu wurde eine Methode entwickelt mittels derer es möglich ist, Raman und Infrarotspektren von Nanostrukturen mittels Molekulardynamik zu berechnen. Die Methode wurde auf undotierte Silizium-Nanodrähte augewendet und zeigt, dass die Oberflächenbeschaffenheit der Drähte die optischen Spektren entscheidend beeinflusst. Damit konnte die Relevanz von Halbeiter-Nanostrukturen auch für Anwendungen in der optischen Spektroskopie gezeigt werden
Nanostructures have attracted great attention not only in scientific research, but also in engineering applications during the last decades. Especially in combination with biological systems, whose complex function is controlled from nanoscale building blocks, nanotechnological developments find a huge field of applications in the medical sector. This work is dedicated to the functional understanding and technical implementation of silicon nanowires for future medical sensor applications. In contrast to doped silicon nanowire based sensors, this work is focussed on pure, undoped silicon nanowires, which have lower demands on production techniques and use Schottky-barriers as electric field detectors. The pH and biosensing capabilities of such undoped silicon nanowire field effect transistors were investigated theoretically and experimentally and further integrated in a lab-on-a-chip device as well as a small-scale multiplexer measurement device. In a second separate part, the optical sensing properties of undoped silicon nanowires were theoretically modeled. The main contents of both parts are shortly described in the following paragraphs. A multiscale model of silicon nanowire FETs to describe the charge transport in liquid surrounding in a quantum mechanical framework was developed to investigate the sensing properties of the nanowire sensors in general. The model set the basis for the understanding of the subsequent experimental investigations of noise characterization, pH sensitivity and biosensing properties. With the help of a novel gate sweeping measurement method the optimal working point of the sensors was determined and the high sensor quality could be quantified in terms of an empirical mathematical model. The sensor was then used for measurements of medically relevant concentrations of the Thrombin protein, providing a proof-of-concept for medical applications for our newly developed sensor. In order to exploit the small size of our sensors for technical applications we integrated the devices in lab-on-a-chip system with a microfluidic droplet generation module. There they were used to measure the pH and ionic concentration of droplets. Finally a portable multiplex measurement device for silicon nanowire sensors as well as other ion sensitive FETs was developed in cooperation with the IAVT at TU Dresden (Institut für Aufbau- und Verbindungstechnik). The second part of this thesis investigates the usability of silicon nanowires for optical sensor applications from a theoretical point of view. Therefore a method for the extraction of Raman and Infrared spectra from molecular dynamics simulations was developed. The method was applied to undoped silicon nanowires and shows that the surface properties of the nanowires has a significant effect on optical spectra. These results demonstrate the relevance of semiconductor nanostructures for applications in optical spectroscopy
APA, Harvard, Vancouver, ISO, and other styles
11

Kurniawan, Erry Dwi, and 艾. 里. "Study of High Mobility and Quantum Well Semiconductor Nanoelectronics Devices by 3D TCAD Simulation." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/7wxbj5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zörgiebel, Felix. "Silicon Nanowires for Biosensor Applications." Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30645.

