Academic literature on the topic 'TRIGONOMETRIC FUNCTION'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TRIGONOMETRIC FUNCTION.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "TRIGONOMETRIC FUNCTION"

1

Putranti, Sri Rejeki Dwi. "Relationship between Trigonometry Functions with Hyperbolic Function." Aloha International Journal of Multidisciplinary Advancement (AIJMU) 1, no. 4 (April 30, 2019): 82. http://dx.doi.org/10.33846/aijmu10402.

Full text
Abstract:
Many engineering problems can be solved by methods involving complex numbers and complex functions. In the definitions below we will prove the relationship between trigonometric functions and hyperbolic functions, where the hyperbolic function is an extension of the trigonometric function. Keywords: trigonometric functions; hyperbolic functions
APA, Harvard, Vancouver, ISO, and other styles
2

Saregar, Antomi. "Analisis Spektrum Energi dan Fungsi Gelombang Potensial Non-Centra Menggunakan Supersimetri Mekanika Kuantum." Jurnal Ilmiah Pendidikan Fisika Al-Biruni 4, no. 2 (October 27, 2015): 193. http://dx.doi.org/10.24042/jpifalbiruni.v4i2.92.

Full text
Abstract:
The objectives of this study were: 1) to describe the results of wave and energy function of the Non-central potential system of potential combinations of trigonometric Poschl-Teller plus Rosen Morse, Coloumb and OH 3D potential, and Rosen Morse trigonometric potential plus Pochl-Teller analyzed using Supersymmetry quantum mechanics (SUSY QM); 2) to know the visualization of wave function and energy level at point 1. This study is a literature study conducted from July 2013 to December 2015. Non-central potential of potential combinations of trigonometric Poschl-Teller potency plus Rosen Morse, Coloumb and OH 3D potential and potential Rosen Morse trigonometry plus Pochl-Teller is a potential that has a shape invariance properties. Recent developments, the SUSY method has been successfully used to create complete and precise mathematical analysis of the resolution of some non-central potentials in a closed system. By applying a lowering operator to a basic level wave function, a basic level wave function is obtained, while a top-level wave function is obtained by using a rising operator operated at a ground-level wave function and so on. While the value of energy in a closed system obtained by using the nature of the invariant shape. Tujuan Penelitian ini adalah: 1) mendeskripsikan hasil fungsi gelombang dan energi dari sistem potensial Non sentral hasil kombinasi potensial Poschl-Teller trigonometri plus potensial Rosen Morse, Coloumb, dan OH 3D, serta potensial Rosen Morse trigonometri plus Pochl-Teller yang dianalisis menggunakan metode Supersymmetry mekanika kuantum (SUSY QM); 2) mengetahui visualisasidari fungsi gelombangdan tingkat energy pada poin 1. Penelitian ini merupakan studi literatur yang dilakukan mulai bulan Juli 2013 s.d. Desember 2015. Potensial non sentral hasil kombinasi potensial Poschl-Teller trigonometri plus potensial Rosen Morse, Coloumb, dan OH 3D serta potensial Rosen Morse trigonometri plus Pochl-Teller merupakan potensial yang mempunyai sifat shape invariance.Perkembangan terakhir, metode SUSY telah berhasil digunakan untuk membuat analisis matematis secara lengkap dan tepat penyelesaian beberapa potensial non sentral dalam sistem tertutup. Dengan mengaplikasikan operator penurun pada fungsi gelombang tingkat dasar diperoleh fungsi gelombang tingkat dasar, sedangkan fungsi gelombang tingkat atas satu diperoleh dengan menggunakan operator penaik yang dioperasikan pada fungsi gelombang tingkat dasar dan seterusnya. Sedangkan nilai energinya dalam sistem tertutup diperoleh dengan menggunakan sifat shape invariant.
APA, Harvard, Vancouver, ISO, and other styles
3

Titaley, Jullia, Tohap Manurung, and Henriette D. Titaley. "CUBIC AND QUADRATIC POLYNOMIAL ON JULIA SET WITH TRIGONOMETRIC FUNCTION." JURNAL ILMIAH SAINS 18, no. 2 (November 12, 2018): 103. http://dx.doi.org/10.35799/jis.18.2.2018.21555.

Full text
Abstract:
CUBIC AND QUADRATIC POLYNOMIAL ON JULIA SET WITH TRIGONOMETRIC FUNCTIONABSTRACTJulia set are defined by iterating a function of a complex number and is generated from the iterated function . We investigate in this paper the complex dynamics of different functions and applied iteration function system to generate an entire new class of julia set. The purpose of this research is to make variation of Cubic and Quadratic polynomial on Julia Set and the two obvious to investigate from julia set are Sine and Cosine function. The results thus obtained are innovative and studies about different behavior of two basic trigonometry.Keywords : Julia Set, trigonometric function, polynomial function POLINOMIAL KUBIK DAN KUADRATIK PADA HIMPUNAN JULIA DENGAN FUNGSI TRIGONOMETRI ABSTRAKHimpunan Julia didefiniskan oleh fungsi iterasi dari bilangan kompleks dan dibangkitkan dari fungsi iterasi . Kami melakukan penelitian dalam penulisan ini tentang sistem dinamik kompleks dari fungsi yang berbeda dengan iterasi yang diterapkan untuk menghasilkan kelas baru dari himpunan Julia. Tujuan dari penelitian ini adalah untuk membuah kelas baru himpunan Julia dengan fungsi polinomial kubik dan kuadratik dengan fungsi sinus dan kosinus. Hasil akhir dari penelitian ini ada menemukan inovatif baru dari himpunan Julia dengan menggunakan dua fungsi trigonometri.Kata kunci: Julia set, fungsi trigonometri, fungsi polinomial
APA, Harvard, Vancouver, ISO, and other styles
4

