Academic literature on the topic 'TRIGONOMETRIC FUNCTION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TRIGONOMETRIC FUNCTION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "TRIGONOMETRIC FUNCTION"
Putranti, Sri Rejeki Dwi. "Relationship between Trigonometry Functions with Hyperbolic Function." Aloha International Journal of Multidisciplinary Advancement (AIJMU) 1, no. 4 (April 30, 2019): 82. http://dx.doi.org/10.33846/aijmu10402.
Full textSaregar, Antomi. "Analisis Spektrum Energi dan Fungsi Gelombang Potensial Non-Centra Menggunakan Supersimetri Mekanika Kuantum." Jurnal Ilmiah Pendidikan Fisika Al-Biruni 4, no. 2 (October 27, 2015): 193. http://dx.doi.org/10.24042/jpifalbiruni.v4i2.92.
Full textTitaley, Jullia, Tohap Manurung, and Henriette D. Titaley. "CUBIC AND QUADRATIC POLYNOMIAL ON JULIA SET WITH TRIGONOMETRIC FUNCTION." JURNAL ILMIAH SAINS 18, no. 2 (November 12, 2018): 103. http://dx.doi.org/10.35799/jis.18.2.2018.21555.
Full textBaric, Mate, David Brčić, Mate Kosor, and Roko Jelic. "An Axiom of True Courses Calculation in Great Circle Navigation." Journal of Marine Science and Engineering 9, no. 6 (May 31, 2021): 603. http://dx.doi.org/10.3390/jmse9060603.
Full textAGHELI, BAHRAM. "Approximate Solution of Bratu Differential Equations Using Trigonometric Basic Functions." Kragujevac Journal of Mathematics 45, no. 02 (April 2021): 203–14. http://dx.doi.org/10.46793/kgjmat2102.203a.
Full textLi, Bo, Yan Zhang, and Xiquan Liang. "Several Differentiation Formulas of Special Functions. Part III." Formalized Mathematics 14, no. 1 (January 1, 2006): 37–45. http://dx.doi.org/10.2478/v10037-006-0006-z.
Full textDevine, M. L. "Real time trigonometric function evaluation." Microprocessors and Microsystems 16, no. 8 (January 1992): 417–25. http://dx.doi.org/10.1016/0141-9331(92)90028-r.
Full textCHAND, A. K. B., M. A. NAVASCUÉS, P. VISWANATHAN, and S. K. KATIYAR. "FRACTAL TRIGONOMETRIC POLYNOMIALS FOR RESTRICTED RANGE APPROXIMATION." Fractals 24, no. 02 (June 2016): 1650022. http://dx.doi.org/10.1142/s0218348x16500225.
Full textPhan-Yamada, Tuyetdong, and Walter M. Yamada. "Exploroing Polar Curves with GeoGebra." Mathematics Teacher 106, no. 3 (October 2012): 228–33. http://dx.doi.org/10.5951/mathteacher.106.3.0228.
Full textHE, WEN-YU, and WEI-XIN REN. "ADAPTIVE TRIGONOMETRIC HERMITE WAVELET FINITE ELEMENT METHOD FOR STRUCTURAL ANALYSIS." International Journal of Structural Stability and Dynamics 13, no. 01 (February 2013): 1350007. http://dx.doi.org/10.1142/s0219455413500077.
Full textDissertations / Theses on the topic "TRIGONOMETRIC FUNCTION"
Qi, Hui, University of Western Sydney, of Science Technology and Environment College, and School of Computing and Information Technology. "Multi-polynomial higher order neural network group models for financial data and rainfall data simulation and prediction." THESIS_CSTE_CIT_Qi_H.xml, 2001. http://handle.uws.edu.au:8081/1959.7/343.
Full textMaster of Science (Hons)
Tutkienė, Simona. "Puasono dvimatės lygties vidinių reikšmių uždavinio sprendimas „tilto“ funkcijų metodais." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110803_092027-00523.
