Academic literature on the topic 'Vehicle to grid (V2G)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vehicle to grid (V2G).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vehicle to grid (V2G)"
Sree lakshmi, Dr G., G. Divya, and G. Sravani. "V2G Transfer of Energy to Various Applications." E3S Web of Conferences 87 (2019): 01019. http://dx.doi.org/10.1051/e3sconf/20198701019.
Full textRodríguez Licea, Martín Antonio. "Fault Tolerant Boost Converter with Multiple Serial Inputs and Output Voltage Regulation for Vehicle-to-Aid Services." Energies 13, no. 7 (April 3, 2020): 1694. http://dx.doi.org/10.3390/en13071694.
Full textCarmeli, Maria Stefania, Nicola Toscani, and Marco Mauri. "Electrothermal Aging Model of Li-Ion Batteries for Vehicle-to-Grid Services Evaluation." Electronics 11, no. 7 (March 26, 2022): 1042. http://dx.doi.org/10.3390/electronics11071042.
Full textRodríguez-Licea, Martín-Antonio, Francisco-J. Perez-Pinal, Allan-Giovanni Soriano-Sánchez, and José-Antonio Vázquez-López. "Noninvasive Vehicle-to-Load Energy Management Strategy to Prevent Li-Ion Batteries Premature Degradation." Mathematical Problems in Engineering 2019 (May 23, 2019): 1–9. http://dx.doi.org/10.1155/2019/8430685.
Full textVadi, Bayindir, Colak, and Hossain. "A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies." Energies 12, no. 19 (September 30, 2019): 3748. http://dx.doi.org/10.3390/en12193748.
Full textV. Manikanta, Prasad, A. Lokesh, Kumar D. Dheeraj, V. Das, and Rao G. Poornachandra. "Vehicle to grid (V2G) and grid to vehicle (G2V) energy management system." i-manager's Journal on Power Systems Engineering 10, no. 2 (2022): 6. http://dx.doi.org/10.26634/jps.10.2.18830.
Full textTu, Yi Yun, Xiao Yan Bian, Can Li, Lin Cheng, and Hong Zhong Li. "Electric Vehicles and the Vehicle-to-Grid Technology." Advanced Materials Research 433-440 (January 2012): 4361–65. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.4361.
Full textMojumder, Md Rayid Hasan, Fahmida Ahmed Antara, Md Hasanuzzaman, Basem Alamri, and Mohammad Alsharef. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery." Sustainability 14, no. 21 (October 25, 2022): 13856. http://dx.doi.org/10.3390/su142113856.
Full textSundararajan, Raghul Suraj, and M. Tariq Iqbal. "Dynamic Modelling of a Solar Energy System with Vehicle to Home and Vehicle to Grid Option for Newfoundland Conditions." European Journal of Electrical Engineering and Computer Science 5, no. 3 (June 13, 2021): 45–53. http://dx.doi.org/10.24018/ejece.2021.5.3.329.
Full textDik, Abdullah, Siddig Omer, and Rabah Boukhanouf. "Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration." Energies 15, no. 3 (January 22, 2022): 803. http://dx.doi.org/10.3390/en15030803.
Full textDissertations / Theses on the topic "Vehicle to grid (V2G)"
Zabihi, Sheikhrajeh Nima. "Vehicle-to-grid (V2G) and grid conditioning systems." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3426634.