Baric, Mate, David Brčić, Mate Kosor, and Roko Jelic. "An Axiom of True Courses Calculation in Great Circle Navigation." Journal of Marine Science and Engineering 9, no. 6 (May 31, 2021): 603. http://dx.doi.org/10.3390/jmse9060603.

Full text
Abstract:
Based on traditional expressions and spherical trigonometry, at present, great circle navigation is undertaken using various navigational software packages. Recent research has mainly focused on vector algebra. These problems are calculated numerically and are thus suited to computer-aided great circle navigation. However, essential knowledge requires the navigator to be able to calculate navigation parameters without the use of aids. This requirement is met using spherical trigonometry functions and the Napier wheel. In addition, to facilitate calculation, certain axioms have been developed to determine a vessel’s true course. These axioms can lead to misleading results due to the limitations of the trigonometric functions, mathematical errors, and the type of great circle navigation. The aim of this paper is to determine a reliable trigonometric function for calculating a vessel’s course in regular and composite great circle navigation, which can be used with the proposed axioms. This was achieved using analysis of the trigonometric functions, and assessment of their impact on the vessel’s calculated course and established axioms.
APA, Harvard, Vancouver, ISO, and other styles
5

AGHELI, BAHRAM. "Approximate Solution of Bratu Differential Equations Using Trigonometric Basic Functions." Kragujevac Journal of Mathematics 45, no. 02 (April 2021): 203–14. http://dx.doi.org/10.46793/kgjmat2102.203a.

Full text
Abstract:
In this paper, I have proposed a method for finding an approximate function for Bratu differential equations (BDEs), in which trigonometric basic functions are used. First, by defining trigonometric basic functions, I define the values of the transformation function in relation to trigonometric basis functions (TBFs). Following that, the approximate function is defined as a linear combination of trigonometric base functions and values of transform function which is named trigonometric transform method (TTM), and the convergence of the method is also presented. To get an approximate solution function with discrete derivatives of the solution function, we have determined the approximate solution function which satisfies in the Bratu differential equations (BDEs). In the end, the algorithm of the method is elaborated with several examples. In one example, I have presented an absolute error comparison of some approximate methods.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Bo, Yan Zhang, and Xiquan Liang. "Several Differentiation Formulas of Special Functions. Part III." Formalized Mathematics 14, no. 1 (January 1, 2006): 37–45. http://dx.doi.org/10.2478/v10037-006-0006-z.

Full text
Abstract:
Several Differentiation Formulas of Special Functions. Part III In this article, we give several differentiation formulas of special and composite functions including trigonometric function, inverse trigonometric function, polynomial function and logarithmic function.
APA, Harvard, Vancouver, ISO, and other styles
7

Devine, M. L. "Real time trigonometric function evaluation." Microprocessors and Microsystems 16, no. 8 (January 1992): 417–25. http://dx.doi.org/10.1016/0141-9331(92)90028-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

CHAND, A. K. B., M. A. NAVASCUÉS, P. VISWANATHAN, and S. K. KATIYAR. "FRACTAL TRIGONOMETRIC POLYNOMIALS FOR RESTRICTED RANGE APPROXIMATION." Fractals 24, no. 02 (June 2016): 1650022. http://dx.doi.org/10.1142/s0218348x16500225.

Full text
Abstract:
One-sided approximation tackles the problem of approximation of a prescribed function by simple traditional functions such as polynomials or trigonometric functions that lie completely above or below it. In this paper, we use the concept of fractal interpolation function (FIF), precisely of fractal trigonometric polynomials, to construct one-sided uniform approximants for some classes of continuous functions.
APA, Harvard, Vancouver, ISO, and other styles
9

Phan-Yamada, Tuyetdong, and Walter M. Yamada. "Exploroing Polar Curves with GeoGebra." Mathematics Teacher 106, no. 3 (October 2012): 228–33. http://dx.doi.org/10.5951/mathteacher.106.3.0228.

Full text
Abstract:
Most trigonometry textbooks teach the graphing of polar equations as a two-step process: (1) plot the points corresponding to values of θ such as π, π/2, π/3, π/4, π/6, and so on; and then (2) connect these points with a curve that follows the behavior of the trigonometric function in the Cartesian plane. Many students have difficulty using this method to graph general polar curves. The difficulty seems to stem from an inability to convert changes in the value of the trigonometric equation as a function of angle (abscissa vs. ordinate in Cartesian coordinates) to changes of the radius as a function of angle (r[θ] in polar coordinates). GeoGebra provides a tool to help students visualize this relationship, thus significantly improving students' ability
APA, Harvard, Vancouver, ISO, and other styles
10

HE, WEN-YU, and WEI-XIN REN. "ADAPTIVE TRIGONOMETRIC HERMITE WAVELET FINITE ELEMENT METHOD FOR STRUCTURAL ANALYSIS." International Journal of Structural Stability and Dynamics 13, no. 01 (February 2013): 1350007. http://dx.doi.org/10.1142/s0219455413500077.