Full textIn this study Poisson function is solved using “bridge” functions method, meaning that all range is divided to separate zones (“bridges”) and to separate approximation polynomial multiplied of “bridge” functions. Common solution is equal to the sum of separate polynomial multiplied of “bridge” functions. To solve Poisson equation, the so-called "bridge" function was used. Differential equation, the solution we were looking via the "bridge" functions and products of powers of polynomials amount.
Lemos, Paulo Giovane Aparecido. "Funções aplicadas a física e química." Universidade Federal de Juiz de Fora (UFJF), 2013. https://repositorio.ufjf.br/jspui/handle/ufjf/3433.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-22T14:38:10Z (GMT) No. of bitstreams: 1 paulogiovaneaparecidolemos.pdf: 4378161 bytes, checksum: 2fc32bfa870de66c1664125db7d875e1 (MD5)
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-22T14:38:31Z (GMT) No. of bitstreams: 1 paulogiovaneaparecidolemos.pdf: 4378161 bytes, checksum: 2fc32bfa870de66c1664125db7d875e1 (MD5)
Made available in DSpace on 2017-02-22T14:38:31Z (GMT). No. of bitstreams: 1 paulogiovaneaparecidolemos.pdf: 4378161 bytes, checksum: 2fc32bfa870de66c1664125db7d875e1 (MD5) Previous issue date: 2013-08-15
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Neste trabalho apresentamos uma sequência de atividades utilizando os conceitos de alguns tipos funções: afim, logarítmica e trigonométricas. Tratando, também, a interdisciplinaridade com as disciplinas física e química. Nestas atividades serão construídas tabelas com informações sobre duas ou mais grandezas e, posteriormente, representações gráficas com o auxilio do Excel ou do Geogebra. A atividade sobre a função afim deve ser aplicada aos alunos do 9º ano do ensino fundamental ou alunos do 1º ou 3º ano do ensino médio, esta atividade visa ao aprendizado dos alunos, usando os conceitos de movimentos da física e, assim, mostrando aplicação das funções. Nesta atividade, o aluno deve construir um dispositivo pratico para coletar dados sobre posição e tempo do movimento de um móvel e este deve se aproximar do movimento retilíneo uniforme de um móvel. Com este dispositivo vamos fazer uma filmagem do movimento de um móvel, assim teremos maior facilidade para coletarmos as posições de acordo com tempo, e construir uma tabela. Com a tabela vamos usar o Excel e o Geogebra para construir o gráfico. Com a intervenção do professor de física, devemos chegar ao estudo de uma função afim ao estudo de uma reta em geometria analítica. A atividade logarítmica é sobre a aplicação do logaritmo no cálculo do pH de uma solução. Nesta atividade é acrescentado gradativamente base (HCl) a um ácido (NaOH). A verificação do pH da solução é feito com a fita de titulação e a constatação é feita a partir da função do pH que é pH = -log[H+] ou pOH = -log [OH-] → pH = 14 – pOH, com estas informações é construído uma tabela com informações sobre o volume de ácido, volume da base, o volume da solução e o pH. Com esta tabela construímos o gráfico do pH em função do volume de base usando o Excel ou Geogebra. Com esta atividade podemos também trabalhar noções intuitivas de limite quando o pH está próximo de 7 utilizando as duas fontes, a tabela e o gráfico e descobrindo até mesmo funções de correção da equação do pH. Esta atividade pode ser trabalhada com alunos do 1º ou 2º ano do ensino médio com a intervenção do professor de química quanto aos conceitos químicos aplicados nesta atividade. A atividade sobre funções trigonométricas tenta mostrar que é a função trigonométrica é melhor função para um estudo de movimentos periódicos ou qualquer estudo que envolva periodicidade. Nesta atividade vamos usar o software Tracker para coletarmos informações sobre as posições de um pêndulo simples em relação a sua projeção na horizontal e vertical de acordo com o tempo. O software Tracker é de grande ajuda nesta atividade para filmagem de múltiplas posições que é o que ocorre neste experimento. Esta atividade vem ao encontro do que propõe o PCNEM, pois se refere à função trigonométrica com a função periódica e não à parte algébrica que as identidades trigonométricas aborda. Todas as atividades estão de acordo com os propósitos do PCNEM, agem do CBC/Matemática - SEE/MG e trabalham a interdisciplinaridade entre Matemática e Física ou entre Matemática e Química, mostrando que a Matemática não se trata de uma ciência isolada como tantos alunos pensam.