Full textIl termine Vehicle-to-Grid (V2G) si riferisce alla tecnologia che permette uno scambio di potenza bidirezionale tra la rete elettrica e le batterie dei veicoli elettrici di tipo plug-in (PEV). La tecnologia V2G può essere un elemento chiave della rete intelligente, che può utilizzare le batterie dei veicoli come un sistema di accumulo locale. Le batterie dei veicoli possono contribuire alla stabilità della rete e a soddisfare la domanda di energia soprattutto nelle ore di punta. Un PEV ha bisogno di un caricatore bidirezionale per implementare il V2G, e, di conseguenza, gli studi riguardo il loro progetto, la funzionalità e l'efficienza sono del massimo interesse. Questa tesi descrive lo stato dell’arte di questi caricabatteria e tratta alcuni aspetti di un convertitore bidirezionale e alcuni casi di studio relativi a questo argomento. L'obiettivo principale di questo lavoro è di sviluppare il progetto e gli algoritmi di controllo di un caricabatteria bidirezionale con capacità di caricare la batteria di un veicolo plug-in e contemporaneamente di agire come filtro attivo nei confronti della linea di alimentazione. Dopo il primo capitolo introduttivo, nel secondo capitolo viene riportata la terminologia usata in questo campo di ricerca. Vengono anche brevemente descritte diverse strategie intelligenti di ricarica, gli approcci per la realizzazione dei caricabatteria dei PEV e gli standard di ricarica. L’analisi dei vari tipi di caricabatteria viene approfondita nel terzo capitolo. Sono considerati il caricabatteria tradizionale (CBC) con front-end costituito da un raddrizzatore a diodi, il caricabatteria dotato di correttore del fattore di potenza (PFC), il caricabatteria bidirezionale (BBC), e il caricabatteria integrale (IBC). Nel capitolo quattro vengono date le definizioni della potenza elettrica in condizioni non sinusoidali assieme ad alcuni esempi delle inadeguatezze della teoria classica della potenza nel descrivere fenomeni non lineari che si verificano durante il funzionamento di un sistema di potenza. Nel quinto capitolo sono presentati i concetti di base della teoria potenza istantanea attiva e reattiva (nota anche come teoria pq) applicata alla compensazione di sistemi non sinusoidali. Vengono introdotte le definizioni della potenza reale, immaginaria e di sequenza zero e viene mostrato come questa teoria renda agevole la comprensione dei fenomeni causati da tensioni o correnti non sinusoidali. Essa è particolarmente adatta per il progetto di un caricabatteria quando esso viene visto come un condizionatore di potenza. Il capitolo sei è dedicato ai concetti di base dei filtri attivi di tipo shunt. Essi possono svolgere diversi tipi di funzioni, come la compensazione delle armoniche di corrente generate da carichi non lineari impedendo la loro propagazione nella rete. L’algoritmo di compensazione basato sulle potenze definite nel riferimento αβ è molto flessibile e quindi la teoria della potenza istantanea è stata considerata come la base per lo sviluppo del sistema di controllo dei filtri attivi. Alcuni esempi di compensazione descritti nel capitolo precedente sono stati simulati e sono stati riportati i risultati. Nel capitolo sette è considerato il dimensionamento dei dispositivi di potenza che costituiscono il caricabatteria in relazione ai diversi servizi ausiliari che esso può fornire. Sono stati dimensionati in tensione e corrente gli interruttori elettronici di potenza, gli induttori di accoppiamento con la rete e gli altri componenti passivi. Nel capitolo otto viene considerato un caricabatteria che alimenta il proprio carico e contemporaneamente compensa i carichi non lineari connessi nelle vicinanze, costituiti da raddrizzatori. Queste funzionalità aggiuntive in termini di condizionamento della potenza di rete sono state quantificate al fine di determinare la capacità di un caricabatteria costituito da determinati componenti attivi e passivi di supportare la rete svolgendo la funzione di filtro attivo. Nel nono capitolo sono state dimensionate le induttanze di filtro di un caricabatteria per uno specifico caso di studio in cui era richiesta la capacità sia di ricaricare la batteria che di iniettare potenza attiva in rete, sia nel caso di connessione monofase che trifase. La conoscenza dell’ampiezza dell’ondulazione di corrente è un requisito importante per il dimensionamento delle induttanze. Perciò è stato effettuato un calcolo preciso di questa grandezza sia nel caso di un caricabatteria connesso alla rete monofase e operante secondo la tecnica di PWM, sia nel caso di connessione alla rete trifase e adozione della tecnica SVM. Nel capitolo dieci viene considerato un caso di studio riguardo il dimensionamento di un filtro LCL. IL capitolo undici contiene uno studio teorico dei regolatori risonanti. Essi risolvono il problema posto dai convenzionali regolatori PI, che quando sono impiegati per il controllo di grandezze alternate, come accade nel caso delle correnti in un convertitore dc-ac, non sono in grado di annullare l’errore a regime a causa del guadagno finito alla frequenza di funzionamento. Un regolatore risonante presenta invece un guadagno idealmente infinito alla frequenza di funzionamento e quindi garantisce un errore a regime nullo. L’efficacia dei regolatori risonanti è stata verificata per mezzo di simulazioni. Nel capitolo dodici sono riportate le normative riguardanti i connettori, le modalità di ricarica e la connessione dei caricabatteria dei PEV alla rete elettrica. Esse mirano a definire una procedura di ricarica comune a tutti i PEV e tutte le infrastrutture di ricarica, siano esse pubbliche o private.
Rafter, Jackson C. "Vehicle to Grid: An Economic and Technological Key to California's Renewable Future." Scholarship @ Claremont, 2016. http://scholarship.claremont.edu/pomona_theses/146.
Full textAlshogeathri, Ali Mofleh Ali. "Vehicle-to-Grid (V2G) integration with the power grid using a fuzzy logic controller." Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/20606.
Full textDepartment of Electrical and Computer Engineering
Shelli K. Starrett
This thesis introduces a Vehicle to Grid (V2G) system which coordinates the charging, and discharging among the Electric Vehicles (EVs) and two-test systems, to help with peak power shaving and voltage stability of the system. Allowing EVs to charge and discharge without any control may lead to voltage variations and disturbance to the grid, but if the charging and discharging of the EVs is done in a smart manner, they can help the power network. In this thesis, fuzzy logic controllers (FLC) are used to control the flow of power between the grid and the electric vehicles. The presented work in this thesis mainly focuses on the control architecture for a V2G station that allows for using EVs batteries to help the grid’s voltage stability. The designed controllers sustain the node voltage, and thus also achieve peak shaving. The proposed architectures are tested on 16 -generator and 6-generator test systems to examine the effectiveness of the proposed designs. Five fuzzy logic schemes are tested to illustrate the V2G system’s ability to influence system voltage stability. The major contributions of this thesis are as follows: • FLC based control tool for V2G station present at a weak bus in the system. • Investigate the effect of the station location and voltage sensitivity. • Comparison of chargers providing real power versus reactive power. • Simulation of controller and system interactions in a daily load curve cycle. Keywords: State of Charge (SOC), Electric Vehicle (EV), Fuzzy Logic Controller (FLC), Vehicle to grid (V2G), and Power System Voltage Stability.
Sarabi, Siyamak. "Contribution of Vehicle-to-Grid (V2G) to the energy management of the Electric Vehicles fleet on the distribution network." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0050/document.
Full textThe power and energy density increment of the electrical storage system (ESS) of electric vehicles/Plug-in hybrid electric vehicles (EVs/PHEVs), while maintaining reasonable costs for the user, and the development of converters of electrical energy to high power density and more and more powerful, will encourage the mass production of electrified vehicles. Beyond, electric vehicles (EVs/PHEVs) require a connection to the grid for the charging of the batteries. The insertion of these new loads in the grid will then present several issues and significant impacts for electrical networks since they must respond locally to non-negligible power requests. This PhD thesis aims to study and reduce the impacts of the EVs/PHEVs on the distribution grid thanks to the vehicle-to-Grid (V2G) technology. The electric vehicle supplies the grid depending on the needs of the electrical system (bi-directional model) and offers a flexible service. These works of research have aimed to deepen the concepts in which the supply of electric vehicles (EV) and/or hybrids of type PHEV is integrated with the management of the distribution network and the future "energy hubs". The objective of the thesis is at first to examine the possible ancillary services provided by V2G, then to design a system of supervision which will ensure an energy management of these new loads by choosing the adequate mode of charge/discharge and also taking into consideration the request of local consumption and the presence of renewable production of type photovoltaic and wind in the distribution grid. This supervision will be in a first step "offline" and subsequently "online". The methods which are used in this thesis are as follows; artificial intelligence such as machine learning and fuzzy logic, the predictive control as well as the methods of hybrids optimization (stochastic and deterministic)
Zahid, Zaka Ullah. "Design, Modeling and Control of Bidirectional Resonant Converter for Vehicle-to-Grid (V2G) Applications." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/77686.
Full textPh. D.
Chowdhury, Md Abu Raihan. "Pre-feasibility study of V2G system in the micro-grid of St. Martine Island, Bangladesh." Thesis, Uppsala universitet, Elektricitetslära, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-409575.
Full textThe electricity that is generated from non-renewable sources causesenvironmental pollution and climate changes. Fossil fuel uses leads to thedepletion of fossil fuel resources as well as global warming. On the other hand, renewable energy sources can be used to produce electricity with very few or no CO2 emissions. So, now governments are focusing on renewable energy production. But solar, wind, and other types of renewable energy sources have intermittency. They are not continuously available due to natural factors that cannot be controlled. So, renewable energy needs to be utilized when it is available, or its intermittency can be overcome by energy storage. All Electric vehicle uses a battery pack of large capacity to power the electric motors. These batteries can be used to store the energy that is generated from renewable sources and use them when needed. Besides, the electric grid must always stay in balance. With the development of variable renewable energy production, the management of this balance has become complex. Vehicle to grid is a technology that enables energy to be pushed back to the grid from the battery of an electric car and helps to manage fluctuations on the electricity grid. It helps to balance the grid by charging the battery when renewableenergy is available and load demand is low, then sending energy back to the grid when load demand is high. However, St. Martine Island is a small Island in Bay of Bengal about 9km south of the mainland of Bangladesh. Nearly 6000 people are living there. Since the island is far away from the mainland, grid connection is almostimpossible in terms of cost and geographic location. St. Martine Island has a very high solar power potential, but very low average wind speed. Currently, the electricity demand is fulfilled by stand-alone diesel generators, PV panels, and wind turbines. The current microgrid gets a high load demand during peak hours which is between 6 pm to 11 pm. During this time grid become fully dependent on diesel generators which leads to fossil fuel uses andenvironmental pollution. Here, the project's key objective is to determine the prospects of V2Gtechnology on St. Martine Island to level the peak load during peak hours, given that St. Martine Island is a low windy island with a high average number of yearly peak sun hours. Another goal is to examine the degree to which the share of solar power can be increased by a V2G system in St. Martine Island. In the project, at first, we have modeled a microgrid using Simulink Simscape software. Simulink Simscape enables modeling of a system by putting direct physical connections between the block diagram. In the microgrid model, there are five main sections, which have been designed by assemblingfundamental components in the schematic. A V2G system has been modeled which consists of 100 electric cars as aprototype. Each car has a battery of 100 kWh capacity. Considering thecondition of St. Martine Island and the objective of the project, we have made some assumptions while modeling the V2G section. The results of the project showed that the V2G system significantly smoothed out the peak load during peak hours. It also demonstrated that charging electric cars during daytime by solar power and sending energy back to the grid during peak hours enables the V2G system to accommodate more renewable solar energy sources in the microgrid of St. Martine Island. Finally, the project evident that the V2G system can be integrated into the microgrid of St. Martine Island to level the peak load and to increase the share of solar energy in the total energy uses of the Island.
Chhean, Rithy-Newton Mao. "VEHICLE-TO-GRID (V2G) BIDIRECTIONAL POWER CONVERTER DESIGN AND INTEGRATION FOR 2011 CHEVROLET VOLT - EXTENDED RANGE ELECTRIC VEHICLE (EREV) DRIVETRAIN." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/893.
Full textGIORDANO, FRANCESCO. "Optimal Management of Network Integrated EV Batteries by Individual EV Usage Forecasts: Vehicle to Home and Vehicle to Grid Case Studies." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2898046.
Full textHjalmarsson, Johannes. "Elektrifiering av transportsektorn i Göteborgs kommun : Nätintegrering av plug in-fordon och V2G-tjänster hos aggregator." Thesis, Uppsala universitet, Elektricitetslära, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355778.
Full textDe, los Ríos Vergara Andrés, and Kristen E. Nordstrom. "Building a business case for corporate fleets to adopt vehicle-to-grid technology (V2G) and participate in the regulation service market." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68822.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 95-98).
Electric (EV) and Plug-in Hybrid Electric vehicles (PHEV) continue to gain attention and market share, not only as options for consumers but also for corporate fleets. EVs and PHEVs can contribute to lower operating costs through reduced maintenance requirements and enhanced fuel economy. In addition, a fleet of EVs or PHEVs, when parked and aggregated in a sizeable number, can provide regulation services to the grid through the electricity stored in the vehicle's batteries. This opportunity is known as Vehicle-to-grid technology (V2G). This thesis evaluates the economics for V2G-enabled fleets to participate in the regulation services market. In order to build a business case for fleet managers, we constructed a 10-year cash flow model that compares the operating, infrastructure, and capital costs, as well as the revenue opportunities for EVs, PHEVs, and ICEs. To quantify potential revenues, we adapted a tool that the ISO New England has used to simulate the revenues of participants in the regulation market for an alternative energy pilot. We show that ICEs, while having the lowest retail value, actually have the greatest NPV due to their high operating costs and inability to participate in the regulation services market. EVs have the highest retail value, but due to their large battery size are able to provide the most regulation services. The opportunity for V2G is critical for the attractiveness of the EV. PHEVs offer lower V2G revenue opportunity than the EVs but have greater operational flexibility. We determined that V2G revenue potential is driven by the charger capacity and battery size and there are tradeoffs associated with these components. A larger battery and charger will generate more money from regulation services, but their high investment cost may outweigh these benefits. The correct combination of charger capacity, battery size, and state of charge (SOC) is important. If the charger capacity is too large and SOC too high or low, a small battery can be charged or depleted too quickly, hindering its ability to provide regulation services.
by Andrés De los Ríos Vergara and Kristen E. Nordstrom.
M.Eng.in Logistics
Books on the topic "Vehicle to grid (V2G)"
Beck, Leonard J. V2G-101: A text about vehicle-to-grid, the technology which enables a future of clean and efficient electric-powered transportation. Newark, Del: Leonard Beck, 2009.
Find full textNoel, Lance, Gerardo Zarazua de Rubens, Johannes Kester, and Benjamin K. Sovacool. Vehicle-to-Grid. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04864-8.
Full textBayram, İslam Şafak. Plug-in electric vehicle grid integration. Norwood, MA: Artech House, 2017.
Find full textNational Renewable Energy Laboratory (U.S.), ed. Electric vehicle grid integration for sustainable military installations. Golden, Colo.]: National Renewable Energy Laboratory, 2011.
Find full textUnited States. National Aeronautics and Space Administration., ed. Multiple-body simulation with emphasis on integrated space shuttle vehicle. San Jose, CA: MCAT Institute, 1993.
Find full textUnited States. National Aeronautics and Space Administration., ed. Multiple-body simulation with emphasis on integrated space shuttle vehicle. San Jose, CA: MCAT Institute, 1993.
Find full textUnited States. National Aeronautics and Space Administration., ed. Multiple-body simulation with emphasis on integrated space shuttle vehicle. San Jose, CA: MCAT Institute, 1993.
Find full textLi, Canbing, Yijia Cao, Yonghong Kuang, and Bin Zhou. Influences of Electric Vehicles on Power System and Key Technologies of Vehicle-to-Grid. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49364-9.
Full textE, Smith Robert, Greene Francis A, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Numerical analysis and simulation of an assured crew return vehicle flow field. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.
Find full textCenter, Langley Research, ed. Surface modeling and grid generation of orbital sciences X34 vehicle (phase I): Under contract NAS1-96014. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Find full textBook chapters on the topic "Vehicle to grid (V2G)"
Noel, Lance, Gerardo Zarazua de Rubens, Johannes Kester, and Benjamin K. Sovacool. "Consumers, Society and V2G." In Vehicle-to-Grid, 141–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04864-8_6.
Full textNoel, Lance, Gerardo Zarazua de Rubens, Johannes Kester, and Benjamin K. Sovacool. "The Potential Benefits of V2G." In Vehicle-to-Grid, 33–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04864-8_2.
Full textNoel, Lance, Gerardo Zarazua de Rubens, Johannes Kester, and Benjamin K. Sovacool. "The Technical Challenges to V2G." In Vehicle-to-Grid, 65–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04864-8_3.
Full textNoel, Lance, Gerardo Zarazua de Rubens, Johannes Kester, and Benjamin K. Sovacool. "History, Definition, and Status of V2G." In Vehicle-to-Grid, 1–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04864-8_1.
Full textNoel, Lance, Gerardo Zarazua de Rubens, Johannes Kester, and Benjamin K. Sovacool. "V2G Deployment Pathways and Policy Recommendations." In Vehicle-to-Grid, 167–90. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04864-8_7.
Full textNoel, Lance, Gerardo Zarazua de Rubens, Johannes Kester, and Benjamin K. Sovacool. "Realizing and Problematizing a V2G Future." In Vehicle-to-Grid, 191–233. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04864-8_8.
Full textNoel, Lance, Gerardo Zarazua de Rubens, Johannes Kester, and Benjamin K. Sovacool. "The Economic and Business Challenges to V2G." In Vehicle-to-Grid, 91–116. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04864-8_4.
Full textNoel, Lance, Gerardo Zarazua de Rubens, Johannes Kester, and Benjamin K. Sovacool. "The Regulatory and Political Challenges to V2G." In Vehicle-to-Grid, 117–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04864-8_5.
Full textLogavani, K., A. Ambikapathy, G. Arun Prasad, Ahmad Faraz, and Himanshu singh. "Smart Grid, V2G and Renewable Integration." In Electric Vehicles, 175–86. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9251-5_10.
Full textMa, Zhongjing, and Suli Zou. "Efficient Vehicle-to-Grid (V2G) Coordination in Smart Grid Under Auction Games." In Efficient Auction Games, 173–202. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2639-8_7.
Full textConference papers on the topic "Vehicle to grid (V2G)"
Kanaan, Laith, and Atif Iqbal. "Design and Development of Rapid EV Charging System with V2G and V2H Operations." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0070.
Full textBentley, Edward, Ghanim Putrus, Gill Lacey, Richard Kotter, Yue Wang, Ridoy Das, Zunaib Ali, and Jos Warmerdam. "On Beneficial Vehicle-to-Grid (V2G) Services." In 2021 9th International Conference on Modern Power Systems (MPS). IEEE, 2021. http://dx.doi.org/10.1109/mps52805.2021.9492671.
Full textGuo, Dalong, Peizhong Yi, Chi Zhou, and Jia Wang. "Optimal electric vehicle scheduling in smart home with V2H/V2G regulation." In 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA). IEEE, 2015. http://dx.doi.org/10.1109/isgt-asia.2015.7387135.
Full textYoon, Seungwook, Kanggu Park, and Euiseok Hwang. "Connected electric vehicles for flexible vehicle-to-grid (V2G) services." In 2017 International Conference on Information Networking (ICOIN). IEEE, 2017. http://dx.doi.org/10.1109/icoin.2017.7899469.
Full textMkhize, Savious, and David G. Dorrell. "Practical Limitations of Vehicle to Grid (V2G) Infrastructure." In 2019 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2019. http://dx.doi.org/10.1109/icit.2019.8754965.
Full textScholer, Rich. "Educational short course 3: Smart Grid charging and V2G." In 2011 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2011. http://dx.doi.org/10.1109/vppc.2011.6042967.
Full textTurker, Harun, Seddik Bacha, Daniel Chatroux, and Ahmad Hably. "Modelling of system components for Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) applications with Plug-in Hybrid Electric Vehicles (PHEVs)." In 2012 IEEE PES Innovative Smart Grid Technologies (ISGT). IEEE, 2012. http://dx.doi.org/10.1109/isgt.2012.6175652.
Full textHarouri, Khadija El, Soumia El Hani, Imade Aboudrar, Aghmadi Ahmed, and Nisrine Naseri. "Energy Production by Electric Vehicle for Vehicle-to-Grid (V2G) Applications." In 2018 6th International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2018. http://dx.doi.org/10.1109/irsec.2018.8702922.
Full textGa-Gang Choi, Doo-Yong Jung, Sung-Chon Choi, Chung-Yuen Won, Yong-Chae Jung, and Jang-Hyoun Youm. "10kW rapid-charger for electric vehicle considering vehicle to grid(V2G)." In 2012 7th International Power Electronics and Motion Control Conference (IPEMC 2012). IEEE, 2012. http://dx.doi.org/10.1109/ipemc.2012.6259283.
Full textSami, I., Z. Ullah, K. Salman, I. Hussain, S. M. Ali, B. Khan, C. A. Mehmood, and U. Farid. "A Bidirectional Interactive Electric Vehicles Operation Modes: Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) Variations Within Smart Grid." In 2019 International Conference on Engineering and Emerging Technologies (ICEET). IEEE, 2019. http://dx.doi.org/10.1109/ceet1.2019.8711822.
Full textReports on the topic "Vehicle to grid (V2G)"
Steward, Darlene M. Critical Elements of Vehicle-to-Grid (V2G) Economics. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1390043.
Full textRolufs, Angela, Amelia Trout, Kevin Palmer, Clark Boriack, Bryan Brilhart, and Annette Stumpf. Integration of autonomous electric transport vehicles into a tactical microgrid : final report. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42007.
Full textRolufs, Angela, Amelia Trout, Kevin Palmer, Clark Boriack, Bryan Brilhart, and Annette Stumpf. Autonomous Transport Innovation (ATI) : integration of autonomous electric vehicles into a tactical microgrid. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42160.
Full textMonahan, Joseph F. Life-Cycle Cost Modeling to Determine whether Vehicle-to-Grid (V2G) Integration and Ancillary Service Revenue can Generate a Viable Case for Plug-in Electric Drive Vehicles. Fort Belvoir, VA: Defense Technical Information Center, June 2013. http://dx.doi.org/10.21236/ada586076.
Full textShuster, Erik. Vehicle to Grid Systems. Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1601771.
Full textKempton, Willett, Meryl Gardner, Michael Hidrue, Fouad Kamilev, Sachin Kamboj, Jon Lilley, Rodney McGee, George Parsons, Nat Pearre, and Keith Trnka. Vehicle to Grid Demonstration Project. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1053603.
Full textCrolius, Steve, and Andy Moore. Vehicle-to-Grid Electric School Bus Commercialization Project. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1959341.
Full textKevin Morrow, Dimitri Hochard, and Jeff Wishart. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1034806.
Full textChakraborty, S., W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel, and A. Hoke. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1017107.
Full textSanford, Greg, John E. Higgins, and Jeffry Welsh. Advanced Iso-Grid Fairing Qualification Test for Minotaur Launch Vehicle. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada451647.
Full text