Full text
Abstract:
Owing to its good approximation characteristics of trigonometric functions and the multi-resolution local characteristics of wavelet, the trigonometric Hermite wavelet function is used as the element interpolation function. The corresponding trigonometric wavelet beam element is formulated based on the principle of minimum potential energy. As the order of wavelet can be enhanced easily and the multi-resolution can be achieved by the multi-scale of wavelet, the hierarchical and multi-resolution trigonometric wavelet beam element methods are proposed for the adaptive analysis. Numerical examples have demonstrated that the aforementioned two methods are effective in improving the computational accuracy. The trigonometric wavelet finite element method (WFEM) proposed herein provides an alternative approach for improving the computational accuracy, which can be tailored for the problem considered.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "TRIGONOMETRIC FUNCTION"

1

Qi, Hui, University of Western Sydney, of Science Technology and Environment College, and School of Computing and Information Technology. "Multi-polynomial higher order neural network group models for financial data and rainfall data simulation and prediction." THESIS_CSTE_CIT_Qi_H.xml, 2001. http://handle.uws.edu.au:8081/1959.7/343.

Full text
Abstract:
Multi-Polynomial Higher Order Neural Network Group Models (MPHONNG) program developed by the author will be studied in this thesis. The thesis also investigates the use of MPHONNG for financial data and rainfall data simulation and prediction. The MPHONNG is combined with characteristics of Polynomial function, Trigonometric polynomial function and Sigmoid polynomial function. The models are constructed with three layers Multi-Polynomial Higher Order Neural Network and the weights of the models are derived directly from the coefficents of the Polynomial form, Trignometric polynomial form and Sigmoid polynomial form. To the best of the authors knowledge, it is the first attempt to use MPHONNG for financial data and rainfall data simulation and prediction. Results proved satisfactory, and confirmed that MPHONNG is capable of handling high frequency, high order nonlinear and discontinuous data.
Master of Science (Hons)
APA, Harvard, Vancouver, ISO, and other styles
2

Tutkienė, Simona. "Puasono dvimatės lygties vidinių reikšmių uždavinio sprendimas „tilto“ funkcijų metodais." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110803_092027-00523.

Full text
Abstract:
Magistro darbe matematiniu modeliavimu nagrinėjamas Puasono lygties sprendimo efektyvumas naujais metodais. Šiame darbe siūloma spręsti šias lygtis naudojant vadinamąsias „tilto“ funkcijas. Bandomos dviejų rūšių „tilto“ funkcijos: hiperbolinio tangento ir trigonometrinės. Puasono lygties sprendinys ieškomas per „tilto“ funkcijų ir polinomų sandaugų sumą.
In this study Poisson function is solved using “bridge” functions method, meaning that all range is divided to separate zones (“bridges”) and to separate approximation polynomial multiplied of “bridge” functions. Common solution is equal to the sum of separate polynomial multiplied of “bridge” functions. To solve Poisson equation, the so-called "bridge" function was used. Differential equation, the solution we were looking via the "bridge" functions and products of powers of polynomials amount.
APA, Harvard, Vancouver, ISO, and other styles
3

Lemos, Paulo Giovane Aparecido. "Funções aplicadas a física e química." Universidade Federal de Juiz de Fora (UFJF), 2013. https://repositorio.ufjf.br/jspui/handle/ufjf/3433.