On this workshop, we will show a few activities using ideas from linear function, logarithm function and trigonometric function ( this one will be associated with chemistry and physics themes) . Activities abording linear function must be applied to students from 9th year from the basic education or 1st and 3rd year from the high school students. First linear function wants to focus the main ideas of movements on physics and showing its applications on functions. On this activity , the student should build na easy way to collect informations about position and time from a movement of a mobile and this one must be the nearest possible from the uniform rectilinear motion. With this device, we are going to make a film of the movement of a mobile, so then we can build a table with all the information we need. With the table we can build graphs using programs such as Excel and Geogebra. Assisted by the physics teacher, we are supposed to make some conclusions about the study of the linear function and the straight on analytic geometry Logarithm function is used to calculate the pH of a chemistry solution. The solution will change its pH if basis(NaOH) or acid(HCl) be increased to it according to this function pH = -log[H+] ou pOH = -log [OH-] → pH = 14 – pOH, with this informations we can build a pH table in function of the volume and then a graph can be constructed using Excel or Geogebra. This activity can also work intuitive notions of limit when the pH close to 7 this through both the table and the graph and finding even functions of pH correction equation. This activity should be worked with students in the 1st or 2nd year of high school with teacher intervention chemistry as applied to chemical concepts in this activity. The trigonometric functions trys to show that it is the best function to a study of periodic movements or any study that involves periodicity. For this function we will use Tracker software to collect informations about the positions of a simple pendulum in relation to its projection in horizontal and vertical according to the time. Tracker is very helpful because it can film a lot of positions that occurs on this experience. All work activities interdisciplinarity between mathematics and physics or between mathematics and chemistry and so showing that mathematics is not just an isolated sciences as many students think.
Silva, Jander Carlos Silva e. "As novas tecnologias no contexto escolar: uma abordagem sobre aplicações do GeoGebra em trigonometria." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-17122015-104430/.
Full textThis work presents na approach to new Technologies in the educational context, with a view to applications of the GeoGebra in trigonometry. The goal is to guide teachers of the basic education in preparing lessons using GeoGebra, aiming to enrich trigonometry the in the classroom. The proposed activities are divided into three groups : basic trigonometry, trigonometry functions and trigonometry equations. Each one has a high level of details, in order to encourage the use by teachers with little or no knowledge of the software, and also encourage activities that promote the creation by the students. The idea is that students build the activities, learning how to use the software, interacting by moving objects, and taking their conclusions about the activities. In general, one intends to contribute to the development of logical thinking of students through the teaching of Mathematics adding the use of technology, so that the student is not only a spectator, but, participant of the construction of their own activity.
Li, Kai, Heinz Rüdiger, Rocco Haase, and Tjalf Ziemssen. "An Innovative Technique to Assess Spontaneous Baroreflex Sensitivity with Short Data Segments: Multiple Trigonometric Regressive Spectral Analysis." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-233899.
Full textBruginski, Willian José. "Desenvolvimento de planilhas dinâmicas utilizando o software Geogebra para o estudo de funções trigonométricas." Universidade Tecnológica Federal do Paraná, 2014. http://repositorio.utfpr.edu.br/jspui/handle/1/802.
Full textThis work was developed with the intention of creating a new tool to assist in teaching trigonometry. The tool has been created with the support of technological resources and Geogebra software has been chosen for the development of this project. Because the amount of resources that the software provides, especially the ability to work seamlessly geometry and algebra, this was a great ally in the creation of dynamic spreadsheets. Following was developed theoretical part of trigonometric functions with their definitions, characteristics, construction of graphs and contributions that dynamic spreadsheets provide this study were presented.
Oliveira, Luiz Fernando Mosolino de. "Funções trigonométricas." reponame:Repositório Institucional da UFABC, 2016.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016.
Este trabalho foi desenvolvido para auxiliar alunos ingressantes no ensino superior, revisando t opicos da trigonometria e de funcoes trigonometricas, podendo auxiliar tambem alunos do ensino medio, professores ou interessados no assunto. Este trabalho parte de estudos iniciais da trigonometria e aborda de maneira simples a construcao de graficos de funcoes trigonometricas da forma f(x) = a+b. sen(c.x+d), onde a, b, c e d sao coeficientes reais que alteram a amplitude, a imagem e período das funcões trigonometricas. Sao deduzidas as formulas de adicao de arcos, que auxiliam na demonstracao de outras equacoes, como por exemplo o teorema das relacoes entre as cordas de circunferencia, de Ptolomeu,. Tambem apresentamos aplicacoes da trigonometria aos triangulos nao retangulos, como a lei dos senos e a lei dos cossenos, utilizada tambem para um triangulo qualquer, auxiliando na demonstracao de equacoes importantes, como por exemplo da força resultante, em Física.
In this work we analyze a simplified version of the Monopoly game using a Markov chain model with discrete time parameter. In the first chapter we discuss on the Classical Theory of Probability, bringing the most important results for this study, preceded by a brief introduction about the ideas of chance throughout the history of mankind and leading thinkers involved in the development of this theory. In the second chapter we make a historical introduction to stochastic processes and Markov chains; then we explain the fundamental concepts of Markov Chains, putting some examples and finally discussing the ergodicity of a Markov chain. In the third chapter, after a brief explanation of the emergence and subsequent evolution of the Monopoly game throughout the twentieth century, we analyze the dynamics of the game by the model of a Markov chain, using as an object of study a simpler version of the game in question.
SOUZA, Luciano. "New trigonometric classes of probabilistic distributions." Universidade Federal Rural de Pernambuco, 2015. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5127.
Full textMade available in DSpace on 2016-08-01T12:46:49Z (GMT). No. of bitstreams: 1 Luciano Souza.pdf: 1424173 bytes, checksum: 75d7ff2adb5077203e1371925327b71e (MD5) Previous issue date: 2015-11-13
In this thesis, four new probabilistic distribution classes are presented and investigated: sine, cosine, tangent and secant. For each of which a new kind of distribution was created, which were used for modelling real life data.By having an exponential distribution to compare the biases, a numerical simulation was obtained, making it possible to verify that the bias tends to zero as the sample size is increased. In addition to that, some numerical results for checking maximum likelihood estimates, as well as the results for finite samples, were obtained, just as much as several class properties and their respective distributions were also obtained, along with the expansions, maximum likelihood estimates, Fisher information, the first four moments, average, variance, skewness, and kurtosis, the generating function of moments and Renyi’s entropy. It was evidenced that all distributions have shown good fit when applied to real life data, when in comparison to other models. In order to compare the models, the Akaike Information Criterion (AIC), the Corrected Akaike Information Criterion (CAIC), the Bayesian Information Criterion (BIC), the Hannan Quinn Information Criterion (HQIC) were used, along with two other main statistic sources: Cramer-Von Mises and Anderson-Darling. As a final step, the results of the analyses and the comparison of the results are brought up, as well as a few directions for future works.
Nesta tese apresentamos e investigamos quatro novas classes trigonométricas de distribuições probabilísticas. As classes seno, cosseno, tangente e secante. Para cada uma das novas classes foi criada uma nova distribuição. Estas quatro novas distribuições foram usadas na modelagem de dados reais. Obtivemos uma simulação numérica, usando como base a distribuição exponencial, para se comparar os vicios (bias) e verificamos que, a medida que aumentamos o tamanho da amostra, o bias tende a zero. Alguns resultados numéricos para ver estimativas de máxima verossimilhança e os resultados para amostras finitas foram obtidos. Várias propriedades das classes e as suas distribuições foram obtidos. Obtemos as expansões, as estimativas de máxima verossimilhança, informações de Fisher, os quatro primeiros momentos, média, variância, assimetria e curtose, a função geradora de momentos e a entropia Rényi. Mostramos que todas as distribuições têm proporcionado bons ajustes quando aplicadas a dados reais, em comparação com outros modelos. Na comparação dos modelos foram utilizados: o Akaike Information Criterion (AIC), o Akaike Information Criterion Corrigido (CAIC), a informação Bayesian Criterion (BIC), o critério de informação Hannan Quinn (HQIC) e duas das principais estatísticas também foram utilizadas: Cramer -von Mises e Anderson-Darling. Por fim, apresentamos os resultados da análise e comparação dos resultados, e orientações para trabalhos futuros.
Javed, Mohsin. "Algorithms for trigonometric polynomial and rational approximation." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:23a36d72-0299-4c63-98e8-d0aa088c062e.
Full textRess, David Andress. "Development of Fuzzy Trigonometric Functions to Support Design and Manufacturing." NCSU, 2010. http://www.lib.ncsu.edu/theses/available/etd-03112010-104230/.
Full textBooks on the topic "TRIGONOMETRIC FUNCTION"
Heppler, G. R. Performance of trigonometric basis function finite elements in Timoshenko beams. New York: AIAA, 1987.
Find full textGottlieb, David. On the Gibbs phenomenon V: Recovering exponential accuracy from collocation point values of a piecewise analyytic function. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Find full textWallington, Jeff. Trigonometric functions. London: Institution of Electrical and Electronics Incorporated Engineers, 1988.
Find full textNikolaevich, Chubarikov Vladimir, and Karat͡s︡uba Anatoliĭ Alekseevich, eds. Trigonometric sums in number theory and analysis by. Berlin: Walter de Gruyter, 2004.
Find full textDavid, Edmunds, and SpringerLink (Online service), eds. Eigenvalues, Embeddings and Generalised Trigonometric Functions. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textKeedy, Mervin Laverne. Trigonometry: Triangles and functions. 4th ed. Reading, Mass: Addison-Wesley Pub. Co., 1986.
Find full textLang, Jan, and David Edmunds. Eigenvalues, Embeddings and Generalised Trigonometric Functions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18429-1.
Full textKeedy, Mervin Laverne. Algebra & trigonometry: A functions approach. 4th ed. Reading, Mass: Addison-Wesley, 1986.
Find full text1943-, Miller Robert, ed. Precalc with trigonometry. 2nd ed. New York: McGraw-Hill, 1998.
Find full textBook chapters on the topic "TRIGONOMETRIC FUNCTION"
Beebe, Nelson H. F. "Trigonometric functions." In The Mathematical-Function Computation Handbook, 299–340. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64110-2_11.
Full textLang, Jan, and Osvaldo Méndez. "Recent Advances on Generalized Trigonometric Systems in Higher Dimensions." In Function Spaces and Inequalities, 241–56. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6119-6_12.
Full textYang, Bicheng. "Equivalent Conditions of a Reverse Hilbert-Type Integral Inequality with the Kernel of Hyperbolic Cotangent Function Related to the Riemann Zeta Function." In Trigonometric Sums and Their Applications, 289–305. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37904-9_14.
Full textRassias, Michael Th, Bicheng Yang, and Andrei Raigorodskii. "On a Half-Discrete Hilbert-Type Inequality in the Whole Plane with the Kernel of Hyperbolic Secant Function Related to the Hurwitz Zeta Function." In Trigonometric Sums and Their Applications, 229–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37904-9_11.
Full textKorolev, Maxim A., and Andrei V. Shubin. "The Second Moment of the First Derivative of Hardy’s Z-Function." In Trigonometric Sums and Their Applications, 169–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37904-9_9.
Full textLubinsky, D. S. "On Marcinkiewicz-Zygmund Inequalities at Hermite Zeros and Their Airy Function Cousins." In Trigonometric Sums and Their Applications, 119–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37904-9_6.
Full textWalsh, J. L., and W. E. Sewell. "Note on Degree of Trigonometric and Polynomial Approximation to an Analytic Function." In Joseph L. Walsh, 396–404. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-2114-2_30.
Full textShuvo, Shifat Nayme, Fuad Hasan, Mohi Uddin Ahmed, Syed Akhter Hossain, and Sheikh Abujar. "MathNET: Using CNN Bangla Handwritten Digit, Mathematical Symbols, and Trigonometric Function Recognition." In Advances in Intelligent Systems and Computing, 515–23. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7394-1_47.
Full textGorev, V., A. Gusev, V. Korniienko, and M. Aleksieiev. "Kolmogorov–Wiener Filter Weight Function for Stationary Traffic Forecasting: Polynomial and Trigonometric Solutions." In Current Trends in Communication and Information Technologies, 111–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76343-5_7.
Full textBerry, John, and Patrick Wainwright. "Trigonometric Functions." In Foundation Mathematics for Engineers, 107–40. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11717-8_4.
Full textConference papers on the topic "TRIGONOMETRIC FUNCTION"
Lorenzo, Carl F. "The Fractional Meta-Trigonometry Based on the R-Function: Part I—Background, Definitions, and Complexity Function Graphics." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86731.
Full textLorenzo, Carl F. "The Fractional Meta-Trigonometry Based on the R-Function: Part II—Parity Function Graphics, Laplace Transforms, Fractional Derivatives, Meta-Properties." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86733.
Full textWoolley, Ronald Lee. "Transitional Trigonometric Functions." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66426.
Full textWang, Jianjun, Zongben Xu, and Jia Jing. "Constructive Trigonometric Function Approximation of Neural Networks." In Third International Conference on Semantics, Knowledge and Grid (SKG 2007). IEEE, 2007. http://dx.doi.org/10.1109/skg.2007.17.
Full textWang, Jianjun, Zongben Xu, and Jia Jing. "Constructive Trigonometric Function Approximation of Neural Networks." In Third International Conference on Semantics, Knowledge and Grid (SKG 2007). IEEE, 2007. http://dx.doi.org/10.1109/skg.2007.212.
Full textParri, Jonathan, and Saurabh Ratti. "Trigonometric function approximation neural network based coprocessor." In 2009 2nd Microsystems and Nanoelectronics Research Conference (MNRC 2009). IEEE, 2009. http://dx.doi.org/10.1109/mnrc15848.2009.5338938.
Full textLi, Zongmin, Kunpeng Hou, and Hua Li. "Similarity Measurement Based on Trigonometric Function Distance." In 2006 First International Symposium on Pervasive Computing and Applications. IEEE, 2006. http://dx.doi.org/10.1109/spca.2006.297573.
Full textSrikanthan, Thambipillai, and Bimal Gisuthan. "Pipelining flat CORDIC-based trigonometric function generators." In International Symposium on Microelectronics and Assembly, edited by Bernard Courtois, Serge N. Demidenko, and Lee Y. Lau. SPIE, 2000. http://dx.doi.org/10.1117/12.405412.
Full textMokhtar, A. S. N., M. I. Ayub, N. Ismail, and N. G. Nik Daud. "Implementation of trigonometric function using CORDIC algorithms." In INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (IntCET 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5022934.
Full textRadwan, A. G., and A. S. Elwakil. "The generalized exponential function and fractional trigonometric identities." In 2011 European Conference on Circuit Theory and Design (ECCTD). IEEE, 2011. http://dx.doi.org/10.1109/ecctd.2011.6043856.
Full textReports on the topic "TRIGONOMETRIC FUNCTION"
Wester, D. W. Trigonometric functions of nonlinear quantities. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10182638.
Full text