Full text
Abstract:
Nanostrukturen haben in den letzten Jahrzehnten durch konsequente Förderung wie der im Jahr 2000 gestarteten National Nanotechnology Initiative der USA oder des deutschen Pendants Aktionsplan Nanotechnologie erhebliches Aufsehen, nicht nur in der Wissenschaft, sondern auch in der technischen und wirtschaftlichen Umsetzung erfahren. In Kombination mit biologischen Systemen, deren Funktionalität sich auf der Größenordnung von Nanometern abspielt, finden nanotechnologische Entwicklungen auf dem Gebiet der Medizin ein großes technisches Anwendungsgebiet. Diese Arbeit widmet sich der Untersuchung und technischen Entwicklung von Siliziumnanodrähten als Sensoren für zukünftige medizinische Anwendungen. Im Gegensatz zu Sensoren die auf dotierten Nanodrähten basieren, wurden hier undotierte Nanodrähte untersucht, die mit geringerem Produktionsaufwand auskommen und mittels Schottky-Barrieren als Feldeffekttransistoren nutzbar sind. Deren Eigenschaften wurden im Hinblick auf pH und Biosensorik theoretisch und experimentell untersucht, sowie technisch in ein lab-on-chip sowie ein kompaktes Multiplexer-Messgerät integriert. In einem zweiten, separaten Teil wurden die Eigenschaften undotierter Nanodrähte für die optische Spektroskopie theoretisch modelliert. Die Inhalte beider Teile werden im folgenden kurz zusammengefasst. Um die elektrischen Sensoreigenschaften der Siliziumnanodrähte zu untersuchen, wurden zunächst Computermodelle der Drähte erstellt, mit deren Hilfe der Elektronentransport in flüssiger Umgebung quantenmechanisch modelliert wurde. Die dafür erstellten Modellvorstellungen waren für die sich daran anschließenden experimentellen Untersuchungen des Rauschverhaltens, der pH-Sensitivität sowie der Biosensoreigenschaften sehr vorteilhaft. Mit Hilfe einer neu entwickelten Messmethode konnte der optimale Arbeitspunkt der Sensoren ermittelt werden, sowie die hohe Sensorqualität mittels einer empirischen mathematischen Beschreibung des zu erwartenden Sensorsignals eingeordnet werden. Weiterhin wurden für die Medizintechnik relevante Messungen von Thrombin durchgeführt. Damit ist für den hier beschriebenen Sensortyp ein proof-of-concept für neuartige medizinische Messelemente gelungen. Um die kleinen Abmessungen der Sensoren darüber hinaus technisch nutzbar zu machen, wurden sie in ein lab-on-chip System integriert, in welchem sie als Sensoren für den pH-Wert sowie die ionische Konzentration in Nanoliter-Tropfen verwendet wurden. Desweiteren wurde in Kooperation mit dem Institut für Aufbau- und Verbindungstechnik ein portables Messgerät entwickelt, welches die parallele Messung mehrerer Nanodrahtsensoren ermöglicht. Im zweiten Teil der Arbeit wird eine theoretische Untersuchung zur Eignung von Silizium-Nanodrähten als Messsonden (Probes) für die optische Spektroskopie vorgestellt. Dazu wurde eine Methode entwickelt mittels derer es möglich ist, Raman und Infrarotspektren von Nanostrukturen mittels Molekulardynamik zu berechnen. Die Methode wurde auf undotierte Silizium-Nanodrähte augewendet und zeigt, dass die Oberflächenbeschaffenheit der Drähte die optischen Spektren entscheidend beeinflusst. Damit konnte die Relevanz von Halbeiter-Nanostrukturen auch für Anwendungen in der optischen Spektroskopie gezeigt werden.:I Introduction: Sensing with Nanostructures 1 Introduction 2 Field effect transistors as electronic sensor elements 3 Packaging: Connecting Nano and Macro 4 Nanostructures as transducers in optical spectroscopy II Electronic sensing with Schottky Barrier silicon nanowires 5 Schottky-Barrier silicon nanowire field effect transistors 6 ISFET measurement principles 7 pH and Biosensing with silicon nanowires 8 Thrombin sensing 9 Silicon nanowire FETs in a Lab-on-a-Chip device 10 Multiplexer sensing platform 11 Experimental methods III Simulating optical spectra of silicon nanowires 12 Theoretical fundamentals 13 Computational Methods 14 Results 15 Bibliography 16 Anhang
Nanostructures have attracted great attention not only in scientific research, but also in engineering applications during the last decades. Especially in combination with biological systems, whose complex function is controlled from nanoscale building blocks, nanotechnological developments find a huge field of applications in the medical sector. This work is dedicated to the functional understanding and technical implementation of silicon nanowires for future medical sensor applications. In contrast to doped silicon nanowire based sensors, this work is focussed on pure, undoped silicon nanowires, which have lower demands on production techniques and use Schottky-barriers as electric field detectors. The pH and biosensing capabilities of such undoped silicon nanowire field effect transistors were investigated theoretically and experimentally and further integrated in a lab-on-a-chip device as well as a small-scale multiplexer measurement device. In a second separate part, the optical sensing properties of undoped silicon nanowires were theoretically modeled. The main contents of both parts are shortly described in the following paragraphs. A multiscale model of silicon nanowire FETs to describe the charge transport in liquid surrounding in a quantum mechanical framework was developed to investigate the sensing properties of the nanowire sensors in general. The model set the basis for the understanding of the subsequent experimental investigations of noise characterization, pH sensitivity and biosensing properties. With the help of a novel gate sweeping measurement method the optimal working point of the sensors was determined and the high sensor quality could be quantified in terms of an empirical mathematical model. The sensor was then used for measurements of medically relevant concentrations of the Thrombin protein, providing a proof-of-concept for medical applications for our newly developed sensor. In order to exploit the small size of our sensors for technical applications we integrated the devices in lab-on-a-chip system with a microfluidic droplet generation module. There they were used to measure the pH and ionic concentration of droplets. Finally a portable multiplex measurement device for silicon nanowire sensors as well as other ion sensitive FETs was developed in cooperation with the IAVT at TU Dresden (Institut für Aufbau- und Verbindungstechnik). The second part of this thesis investigates the usability of silicon nanowires for optical sensor applications from a theoretical point of view. Therefore a method for the extraction of Raman and Infrared spectra from molecular dynamics simulations was developed. The method was applied to undoped silicon nanowires and shows that the surface properties of the nanowires has a significant effect on optical spectra. These results demonstrate the relevance of semiconductor nanostructures for applications in optical spectroscopy.:I Introduction: Sensing with Nanostructures 1 Introduction 2 Field effect transistors as electronic sensor elements 3 Packaging: Connecting Nano and Macro 4 Nanostructures as transducers in optical spectroscopy II Electronic sensing with Schottky Barrier silicon nanowires 5 Schottky-Barrier silicon nanowire field effect transistors 6 ISFET measurement principles 7 pH and Biosensing with silicon nanowires 8 Thrombin sensing 9 Silicon nanowire FETs in a Lab-on-a-Chip device 10 Multiplexer sensing platform 11 Experimental methods III Simulating optical spectra of silicon nanowires 12 Theoretical fundamentals 13 Computational Methods 14 Results 15 Bibliography 16 Anhang
APA, Harvard, Vancouver, ISO, and other styles
13