Full text
Abstract:
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-02-22T13:59:37Z No. of bitstreams: 1 paulogiovaneaparecidolemos.pdf: 4378161 bytes, checksum: 2fc32bfa870de66c1664125db7d875e1 (MD5)
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-22T14:38:10Z (GMT) No. of bitstreams: 1 paulogiovaneaparecidolemos.pdf: 4378161 bytes, checksum: 2fc32bfa870de66c1664125db7d875e1 (MD5)
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-22T14:38:31Z (GMT) No. of bitstreams: 1 paulogiovaneaparecidolemos.pdf: 4378161 bytes, checksum: 2fc32bfa870de66c1664125db7d875e1 (MD5)
Made available in DSpace on 2017-02-22T14:38:31Z (GMT). No. of bitstreams: 1 paulogiovaneaparecidolemos.pdf: 4378161 bytes, checksum: 2fc32bfa870de66c1664125db7d875e1 (MD5) Previous issue date: 2013-08-15
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Neste trabalho apresentamos uma sequência de atividades utilizando os conceitos de alguns tipos funções: afim, logarítmica e trigonométricas. Tratando, também, a interdisciplinaridade com as disciplinas física e química. Nestas atividades serão construídas tabelas com informações sobre duas ou mais grandezas e, posteriormente, representações gráficas com o auxilio do Excel ou do Geogebra. A atividade sobre a função afim deve ser aplicada aos alunos do 9º ano do ensino fundamental ou alunos do 1º ou 3º ano do ensino médio, esta atividade visa ao aprendizado dos alunos, usando os conceitos de movimentos da física e, assim, mostrando aplicação das funções. Nesta atividade, o aluno deve construir um dispositivo pratico para coletar dados sobre posição e tempo do movimento de um móvel e este deve se aproximar do movimento retilíneo uniforme de um móvel. Com este dispositivo vamos fazer uma filmagem do movimento de um móvel, assim teremos maior facilidade para coletarmos as posições de acordo com tempo, e construir uma tabela. Com a tabela vamos usar o Excel e o Geogebra para construir o gráfico. Com a intervenção do professor de física, devemos chegar ao estudo de uma função afim ao estudo de uma reta em geometria analítica. A atividade logarítmica é sobre a aplicação do logaritmo no cálculo do pH de uma solução. Nesta atividade é acrescentado gradativamente base (HCl) a um ácido (NaOH). A verificação do pH da solução é feito com a fita de titulação e a constatação é feita a partir da função do pH que é pH = -log[H+] ou pOH = -log [OH-] → pH = 14 – pOH, com estas informações é construído uma tabela com informações sobre o volume de ácido, volume da base, o volume da solução e o pH. Com esta tabela construímos o gráfico do pH em função do volume de base usando o Excel ou Geogebra. Com esta atividade podemos também trabalhar noções intuitivas de limite quando o pH está próximo de 7 utilizando as duas fontes, a tabela e o gráfico e descobrindo até mesmo funções de correção da equação do pH. Esta atividade pode ser trabalhada com alunos do 1º ou 2º ano do ensino médio com a intervenção do professor de química quanto aos conceitos químicos aplicados nesta atividade. A atividade sobre funções trigonométricas tenta mostrar que é a função trigonométrica é melhor função para um estudo de movimentos periódicos ou qualquer estudo que envolva periodicidade. Nesta atividade vamos usar o software Tracker para coletarmos informações sobre as posições de um pêndulo simples em relação a sua projeção na horizontal e vertical de acordo com o tempo. O software Tracker é de grande ajuda nesta atividade para filmagem de múltiplas posições que é o que ocorre neste experimento. Esta atividade vem ao encontro do que propõe o PCNEM, pois se refere à função trigonométrica com a função periódica e não à parte algébrica que as identidades trigonométricas aborda. Todas as atividades estão de acordo com os propósitos do PCNEM, agem do CBC/Matemática - SEE/MG e trabalham a interdisciplinaridade entre Matemática e Física ou entre Matemática e Química, mostrando que a Matemática não se trata de uma ciência isolada como tantos alunos pensam.
On this workshop, we will show a few activities using ideas from linear function, logarithm function and trigonometric function ( this one will be associated with chemistry and physics themes) . Activities abording linear function must be applied to students from 9th year from the basic education or 1st and 3rd year from the high school students. First linear function wants to focus the main ideas of movements on physics and showing its applications on functions. On this activity , the student should build na easy way to collect informations about position and time from a movement of a mobile and this one must be the nearest possible from the uniform rectilinear motion. With this device, we are going to make a film of the movement of a mobile, so then we can build a table with all the information we need. With the table we can build graphs using programs such as Excel and Geogebra. Assisted by the physics teacher, we are supposed to make some conclusions about the study of the linear function and the straight on analytic geometry Logarithm function is used to calculate the pH of a chemistry solution. The solution will change its pH if basis(NaOH) or acid(HCl) be increased to it according to this function pH = -log[H+] ou pOH = -log [OH-] → pH = 14 – pOH, with this informations we can build a pH table in function of the volume and then a graph can be constructed using Excel or Geogebra. This activity can also work intuitive notions of limit when the pH close to 7 this through both the table and the graph and finding even functions of pH correction equation. This activity should be worked with students in the 1st or 2nd year of high school with teacher intervention chemistry as applied to chemical concepts in this activity. The trigonometric functions trys to show that it is the best function to a study of periodic movements or any study that involves periodicity. For this function we will use Tracker software to collect informations about the positions of a simple pendulum in relation to its projection in horizontal and vertical according to the time. Tracker is very helpful because it can film a lot of positions that occurs on this experience. All work activities interdisciplinarity between mathematics and physics or between mathematics and chemistry and so showing that mathematics is not just an isolated sciences as many students think.
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, Jander Carlos Silva e. "As novas tecnologias no contexto escolar: uma abordagem sobre aplicações do GeoGebra em trigonometria." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-17122015-104430/.

Full text
Abstract:
Este trabalho apresenta uma abordagem sobre as novas tecnologias no contexto escolar, com vistas para aplicação do GeoGebra em trigonometria. O objetivo é nortear professores da educação básica na preparação de aulas usando o GeoGebra, visando ao enriquecimento do tema trigonometria em sala de aula. As atividades propostas estão divididas em três grupos: trigonometria básica, funções trigonométricas e equações trigonométricas. Cada uma possui um alto nível de detalhamento, com o objetivo de incentivar o uso por professores com pouco ou nenhum conhecimento do software, bem como incentivar atividades que promovam a criação por parte dos alunos. A ideia é que os alunos construam as atividades, aprendendo a utilizar o software, interagindo por meio da movimentação dos objetos, e tirando suas conclusões pertinentes às atividades. De maneira geral, pretende-se contribuir para o desenvolvimento do raciocínio lógico do aluno por meio do ensino de Matemática agregando a utilização de tecnologia, de forma que o aluno não seja somente um expectador, mas sim, participante da construção da própria atividade.
This work presents na approach to new Technologies in the educational context, with a view to applications of the GeoGebra in trigonometry. The goal is to guide teachers of the basic education in preparing lessons using GeoGebra, aiming to enrich trigonometry the in the classroom. The proposed activities are divided into three groups : basic trigonometry, trigonometry functions and trigonometry equations. Each one has a high level of details, in order to encourage the use by teachers with little or no knowledge of the software, and also encourage activities that promote the creation by the students. The idea is that students build the activities, learning how to use the software, interacting by moving objects, and taking their conclusions about the activities. In general, one intends to contribute to the development of logical thinking of students through the teaching of Mathematics adding the use of technology, so that the student is not only a spectator, but, participant of the construction of their own activity.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Kai, Heinz Rüdiger, Rocco Haase, and Tjalf Ziemssen. "An Innovative Technique to Assess Spontaneous Baroreflex Sensitivity with Short Data Segments: Multiple Trigonometric Regressive Spectral Analysis." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-233899.

Full text
Abstract:
Objective: As the multiple trigonometric regressive spectral (MTRS) analysis is extraordinary in its ability to analyze short local data segments down to 12 s, we wanted to evaluate the impact of the data segment settings by applying the technique of MTRS analysis for baroreflex sensitivity (BRS) estimation using a standardized data pool. Methods: Spectral and baroreflex analyses were performed on the EuroBaVar dataset (42 recordings, including lying and standing positions). For this analysis, the technique of MTRS was used. We used different global and local data segment lengths, and chose the global data segments from different positions. Three global data segments of 1 and 2 min and three local data segments of 12, 20, and 30 s were used in MTRS analysis for BRS. Results: All the BRS-values calculated on the three global data segments were highly correlated, both in the supine and standing positions; the different global data segments provided similar BRS estimations. When using different local data segments, all the BRS-values were also highly correlated. However, in the supine position, using short local data segments of 12 s overestimated BRS compared with those using 20 and 30 s. In the standing position, the BRS estimations using different local data segments were comparable. There was no proportional bias for the comparisons between different BRS estimations. Conclusion: We demonstrate that BRS estimation by the MTRS technique is stable when using different global data segments, and MTRS is extraordinary in its ability to evaluate BRS in even short local data segments (20 and 30 s). Because of the non-stationary character of most biosignals, the MTRS technique would be preferable for BRS analysis especially in conditions when only short stationary data segments are available or when dynamic changes of BRS should be monitored.
APA, Harvard, Vancouver, ISO, and other styles
6

Bruginski, Willian José. "Desenvolvimento de planilhas dinâmicas utilizando o software Geogebra para o estudo de funções trigonométricas." Universidade Tecnológica Federal do Paraná, 2014. http://repositorio.utfpr.edu.br/jspui/handle/1/802.

Full text
Abstract:
Esta dissertação foi desenvolvida com o intuito de criar uma ferramenta para auxiliar no ensino da trigonometria. A ferramenta foi criada com o apoio de recursos tecnológicos e o Geogebra foi o software escolhido para a elaboração deste projeto. Devido a quantidade de recursos que o software dispõe principalmente a possibilidade de trabalhar de forma integrada a geometria com a álgebra, este foi um grande aliado na criação das planilhas dinâmicas. Na sequencia foi desenvolvida a parte teórica das funções trigonométricas com as suas definições, as características, construções dos gráficos e foram apresentadas as contribuições que as planilhas dinâmicas proporcionam neste estudo.
This work was developed with the intention of creating a new tool to assist in teaching trigonometry. The tool has been created with the support of technological resources and Geogebra software has been chosen for the development of this project. Because the amount of resources that the software provides, especially the ability to work seamlessly geometry and algebra, this was a great ally in the creation of dynamic spreadsheets. Following was developed theoretical part of trigonometric functions with their definitions, characteristics, construction of graphs and contributions that dynamic spreadsheets provide this study were presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Oliveira, Luiz Fernando Mosolino de. "Funções trigonométricas." reponame:Repositório Institucional da UFABC, 2016.

Find full text
Abstract:
Orientador: Prof. Dr. Daniel Miranda Machado
Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016.
Este trabalho foi desenvolvido para auxiliar alunos ingressantes no ensino superior, revisando t opicos da trigonometria e de funcoes trigonometricas, podendo auxiliar tambem alunos do ensino medio, professores ou interessados no assunto. Este trabalho parte de estudos iniciais da trigonometria e aborda de maneira simples a construcao de graficos de funcoes trigonometricas da forma f(x) = a+b. sen(c.x+d), onde a, b, c e d sao coeficientes reais que alteram a amplitude, a imagem e período das funcões trigonometricas. Sao deduzidas as formulas de adicao de arcos, que auxiliam na demonstracao de outras equacoes, como por exemplo o teorema das relacoes entre as cordas de circunferencia, de Ptolomeu,. Tambem apresentamos aplicacoes da trigonometria aos triangulos nao retangulos, como a lei dos senos e a lei dos cossenos, utilizada tambem para um triangulo qualquer, auxiliando na demonstracao de equacoes importantes, como por exemplo da força resultante, em Física.
In this work we analyze a simplified version of the Monopoly game using a Markov chain model with discrete time parameter. In the first chapter we discuss on the Classical Theory of Probability, bringing the most important results for this study, preceded by a brief introduction about the ideas of chance throughout the history of mankind and leading thinkers involved in the development of this theory. In the second chapter we make a historical introduction to stochastic processes and Markov chains; then we explain the fundamental concepts of Markov Chains, putting some examples and finally discussing the ergodicity of a Markov chain. In the third chapter, after a brief explanation of the emergence and subsequent evolution of the Monopoly game throughout the twentieth century, we analyze the dynamics of the game by the model of a Markov chain, using as an object of study a simpler version of the game in question.
APA, Harvard, Vancouver, ISO, and other styles
8

SOUZA, Luciano. "New trigonometric classes of probabilistic distributions." Universidade Federal Rural de Pernambuco, 2015. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5127.

Full text
Abstract:
Submitted by Mario BC (mario@bc.ufrpe.br) on 2016-08-01T12:46:49Z No. of bitstreams: 1 Luciano Souza.pdf: 1424173 bytes, checksum: 75d7ff2adb5077203e1371925327b71e (MD5)
Made available in DSpace on 2016-08-01T12:46:49Z (GMT). No. of bitstreams: 1 Luciano Souza.pdf: 1424173 bytes, checksum: 75d7ff2adb5077203e1371925327b71e (MD5) Previous issue date: 2015-11-13
In this thesis, four new probabilistic distribution classes are presented and investigated: sine, cosine, tangent and secant. For each of which a new kind of distribution was created, which were used for modelling real life data.By having an exponential distribution to compare the biases, a numerical simulation was obtained, making it possible to verify that the bias tends to zero as the sample size is increased. In addition to that, some numerical results for checking maximum likelihood estimates, as well as the results for finite samples, were obtained, just as much as several class properties and their respective distributions were also obtained, along with the expansions, maximum likelihood estimates, Fisher information, the first four moments, average, variance, skewness, and kurtosis, the generating function of moments and Renyi’s entropy. It was evidenced that all distributions have shown good fit when applied to real life data, when in comparison to other models. In order to compare the models, the Akaike Information Criterion (AIC), the Corrected Akaike Information Criterion (CAIC), the Bayesian Information Criterion (BIC), the Hannan Quinn Information Criterion (HQIC) were used, along with two other main statistic sources: Cramer-Von Mises and Anderson-Darling. As a final step, the results of the analyses and the comparison of the results are brought up, as well as a few directions for future works.
Nesta tese apresentamos e investigamos quatro novas classes trigonométricas de distribuições probabilísticas. As classes seno, cosseno, tangente e secante. Para cada uma das novas classes foi criada uma nova distribuição. Estas quatro novas distribuições foram usadas na modelagem de dados reais. Obtivemos uma simulação numérica, usando como base a distribuição exponencial, para se comparar os vicios (bias) e verificamos que, a medida que aumentamos o tamanho da amostra, o bias tende a zero. Alguns resultados numéricos para ver estimativas de máxima verossimilhança e os resultados para amostras finitas foram obtidos. Várias propriedades das classes e as suas distribuições foram obtidos. Obtemos as expansões, as estimativas de máxima verossimilhança, informações de Fisher, os quatro primeiros momentos, média, variância, assimetria e curtose, a função geradora de momentos e a entropia Rényi. Mostramos que todas as distribuições têm proporcionado bons ajustes quando aplicadas a dados reais, em comparação com outros modelos. Na comparação dos modelos foram utilizados: o Akaike Information Criterion (AIC), o Akaike Information Criterion Corrigido (CAIC), a informação Bayesian Criterion (BIC), o critério de informação Hannan Quinn (HQIC) e duas das principais estatísticas também foram utilizadas: Cramer -von Mises e Anderson-Darling. Por fim, apresentamos os resultados da análise e comparação dos resultados, e orientações para trabalhos futuros.
APA, Harvard, Vancouver, ISO, and other styles
9

Javed, Mohsin. "Algorithms for trigonometric polynomial and rational approximation." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:23a36d72-0299-4c63-98e8-d0aa088c062e.

Full text
Abstract:
This thesis presents new numerical algorithms for approximating functions by trigonometric polynomials and trigonometric rational functions. We begin by reviewing trigonometric polynomial interpolation and the barycentric formula for trigonometric polynomial interpolation in Chapter 1. Another feature of this chapter is the use of the complex plane, contour integrals and phase portraits for visualising various properties and relationships between periodic functions and their Laurent and trigonometric series. We also derive a periodic analogue of the Hermite integral formula which enables us to analyze interpolation error using contour integrals. We have not been able to find such a formula in the literature. Chapter 2 discusses trigonometric rational interpolation and trigonometric linearized rational least-squares approximations. To our knowledge, this is the first attempt to numerically solve these problems. The contribution of this chapter is presented in the form of a robust algorithm for computing trigonometric rational interpolants of prescribed numerator and denominator degrees at an arbitrary grid of interpolation points. The algorithm can also be used to compute trigonometric linearized rational least-squares and trigonometric polynomial least-squares approximations. Chapter 3 deals with the problem of trigonometric minimax approximation of functions, first in a space of trigonometric polynomials and then in a set of trigonometric rational functions. The contribution of this chapter is presented in the form of an algorithm, which to our knowledge, is the first description of a Remez-like algorithm to numerically compute trigonometric minimax polynomial and rational approximations. Our algorithm also uses trigonometric barycentric interpolation and Chebyshev-eigenvalue based root finding. Chapter 4 discusses the Fourier-Padé (called trigonometric Padé) approximation of a function. We review two existing approaches to the problem, both of which are based on rational approximations of a Laurent series. We present a numerical algorithm with examples and compute various type (m, n) trigonometric Padé approximants.
APA, Harvard, Vancouver, ISO, and other styles
10

Ress, David Andress. "Development of Fuzzy Trigonometric Functions to Support Design and Manufacturing." NCSU, 2010. http://www.lib.ncsu.edu/theses/available/etd-03112010-104230/.

Full text
Abstract:
It is a well established fact that design undergoes stages from imprecision to precision. In the early design stages, fuzzy logic is a natural tool for modeling since it is by definition an imprecise representation. The mathematics behind fuzzy numbers have been well developed and defined in literature; yet, very little research exists in the form of fuzzy trigonometric functions. Two design problems are presented to support the motivation behind this research followed by a review of fuzzy set theory. Several approaches for mapping Y = cos(X) into the fuzzy realm are then discussed followed by the development of special purpose fuzzy trigonometric functions and fuzzy inverse trigonometric functions which are computationally simple and easy to implement. With these functions, 8 forward and 6 inverse trigonometric identities are shown to exist in the fuzzy realm. The proposal concludes by examining three engineering problems. The first problem involves the design of a fuzzy truss bridge with fuzzy forces. The second problem analyzes fuzzy forces on a block positioned on an inclined plane. The last example utilizes the fuzzy inverse trigonometric functions to calculate fuzzy bond angles within a chemical compound.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "TRIGONOMETRIC FUNCTION"

1

Heppler, G. R. Performance of trigonometric basis function finite elements in Timoshenko beams. New York: AIAA, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gottlieb, David. On the Gibbs phenomenon V: Recovering exponential accuracy from collocation point values of a piecewise analyytic function. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wallington, Jeff. Trigonometric functions. London: Institution of Electrical and Electronics Incorporated Engineers, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nikolaevich, Chubarikov Vladimir, and Karat͡s︡uba Anatoliĭ Alekseevich, eds. Trigonometric sums in number theory and analysis by. Berlin: Walter de Gruyter, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

David, Edmunds, and SpringerLink (Online service), eds. Eigenvalues, Embeddings and Generalised Trigonometric Functions. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pančiškin, Aleksej Alekseevič. Trigonometric functions . Moscow: Mir, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Keedy, Mervin Laverne. Trigonometry: Triangles and functions. 4th ed. Reading, Mass: Addison-Wesley Pub. Co., 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lang, Jan, and David Edmunds. Eigenvalues, Embeddings and Generalised Trigonometric Functions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18429-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keedy, Mervin Laverne. Algebra & trigonometry: A functions approach. 4th ed. Reading, Mass: Addison-Wesley, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1943-, Miller Robert, ed. Precalc with trigonometry. 2nd ed. New York: McGraw-Hill, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "TRIGONOMETRIC FUNCTION"

1

Beebe, Nelson H. F. "Trigonometric functions." In The Mathematical-Function Computation Handbook, 299–340. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64110-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lang, Jan, and Osvaldo Méndez. "Recent Advances on Generalized Trigonometric Systems in Higher Dimensions." In Function Spaces and Inequalities, 241–56. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6119-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Bicheng. "Equivalent Conditions of a Reverse Hilbert-Type Integral Inequality with the Kernel of Hyperbolic Cotangent Function Related to the Riemann Zeta Function." In Trigonometric Sums and Their Applications, 289–305. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37904-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rassias, Michael Th, Bicheng Yang, and Andrei Raigorodskii. "On a Half-Discrete Hilbert-Type Inequality in the Whole Plane with the Kernel of Hyperbolic Secant Function Related to the Hurwitz Zeta Function." In Trigonometric Sums and Their Applications, 229–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37904-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Korolev, Maxim A., and Andrei V. Shubin. "The Second Moment of the First Derivative of Hardy’s Z-Function." In Trigonometric Sums and Their Applications, 169–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37904-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lubinsky, D. S. "On Marcinkiewicz-Zygmund Inequalities at Hermite Zeros and Their Airy Function Cousins." In Trigonometric Sums and Their Applications, 119–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37904-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Walsh, J. L., and W. E. Sewell. "Note on Degree of Trigonometric and Polynomial Approximation to an Analytic Function." In Joseph L. Walsh, 396–404. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-2114-2_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shuvo, Shifat Nayme, Fuad Hasan, Mohi Uddin Ahmed, Syed Akhter Hossain, and Sheikh Abujar. "MathNET: Using CNN Bangla Handwritten Digit, Mathematical Symbols, and Trigonometric Function Recognition." In Advances in Intelligent Systems and Computing, 515–23. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7394-1_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gorev, V., A. Gusev, V. Korniienko, and M. Aleksieiev. "Kolmogorov–Wiener Filter Weight Function for Stationary Traffic Forecasting: Polynomial and Trigonometric Solutions." In Current Trends in Communication and Information Technologies, 111–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76343-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Berry, John, and Patrick Wainwright. "Trigonometric Functions." In Foundation Mathematics for Engineers, 107–40. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11717-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "TRIGONOMETRIC FUNCTION"

1

Lorenzo, Carl F. "The Fractional Meta-Trigonometry Based on the R-Function: Part I—Background, Definitions, and Complexity Function Graphics." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86731.

Full text
Abstract:
The current fractional trigonometries and hyperboletry are based on three forms of the fractional exponential R-function, Rq,v(a,t), Rq,v(ai,t), and Rq,v(a,it). The fractional meta-trigonometry extends this to an infinite number of bases using the form Rq,v(aiα,iβt). Meta-definitions, meta-Laplace transforms, and meta-identities are developed for these generalized fractional trigonometric functions. Graphic results are presented. Extensions of the fractional trigonometries to the negative time domain and complementary fractional trigonometries are considered. Part I provides; background on the ongoing development of the fractional trigonometries, the definitions of the meta-trigonometry and its motivation, and a limited set of graphic results for the complexity based fractional trigonometric functions.
APA, Harvard, Vancouver, ISO, and other styles
2

Lorenzo, Carl F. "The Fractional Meta-Trigonometry Based on the R-Function: Part II—Parity Function Graphics, Laplace Transforms, Fractional Derivatives, Meta-Properties." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86733.

Full text
Abstract:
The current fractional trigonometries and hyperboletry are based on three forms of the fractional exponential R-function, Rq,v(a,t), Rq,v(ai,t), and Rq,v(a,it). The fractional meta-trigonometry extends this to an infinite number of bases using the form Rq,v(aiα,iβt). Meta-definitions, meta-Laplace transforms, and meta-identities are developed for these generalized fractional trigonometric functions. Graphic results are presented. Extensions of the fractional trigonometries to the negative time domain and complementary fractional trigonometries are considered. Part II continues from the definition set and graphics given in Part I. It provides a minimal set of graphic results for the parity meta-fractional trigonometry and develops the meta-properties described above.
APA, Harvard, Vancouver, ISO, and other styles
3

Woolley, Ronald Lee. "Transitional Trigonometric Functions." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66426.

Full text
Abstract:
Crash pulses in automotive collisions often exhibit acceleration shapes somewhere between a sine and a step function and velocity shapes somewhere between a cosine and a linear decay. This is an example of real world behavior that is only somewhat like the familiar sine, cosine, or tangent shapes so commonly used in physical modeling. To adjust the mathematics to the problem, two familiar ordinary differential equations are merged to create a mathematical transition between trigonometric functions and polynomials by introducing one new parameter. The merged ODE produces a new set of “transitional trigonometry” functions that include both sets of familiar shapes and everything in between. For example, the sine function transitions smoothly into a constant or step function. The corresponding cosine function becomes a straight line. When the sine and cosine are plotted against each other the familiar unit circle undergoes a metamorphosis into a square. Integrals of these transitional trigonometric functions transition into a parabola, cubic polynomial, etc. These functions were developed to model a crash pulse in a vehicle collision, a task for which they work remarkably well. Basically, these functions are able to model a structure with force-deflection properties somewhere between a spring with linearly increasing force and a device that produces a constant force. One wonders what other applications in physics may exist besides crashing cars and what other pairs of physical models (represented by ODEs) might be merged together to produce other new and useful transitions.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Jianjun, Zongben Xu, and Jia Jing. "Constructive Trigonometric Function Approximation of Neural Networks." In Third International Conference on Semantics, Knowledge and Grid (SKG 2007). IEEE, 2007. http://dx.doi.org/10.1109/skg.2007.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Jianjun, Zongben Xu, and Jia Jing. "Constructive Trigonometric Function Approximation of Neural Networks." In Third International Conference on Semantics, Knowledge and Grid (SKG 2007). IEEE, 2007. http://dx.doi.org/10.1109/skg.2007.212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parri, Jonathan, and Saurabh Ratti. "Trigonometric function approximation neural network based coprocessor." In 2009 2nd Microsystems and Nanoelectronics Research Conference (MNRC 2009). IEEE, 2009. http://dx.doi.org/10.1109/mnrc15848.2009.5338938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Zongmin, Kunpeng Hou, and Hua Li. "Similarity Measurement Based on Trigonometric Function Distance." In 2006 First International Symposium on Pervasive Computing and Applications. IEEE, 2006. http://dx.doi.org/10.1109/spca.2006.297573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Srikanthan, Thambipillai, and Bimal Gisuthan. "Pipelining flat CORDIC-based trigonometric function generators." In International Symposium on Microelectronics and Assembly, edited by Bernard Courtois, Serge N. Demidenko, and Lee Y. Lau. SPIE, 2000. http://dx.doi.org/10.1117/12.405412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mokhtar, A. S. N., M. I. Ayub, N. Ismail, and N. G. Nik Daud. "Implementation of trigonometric function using CORDIC algorithms." In INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (IntCET 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5022934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Radwan, A. G., and A. S. Elwakil. "The generalized exponential function and fractional trigonometric identities." In 2011 European Conference on Circuit Theory and Design (ECCTD). IEEE, 2011. http://dx.doi.org/10.1109/ecctd.2011.6043856.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "TRIGONOMETRIC FUNCTION"

1

Wester, D. W. Trigonometric functions of nonlinear quantities. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10182638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography