Journal articles on the topic 'Synaptic time dependent plasticity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Synaptic time dependent plasticity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Akil, Alan Eric, Robert Rosenbaum, and Krešimir Josić. "Balanced networks under spike-time dependent plasticity." PLOS Computational Biology 17, no. 5 (2021): e1008958. http://dx.doi.org/10.1371/journal.pcbi.1008958.
Full textElliott, Terry. "The Mean Time to Express Synaptic Plasticity in Integrate-and-Express, Stochastic Models of Synaptic Plasticity Induction." Neural Computation 23, no. 1 (2011): 124–59. http://dx.doi.org/10.1162/neco_a_00061.
Full textElliott, Terry. "Temporal Dynamics of Rate-Based Synaptic Plasticity Rules in a Stochastic Model of Spike-Timing-Dependent Plasticity." Neural Computation 20, no. 9 (2008): 2253–307. http://dx.doi.org/10.1162/neco.2008.06-07-555.
Full textChechik, Gal. "Spike-Timing-Dependent Plasticity and Relevant Mutual Information Maximization." Neural Computation 15, no. 7 (2003): 1481–510. http://dx.doi.org/10.1162/089976603321891774.
Full textBillings, Guy, and Mark C. W. van Rossum. "Memory Retention and Spike-Timing-Dependent Plasticity." Journal of Neurophysiology 101, no. 6 (2009): 2775–88. http://dx.doi.org/10.1152/jn.91007.2008.
Full textLobov, Sergey A., Ekaterina S. Berdnikova, Alexey I. Zharinov, Dmitry P. Kurganov, and Victor B. Kazantsev. "STDP-Driven Rewiring in Spiking Neural Networks under Stimulus-Induced and Spontaneous Activity." Biomimetics 8, no. 3 (2023): 320. http://dx.doi.org/10.3390/biomimetics8030320.
Full textShouval, Harel Z., and Georgios Kalantzis. "Stochastic Properties of Synaptic Transmission Affect the Shape of Spike Time–Dependent Plasticity Curves." Journal of Neurophysiology 93, no. 2 (2005): 1069–73. http://dx.doi.org/10.1152/jn.00504.2004.
Full textChauhan, Kanishk, Alexander B. Neiman, and Peter A. Tass. "Synaptic reorganization of synchronized neuronal networks with synaptic weight and structural plasticity." PLOS Computational Biology 20, no. 7 (2024): e1012261. http://dx.doi.org/10.1371/journal.pcbi.1012261.
Full textMuñoz, Pablo, Carolina Estay, Paula Díaz, Claudio Elgueta, Álvaro O. Ardiles, and Pablo A. Lizana. "Inhibition of DNA Methylation Impairs Synaptic Plasticity during an Early Time Window in Rats." Neural Plasticity 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/4783836.
Full textMasuda, Naoki, and Kazuyuki Aihara. "Self-Organizing Dual Coding Based on Spike-Time-Dependent Plasticity." Neural Computation 16, no. 3 (2004): 627–63. http://dx.doi.org/10.1162/089976604772744938.
Full textLynch, Sebastian Thomas, and Stephen Lynch. "Hysteresis in Neuron Models with Adapting Feedback Synapses." AppliedMath 5, no. 2 (2025): 70. https://doi.org/10.3390/appliedmath5020070.
Full textHaas, Julie S., Thomas Nowotny, and H. D. I. Abarbanel. "Spike-Timing-Dependent Plasticity of Inhibitory Synapses in the Entorhinal Cortex." Journal of Neurophysiology 96, no. 6 (2006): 3305–13. http://dx.doi.org/10.1152/jn.00551.2006.
Full textTambuyzer, Tim, Tariq Ahmed, C. James Taylor, Daniel Berckmans, Detlef Balschun, and Jean-Marie Aerts. "System Identification of mGluR-Dependent Long-Term Depression." Neural Computation 25, no. 3 (2013): 650–70. http://dx.doi.org/10.1162/neco_a_00408.
Full textTian, Qiaoling, Xiaoting Chen, Xiaoning Zhao, et al. "Temperature-modulated switching behaviors of diffusive memristor for biorealistic emulation of synaptic plasticity." Applied Physics Letters 122, no. 15 (2023): 153502. http://dx.doi.org/10.1063/5.0142742.
Full textBaras, Dorit, and Ron Meir. "Reinforcement Learning, Spike-Time-Dependent Plasticity, and the BCM Rule." Neural Computation 19, no. 8 (2007): 2245–79. http://dx.doi.org/10.1162/neco.2007.19.8.2245.
Full textDi Paolo, Ezequiel. "Spike-Timing Dependent Plasticity for Evolved Robots." Adaptive Behavior 10, no. 3-4 (2002): 243–63. http://dx.doi.org/10.1177/1059712302919993006.
Full textLu, Hui, Hyungju Park, and Mu-Ming Poo. "Spike-timing-dependent BDNF secretion and synaptic plasticity." Philosophical Transactions of the Royal Society B: Biological Sciences 369, no. 1633 (2014): 20130132. http://dx.doi.org/10.1098/rstb.2013.0132.
Full textWang, Lu, Jiachu Xie, Wantao Su, Zhenjie Du, and Mingzhu Zhang. "Scindapsus Aureus Resistive Random-Access Memory with Synaptic Plasticity and Sound Localization Function." Nanomaterials 15, no. 9 (2025): 659. https://doi.org/10.3390/nano15090659.
Full textEcheveste, Rodrigo, and Claudius Gros. "Two-Trace Model for Spike-Timing-Dependent Synaptic Plasticity." Neural Computation 27, no. 3 (2015): 672–98. http://dx.doi.org/10.1162/neco_a_00707.
Full textFriend, Lindsey, Ryan Williamson, Collin Merrill, et al. "Hippocampal Stratum Oriens Somatostatin-Positive Cells Undergo CB1-Dependent Long-Term Potentiation and Express Endocannabinoid Biosynthetic Enzymes." Molecules 24, no. 7 (2019): 1306. http://dx.doi.org/10.3390/molecules24071306.
Full textMadeira, Natália, Ana Drumond, and Rosalina Fonseca. "Temporal Gating of Synaptic Competition in the Amygdala by Cannabinoid Receptor Activation." Cerebral Cortex 30, no. 7 (2020): 4064–75. http://dx.doi.org/10.1093/cercor/bhaa026.
Full textJegminat, Jannes, Simone Carlo Surace, and Jean-Pascal Pfister. "Learning as filtering: Implications for spike-based plasticity." PLOS Computational Biology 18, no. 2 (2022): e1009721. http://dx.doi.org/10.1371/journal.pcbi.1009721.
Full textMadadi Asl, Mojtaba, Alireza Valizadeh, and Peter A. Tass. "Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity." PLOS Computational Biology 19, no. 2 (2023): e1010853. http://dx.doi.org/10.1371/journal.pcbi.1010853.
Full textCroft, Wayne, Katharine L. Dobson, and Tomas C. Bellamy. "Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity." Neural Plasticity 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/765792.
Full textRubin, Jonathan E., Richard C. Gerkin, Guo-Qiang Bi, and Carson C. Chow. "Calcium Time Course as a Signal for Spike-Timing–Dependent Plasticity." Journal of Neurophysiology 93, no. 5 (2005): 2600–2613. http://dx.doi.org/10.1152/jn.00803.2004.
Full textGilson, Matthieu, Moritz Bürck, Anthony N. Burkitt, and J. Leo van Hemmen. "Frequency Selectivity Emerging from Spike-Timing-Dependent Plasticity." Neural Computation 24, no. 9 (2012): 2251–79. http://dx.doi.org/10.1162/neco_a_00331.
Full textYamasaki, Miwako, and Tomonori Takeuchi. "Locus Coeruleus and Dopamine-Dependent Memory Consolidation." Neural Plasticity 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/8602690.
Full textMochida, Sumiko. "Ca2+/Calmodulin and Presynaptic Short-Term Plasticity." ISRN Neurology 2011 (June 23, 2011): 1–7. http://dx.doi.org/10.5402/2011/919043.
Full textStehle, Jörg H., Zhiyuan Sheng, Laura Hausmann, et al. "Exercise-induced Nogo-A influences rodent motor learning in a time-dependent manner." PLOS ONE 16, no. 5 (2021): e0250743. http://dx.doi.org/10.1371/journal.pone.0250743.
Full textDelvendahl, Igor, Katarzyna Kita, and Martin Müller. "Rapid and sustained homeostatic control of presynaptic exocytosis at a central synapse." Proceedings of the National Academy of Sciences 116, no. 47 (2019): 23783–89. http://dx.doi.org/10.1073/pnas.1909675116.
Full textPfister, Jean-Pascal, Taro Toyoizumi, David Barber, and Wulfram Gerstner. "Optimal Spike-Timing-Dependent Plasticity for Precise Action Potential Firing in Supervised Learning." Neural Computation 18, no. 6 (2006): 1318–48. http://dx.doi.org/10.1162/neco.2006.18.6.1318.
Full textEl-Boustani, Sami, Jacque P. K. Ip, Vincent Breton-Provencher, et al. "Locally coordinated synaptic plasticity of visual cortex neurons in vivo." Science 360, no. 6395 (2018): 1349–54. http://dx.doi.org/10.1126/science.aao0862.
Full textZhang, X., G. Foderaro, C. Henriquez, A. M. J. VanDongen, and S. Ferrari. "A Radial Basis Function Spike Model for Indirect Learning via Integrate-and-Fire Sampling and Reconstruction Techniques." Advances in Artificial Neural Systems 2012 (October 10, 2012): 1–16. http://dx.doi.org/10.1155/2012/713581.
Full textVolmer, Romain, Christine M. A. Prat, Gwendal Le Masson, André Garenne, and Daniel Gonzalez-Dunia. "Borna Disease Virus Infection Impairs Synaptic Plasticity." Journal of Virology 81, no. 16 (2007): 8833–37. http://dx.doi.org/10.1128/jvi.00612-07.
Full textRobinson, Brian S., Theodore W. Berger, and Dong Song. "Identification of Stable Spike-Timing-Dependent Plasticity from Spiking Activity with Generalized Multilinear Modeling." Neural Computation 28, no. 11 (2016): 2320–51. http://dx.doi.org/10.1162/neco_a_00883.
Full textLinehan, Victoria, Lisa Z. Fang, Matthew P. Parsons, and Michiru Hirasawa. "High-fat diet induces time-dependent synaptic plasticity of the lateral hypothalamus." Molecular Metabolism 36 (June 2020): 100977. http://dx.doi.org/10.1016/j.molmet.2020.100977.
Full textIannella, Nicolangelo, and Roman R. Poznanski. "Spatial interactions impact on Ca-driven synaptic plasticity: An ionic cable theory perspective." Journal of Multiscale Neuroscience 3, no. 2 (2024): 160–85. http://dx.doi.org/10.56280/1631287433.
Full textSueoka, Brandon, and Feng Zhao. "Memristive synaptic device based on a natural organic material—honey for spiking neural network in biodegradable neuromorphic systems." Journal of Physics D: Applied Physics 55, no. 22 (2022): 225105. http://dx.doi.org/10.1088/1361-6463/ac585b.
Full textMochida, Sumiko. "Mechanisms of Synaptic Vesicle Exo- and Endocytosis." Biomedicines 10, no. 7 (2022): 1593. http://dx.doi.org/10.3390/biomedicines10071593.
Full textZhu, Yixin, Baocheng Peng, Li Zhu, et al. "IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity." Applied Physics Letters 121, no. 13 (2022): 133502. http://dx.doi.org/10.1063/5.0109772.
Full textKistler, Werner M., and J. Leo van Hemmen. "Short-Term Synaptic Plasticity and Network Behavior." Neural Computation 11, no. 7 (1999): 1579–94. http://dx.doi.org/10.1162/089976699300016151.
Full textGainey, Melanie A., and Daniel E. Feldman. "Multiple shared mechanisms for homeostatic plasticity in rodent somatosensory and visual cortex." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1715 (2017): 20160157. http://dx.doi.org/10.1098/rstb.2016.0157.
Full textHarvey-Girard, Erik, and Leonard Maler. "Dendritic SK channels convert NMDA-R-dependent LTD to burst timing-dependent plasticity." Journal of Neurophysiology 110, no. 12 (2013): 2689–703. http://dx.doi.org/10.1152/jn.00506.2013.
Full textBramham, C. "BDNF and Control of Synaptic Plasticity in the Adult Brain." European Psychiatry 24, S1 (2009): 1. http://dx.doi.org/10.1016/s0924-9338(09)70554-1.
Full textQuinones, Jason Tait Sanchez, Quinones Karla, and Otto-Meyer Sebastian. "Factors Influencing Short-term Synaptic Plasticity in the Avian Cochlear Nucleus Magnocellularis." Journal of Experimental Neuroscience 9s2 (January 2015): JEN.S25472. http://dx.doi.org/10.4137/jen.s25472.
Full textFong, Ming-fai, Peter Sb Finnie, Taekeun Kim, et al. "Distinct Laminar Requirements for NMDA Receptors in Experience-Dependent Visual Cortical Plasticity." Cerebral Cortex 30, no. 4 (2019): 2555–72. http://dx.doi.org/10.1093/cercor/bhz260.
Full textKlyubin, Igor, Tomas Ondrejcak, Jennifer Hayes та ін. "Neurotransmitter receptor and time dependence of the synaptic plasticity disrupting actions of Alzheimer's disease Aβ in vivo". Philosophical Transactions of the Royal Society B: Biological Sciences 369, № 1633 (2014): 20130147. http://dx.doi.org/10.1098/rstb.2013.0147.
Full textZhou, Zhiwen, Kazuki Okamoto, Junya Onodera, et al. "Astrocytic cAMP modulates memory via synaptic plasticity." Proceedings of the National Academy of Sciences 118, no. 3 (2021): e2016584118. http://dx.doi.org/10.1073/pnas.2016584118.
Full textEdelmann, Elke, and Volkmar Leßmann. "Analyzing synaptic plasticity at the single cell level with STDP." Neuroforum 24, no. 3 (2018): A143—A150. http://dx.doi.org/10.1515/nf-2017-a064.
Full textElliott, Terry, and Konstantinos Lagogiannis. "Taming Fluctuations in a Stochastic Model of Spike-Timing-Dependent Plasticity." Neural Computation 21, no. 12 (2009): 3363–407. http://dx.doi.org/10.1162/neco.2009.12-08-916.
Full text