(5929940), Daniel A. Lemus. "Low-rank Approximations in Quantum Transport Simulations." Thesis, 2020.

Find full text
Abstract:
Quantum-mechanical effects play a major role in the performance of modern electronic devices. In order to predict the behavior of novel devices, quantum effects are often included using Non-Equilibrium Green's Function (NEGF) methods in atomistic device representations. These quantum effects may include realistic inelastic scattering caused by device impurities and phonons. With the inclusion of realistic physical phenomena, the computational load of predictive simulations increases greatly, and a manageable basis through low-rank approximations is desired.

In this work, low-rank approximations are used to reduce the computational load of atomistic simulations. The benefits of basis reductions on simulation time and peak memory are assessed.
The low-rank approximation method is then extended to include more realistic physical effects than those modeled today, including exact calculations of scattering phenomena. The inclusion of these exact calculations are then contrasted to current methods and approximations.
APA, Harvard, Vancouver, ISO, and other styles
14

Heidenreich, Joseph David. "Molecular Dynamics Simulations of the Mechanical Deformation Behavior of Face-Centered Cubic Metallic Nanowires." 2010. http://hdl.handle.net/1805/2135.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Nanoscale materials have become an active area of research due to the enhanced mechanical properties of the nanomaterials in comparison to their respective bulk materials. The effect that the size and shape of a nanomaterial has on its mechanical properties is important to understand if these materials are to be used in engineering applications. This thesis presents the results of molecular dynamics (MD) simulations on copper, gold, nickel, palladium, platinum, and silver nanowires of three cross-sectional shapes and four diameters. The cross-sectional shapes investigated were square, circular, and octagonal while the diameters varied from one to eight nanometers. Due to a high surface area to volume ratio, nanowires do not have the same atomic spacing as bulk materials. To account for this difference, prior to tensile loading, a minimization procedure was applied to find the equilibrium strain for each structure size and shape. Through visualization of the atomic energy before and after minimization, it was found that there are more than two energetically distinct areas within the nanowires. In addition, a correlation between the anisotropy of a material and its equilibrium strain was found. The wires were then subjected to a uniaxial tensile load in the [100] direction at a strain rate of 108 s-1 with a simulation temperature of 300 K. The embedded-atom method (EAM) was employed using the Foiles potential to simulate the stretching of the wires. The wires were stretched to failure, and the corresponding stress-strain curves were produced. From these curves, mechanical properties including the elastic modulus, yield stress and strain, and ultimate strain were calculated. In addition to the MD approach, an energy method was applied to calculate the elastic modulus of each nanowire through exponential fitting of an energy function. Both methods used to calculate Young’s modulus qualitatively gave similar results indicating that as diameter decreases, Young’s modulus decreases. The MD simulations were also visualized to investigate the deformation and yield behavior of each nanowire. Through the visualization, most nanowires were found to yield and fail through partial dislocation nucleation and propagation leading to {111} slip. However, the 5 nm diameter octagonal platinum nanowire was found to yield through reconstruction of the {011} surfaces into the more energetically favorable {021} surfaces.
APA, Harvard, Vancouver, ISO, and other styles
15

(7025126), Ahmedullah Aziz. "Device-Circuit Co-Design Employing Phase Transition Materials for Low Power Electronics." Thesis, 2019.

Find full text
Abstract:

Phase transition materials (PTM) have garnered immense interest in concurrent post-CMOS electronics, due to their unique properties such as - electrically driven abrupt resistance switching, hysteresis, and high selectivity. The phase transitions can be attributed to diverse material-specific phenomena, including- correlated electrons, filamentary ion diffusion, and dimerization. In this research, we explore the application space for these materials through extensive device-circuit co-design and propose new ideas harnessing their unique electrical properties. The abrupt transitions and high selectivity of PTMs enable steep (< 60 mV/decade) switching characteristics in Hyper-FET, a promising post-CMOS transistor. We explore device-circuit co-design methodology for Hyper-FET and identify the criterion for material down-selection. We evaluate the achievable voltage swing, energy-delay trade-off, and noise response for this novel device. In addition to the application in low power logic device, PTMs can actively facilitate non-volatile memory design. We propose a PTM augmented Spin Transfer Torque (STT) MRAM that utilizes selective phase transitions to boost the sense margin and stability of stored data, simultaneously. We show that such selective transitions can also be used to improve other MRAM designs with separate read/write paths, avoiding the possibility of read-write conflicts. Further, we analyze the application of PTMs as selectors in cross-point memories. We establish a general simulation framework for cross-point memory array with PTM based selector. We explore the biasing constraints, develop detailed design methodology, and deduce figures of merit for PTM selectors. We also develop a computationally efficient compact model to estimate the leakage through the sneak paths in a cross-point array. Subsequently, we present a new sense amplifier design utilizing PTM, which offers built-in tunable reference with low power and area demand. Finally, we show that the hysteretic characteristics of unipolar PTMs can be utilized to achieve highly efficient rectification. We validate the idea by demonstrating significant design improvements in a Cockcroft-Walton Multiplier, implemented with TS based rectifiers. We emphasize the need to explore other PTMs with high endurance, thermal stability, and faster switching to enable many more innovative applications in the future.

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography