Academic literature on the topic 'Ventilator support'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ventilator support.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ventilator support"

1

Liu, Ling, Xiaoting Xu, Qin Sun, et al. "Neurally Adjusted Ventilatory Assist versus Pressure Support Ventilation in Difficult Weaning." Anesthesiology 132, no. 6 (2020): 1482–93. http://dx.doi.org/10.1097/aln.0000000000003207.

Full text
Abstract:
Abstract Background Difficult weaning frequently develops in ventilated patients and is associated with poor outcome. In neurally adjusted ventilatory assist, the ventilator is controlled by diaphragm electrical activity, which has been shown to improve patient–ventilator interaction. The objective of this study was to compare neurally adjusted ventilatory assist and pressure support ventilation in patients difficult to wean from mechanical ventilation. Methods In this nonblinded randomized clinical trial, difficult-to-wean patients (n = 99) were randomly assigned to neurally adjusted ventilat
APA, Harvard, Vancouver, ISO, and other styles
2

Ongsupankul, Sorawit, Christian Capirig, and Ehab Daoud. "Bridging the gap: Enhancing synchrony in mechanical ventilation." Journal of Mechanical Ventilation 6, no. 1 (2025): 32–42. https://doi.org/10.53097/jmv.10120.

Full text
Abstract:
Background Mechanical ventilation is a life-saving intervention for patients with acute respiratory failure, yet ventilator dyssynchrony—misalignment between patient effort and ventilator support—remains a common challenge in intensive care units (ICUs). Dyssynchrony is associated with prolonged ventilation, diaphragm dysfunction, increased ICU and hospital stays, and higher mortality rates. Objective This review aims to provide an in-depth analysis of the physiological control of ventilation and its interaction with mechanical ventilators, emphasizing newer technologies and strategies to enha
APA, Harvard, Vancouver, ISO, and other styles
3

Perez, Victor, and Jamille Pasco. "Identifying asynchronies: Early cycling." Journal of Mechanical Ventilation 4, no. 1 (2023): 57–59. http://dx.doi.org/10.53097/jmv.10073.

Full text
Abstract:
Mechanical ventilation is a lifesaving treatment but can be associated with some complications such as ventilator-induced lung injury, ventilator associated pneumonia or ventilation induced diaphragm dysfunction. Although partial ventilatory support is preferred to limit some of the complications associated with controlled mechanical ventilation, there could be some problems like asynchrony between the patient and the ventilator. Asynchronies occur when the ventilator’s breath delivery does not match the patient’s ventilatory pattern or is inadequate to meet their flow demand. Asynchronies can
APA, Harvard, Vancouver, ISO, and other styles
4

Tobin, Martin J., Franco Laghi, and Amal Jubran. "Ventilatory Failure, Ventilator Support, and Ventilator Weaning." Comprehensive Physiology 2, no. 4 (2012): 2871–921. https://doi.org/10.1002/j.2040-4603.2012.tb00468.x.

Full text
Abstract:
AbstractThe development of acute ventilatory failure represents an inability of the respiratory control system to maintain a level of respiratory motor output to cope with the metabolic demands of the body. The level of respiratory motor output is also the main determinant of the degree of respiratory distress experienced by such patients. As ventilatory failure progresses and patient distress increases, mechanical ventilation is instituted to help the respiratory muscles cope with the heightened workload. While a patient is connected to a ventilator, a physician's ability to align the rhythm
APA, Harvard, Vancouver, ISO, and other styles
5

Srinivasan, Shriya S., Khalil B. Ramadi, Francesco Vicario, et al. "A rapidly deployable individualized system for augmenting ventilator capacity." Science Translational Medicine 12, no. 549 (2020): eabb9401. http://dx.doi.org/10.1126/scitranslmed.abb9401.

Full text
Abstract:
Strategies to split ventilators to support multiple patients requiring ventilatory support have been proposed and used in emergency cases in which shortages of ventilators cannot otherwise be remedied by production or procurement strategies. However, the current approaches to ventilator sharing lack the ability to individualize ventilation to each patient, measure pulmonary mechanics, and accommodate rebalancing of the airflow when one patient improves or deteriorates, posing safety concerns to patients. Potential cross-contamination, lack of alarms, insufficient monitoring, and inability to a
APA, Harvard, Vancouver, ISO, and other styles
6

Halpern, P. "(A176) Mechanical Ventilation in Disasters: “To Intubate or Not to Intubate – That is the Question!”." Prehospital and Disaster Medicine 26, S1 (2011): s49—s50. http://dx.doi.org/10.1017/s1049023x11001749.

Full text
Abstract:
The provision of mechanical ventilatory support for large numbers of casualties in disasters is a complex, controversial issue. Some experts consider this modality unsuitable for large disasters and a waste of resources better devoted to eminently salvageable victims. However, the reality has usually been that rescue teams bring with them some ventilatory capability, even if only for perioperative support. Also, there are many instances when the environment, the existing and potential capacities, allow for significant numbers of victims to be saved by providing artificial ventilation, that wou
APA, Harvard, Vancouver, ISO, and other styles
7

Cameron, P. D., and T. E. Oh. "Newer Modes of Mechanical Ventilatory Support." Anaesthesia and Intensive Care 14, no. 3 (1986): 258–66. http://dx.doi.org/10.1177/0310057x8601400306.

Full text
Abstract:
Recent modes of ventilatory support aim to facilitate weaning and minimise the physiological disadvantages of intermittent positive pressure ventilation (IPPV). Intermittent mandatory ventilation (IMV) allows the patient to breathe spontaneously in between ventilator breaths. Mandatory minute volume ventilation (MMV) ensures that the patient always receives a preset minute volume, made up of both spontaneous and ventilator breaths. Pressure supported (assisted) respiration is augmentation of a spontaneous breath up to a preset pressure level, and is different from ‘triggering’, which is a pati
APA, Harvard, Vancouver, ISO, and other styles
8

VanKoevering, Kyle K., Pratyusha Yalamanchi, Catherine T. Haring, et al. "Delivery system can vary ventilatory parameters across multiple patients from a single source of mechanical ventilation." PLOS ONE 15, no. 12 (2020): e0243601. http://dx.doi.org/10.1371/journal.pone.0243601.

Full text
Abstract:
Background Current limitations in the supply of ventilators during the Covid19 pandemic have limited respiratory support for patients with respiratory failure. Split ventilation allows a single ventilator to be used for more than one patient but is not practicable due to requirements for matched patient settings, risks of cross-contamination, harmful interference between patients and the inability to individualize ventilator support parameters. We hypothesized that a system could be developed to circumvent these limitations. Methods and findings A novel delivery system was developed to allow i
APA, Harvard, Vancouver, ISO, and other styles
9

Lacerda, Rodrigo Silva, Fernando Cesar Anastácio de Lima, Leonardo Pereira Bastos, et al. "Benefits of Manometer in Non-Invasive Ventilatory Support." Prehospital and Disaster Medicine 32, no. 6 (2017): 615–20. http://dx.doi.org/10.1017/s1049023x17006719.

Full text
Abstract:
AbstractIntroductionEffective ventilation during cardiopulmonary resuscitation (CPR) is essential to reduce morbidity and mortality rates in cardiac arrest. Hyperventilation during CPR reduces the efficiency of compressions and coronary perfusion.ProblemHow could ventilation in CPR be optimized? The objective of this study was to evaluate non-invasive ventilator support using different devices.MethodsThe study compares the regularity and intensity of non-invasive ventilation during simulated, conventional CPR and ventilatory support using three distinct ventilation devices: a standard manual r
APA, Harvard, Vancouver, ISO, and other styles
10

Jaber, Samir, Mustapha Sebbane, Daniel Verzilli, et al. "Adaptive Support and Pressure Support Ventilation Behavior in Response to Increased Ventilatory Demand." Anesthesiology 110, no. 3 (2009): 620–27. http://dx.doi.org/10.1097/aln.0b013e31819793fb.

Full text
Abstract:
Background Dual-control modes of ventilation adapt the pressure delivery to keep a volume target in response to changes in respiratory mechanics, but they may respond poorly to changes in ventilatory demand. Adaptive support ventilation (ASV), a complex minute volume-targeted pressure-regulated ventilation, was compared to adaptive pressure ventilation (APV), a dual-mode in which the pressure level is adjusted to deliver a preset tidal volume, and to pressure support ventilation (PSV) when facing an increase in ventilatory demand. Methods A total of 14 intensive care unit patients being weaned
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Ventilator support"

1

Wang, Ang. "Hybrid modelling and decision support for ventilator management in intensive care units." Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489681.

Full text
Abstract:
Mechanical ventilation is a life-saving therapy for patient treatments in Intensive Care Units (ICUs). The management of mechanical ventilation is a very challenging task. It has long been recognised that a computer-based bedside decision support system is r desirable for optimal ventilator management in ICUs. In this thesis, a closed-loop adaptive model-based ventilator management decision support system is developed. A previously developed ventilated patient mathematical model is further improved and extended with respect to the model parameter estimation and the simulation of the patients a
APA, Harvard, Vancouver, ISO, and other styles
2

Thille, Arnaud. "Asynchronies patient-ventilateur au cours de la ventilation assistée." Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00667286.

Full text
Abstract:
Des asynchronies patient-ventilateur sont fréquemment observées en ventilation assistée. Objectif : Déterminer l'incidence et les facteurs favorisants des asynchronies, venant du patient, du ventilateur ou des réglages, et préciser le réglage optimal du ventilateur. Méthodes : Nous avons évalué l'incidence des asynchronies avec une méthode simple et non invasive basée sur l'analyse des courbes du ventilateur. Chez les patients qui présentaient des efforts inefficaces, nous avons mesuré l'effort inspiratoire avec une sonde œsophagienne afin d'optimiser le réglage du ventilateur. Nous avons éval
APA, Harvard, Vancouver, ISO, and other styles
3

Fridh, Katarina, and Sofia Persson. "Att avsluta ventilatorsbehandling för personer med amyotrofisk lateralskleros : en kvalitativ intervjustudie som beskriver sjuksköterskors erfarenheter." Thesis, Sophiahemmet Högskola, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:shh:diva-3416.

Full text
Abstract:
Palliativ vård innebär att förbättra livskvalitet för personer med livshotande kronisk sjukdom och dess närstående. De fyra hörnstenar som den palliativa vården vilar på är symtomkontroll, kommunikation, teamarbete och närståendestöd. Sjuksköterskor inom palliativ vård har till uppgift att tillsammans med teamet förebygga, observera, behandla och lindra symtom för både patient och närstående. Amyotrofisk lateralskleros är en motorneuronsjukdom som påverkar kroppens alla muskler. Nedsatt andningsfunktionen hos personer med ALS leder till hypoventilation vilket kan behandlas med ventilatorstöd m
APA, Harvard, Vancouver, ISO, and other styles
4

Delisle, Stéphane. "L'asservissement de la ventilation mécanique à l'aide du déclenchement diaphragmatique permet une meilleure synchronisation patient/ventilateur et une meilleure architecture du sommeil chez les patients en sevrage ventilatoire." Thèse, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/6643.

Full text
Abstract:
La qualité du sommeil des patients en soins intensifs est mauvaise, avec une fragmentation du sommeil, une diminution de la phase de sommeil paradoxal et une redistribution des temps de sommeil durant la période diurne. Si le bruit semble une cause évidente, il ne rendrait compte que de 20% des perturbations du sommeil dans ce contexte (Freedman et al. 1999; Gabor et al. 2003). La ventilation mécanique apparaît comme une autre source d'altération de la qualité et de la quantité de sommeil chez les patients en soins intensifs (Meza et al. 1998; Cooper et al. 2000; Parthasarathy et Tobin, 2004;)
APA, Harvard, Vancouver, ISO, and other styles
5

Schmidt, Matthieu. "Substrats neurophysiologiques des interactions patient- ventilateur et des sensations respiratoires correspondantes." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066487/document.

Full text
Abstract:
En ventilation assistée, l’inadéquation entre l’activité des muscles respiratoires du patient et l’assistance délivrée par le ventilateur se traduit par la survenue d’une dysharmonie patient-ventilateur potentiellement associée avec la survenue d’asynchronies patient-ventilateur et d’une dyspnée. Minimiser cette dysharmonie est un objectif majeur de la ventilation assistée. Le Neuro Asservissement de la Ventilation Assistée (NAVA) et la Ventilation Assistée Proportionnelle (PAV) sont deux nouveaux modes qui pourraient améliorer l’harmonie patient-ventilateur. Nous avons montré que,
APA, Harvard, Vancouver, ISO, and other styles
6

Tzavaras, Aris. "Intelligent decision support systems in ventilation management." Thesis, City University London, 2009. http://openaccess.city.ac.uk/12084/.

Full text
Abstract:
Introduction: Intensive Care Unit (ICU) medical personnel, in an ongoing process termed ventilation management, utilize patient physiology and pathology data to define ventilator apparatus settings. Aims: The aim of the research is to develop and evaluate in comparison hybrid ventilation advisor systems, that could support ventilation management process, specific to lung pathology for patients ventilated in control mode. Methodology: A questionnaire was designed and circulated to Intensivists. Patient data, as defined by the questionnaire analysis, were collected and categorized into three lun
APA, Harvard, Vancouver, ISO, and other styles
7

Marjanovic, Nicolas. "Approche globale du support ventilatoire en médecine d'urgence." Thesis, Poitiers, 2020. http://theses.univ-poitiers.fr/64158/2020-Marjanovic-Nicolas-These.

Full text
Abstract:
L’insuffisance respiratoire aiguë est un motif fréquent de consultation dans un service d’urgences. Le traitement de première intention repose sur l’oxygénothérapie conventionnelle. En cas d’échec ou d’emblée en cas d’urgence vitale immédiate, le recours à un support ventilatoire devient nécessaire. Les supports ventilatoires englobent l’oxygénothérapie à haut-débit nasal humidifiée (OHD) et la ventilation mécanique qui peut être invasive ou non-invasive. Les données concernant l’intérêt du support ventilatoire en médecine d’urgence sont issues pour l’essentiel de travaux conduits en réanimati
APA, Harvard, Vancouver, ISO, and other styles
8

Nemoto, Tadashi. "Automatic control of pressure support ventilation using fuzzy logic." Kyoto University, 2003. http://hdl.handle.net/2433/149372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schmidt, Andreas. "Atmung mit Pressure-Support-Ventilation und Proportional-Assist-Ventilation bei gesunden Probanden mit gesteigerter Elastance." [S.l.] : [s.n.], 1999. http://www.sub.uni-hamburg.de/disse/559/Disse.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mallya, Prashant Moodabidri. "Pressure support ventilation or synchronised intermittent mandatory ventilation for weaning premature babies on mechanical ventilation : a multi centre randomised controlled trial." Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3820.

Full text
Abstract:
Mechanical ventilation is life saving as a respiratory support for preterm infants with respiratory distress syndrome. There is good evidence now that any form of volume-targeted modality of mechanical ventilation is superior over pressure-targeted modality to reduce chronic lung disease and death. It is perceived by minimising the duration of mechanical ventilation would reduce the exposure to positive pressure breaths and thereby could reduce long term morbidities such as chronic lung disease. An area of lacunae is defining what is weaning on mechanical ventilation. Whilst most clinicians wi
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Ventilator support"

1

Gilgoff, Irene S. Breath of life: The role of the ventilator in managing life-threatening illnesses. Scarecrow Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

J, Marini John, and Slutsky Arthur S. 1948-, eds. Physiological basis of ventilatory support. Marcel Dekker, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Azriel, Perel, and Stock M. Christine, eds. Handbook of mechanical ventilatory support. Williams & Wilkins, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

L, Nochomovitz Michael, and Montenegro Hugo D, eds. Ventilatory support in respiratory failure. Futura Pub. Co., 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Christine, Stock M., and Perel Azriel, eds. Handbook of mechanical ventilatory support. 2nd ed. Williams & Wilkins, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

R, Kirby Robert, Banner Michael J, and Downs John B, eds. Clinical applications of ventilatory support. Churchill Livingstone, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1948-, Ambrosino N., and Goldstein Roger, eds. Ventilatory support for chronic respiratory failure. Informa Healthcare, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Esquinas, Antonio M., ed. Pulmonary Function Measurement in Noninvasive Ventilatory Support. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76197-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Corporation, Springhouse, ed. Respiratory support. Springhouse Corp., 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hasan, Rashed A. A pocket guide to mechanical ventilation & other measures of respiratory support. 3rd ed. Booksurge, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Ventilator support"

1

Davenport, Andrew, Todd W. Costantini, Raul Coimbra, et al. "Ventilator Support." In Encyclopedia of Intensive Care Medicine. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-00418-6_2406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pesenti, Antonio, Giacomo Bellani, Giacomo Grasselli, and Tommaso Mauri. "Ventilator Management During ECLS." In Extracorporeal Life Support for Adults. Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3005-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cabrita, Bruno, Gil Gonçalves, André Cabrita, and Antonio M. Esquinas. "Home Care Ventilator-Dependent Patients." In Pulmonary Function Measurement in Noninvasive Ventilatory Support. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76197-4_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rodríguez Mejías, Candela María, and Juan Pablo Valencia Quintero. "Continuous Noninvasive Ventilator Support (Neuromuscular Disorders)." In Pulmonary Function Measurement in Noninvasive Ventilatory Support. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76197-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Valentine, Stacey L., and Adrienne G. Randolph. "Weaning Children from Mechanical Ventilator Support." In Pediatric and Neonatal Mechanical Ventilation. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-01219-8_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Greenough, Anne, and Andrew Currie. "Weaning from Mechanical Ventilator Support in Neonates." In Pediatric and Neonatal Mechanical Ventilation. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-01219-8_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simonds, Anita K. "Ventilator Support in Children with Neuromuscular Disorders." In Respiratory Medicine. Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3749-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McGrath-Morrow, Sharon A., and J. Michael Collaco. "Long-Term Ventilator Support in Bronchopulmonary Dysplasia." In Respiratory Medicine. Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3749-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Monaco, Gianluca, Gabriele Paone, Giacomo Monaco, and Gregorino Paone. "Options Noninvasive Ventilator Support Outside Intensive Care Unit." In Noninvasive Ventilation. The Essentials. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37796-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Arnold, John H., Sherry E. Courtney, Claude Danan, et al. "Clinical Use of Nonconventional Modes of Ventilator Support." In Pediatric and Neonatal Mechanical Ventilation. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-01219-8_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ventilator support"

1

Tiwari, Nikki, Kolin Paul, Shrawan Kumar Raut, Animesh Ray, Surabhi Vyas, and Naveet Wig. "MMTS: Multi-Modal Time Series Based Decision Support System for Ventilator Associated Pneumonia." In 2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chowdhury, Hafizur Rahman, Md Abdus Shakur, All Fahad Bin Ahad, Md Shawon Miah, and Samun Rahman Siyam. "Renewable Energy-Powered Ventilator System: Arduino-Based Monitoring and Control with Solar Backup for Respiratory Support." In 2025 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, 2025. https://doi.org/10.1109/ecce64574.2025.11013155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sajonia, Edgardo Ricardo B., Jeffrey T. Dellosa, Alexander P. Demetillo, Nelvin I. Cuaton, Joven J. Yangson, and Anamarie P. Sajonia. "Design and Development of a Low-Cost Pi-Duino Ventilator: An Affordable Respiratory Support in Resource-Limited Settings." In 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP). IEEE, 2024. http://dx.doi.org/10.1109/idap64064.2024.10711162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Singru, Pravin, Bhargav Mistry, Rachna Shetty, and Satish Deopujari. "Design of MEMS Based Piezo-Resistive Sensor for Measuring Pressure in Endo-Tracheal Tube." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50838.

Full text
Abstract:
Mechanical ventilation is the process of providing artificial breathing support to a patient. More than half of critically ill patients require mechanical ventilation[1]. Though mechanical ventilation increases time for recuperation, it is known to have given rise to complications arising from over-distention of lungs leading to ventilator associated lung injury (VALI) and ventilator induced lung injury (VILI). This paper aims to develop a sensor to identify breathing efforts initiated by the patient and give back responses to the ventilator to regulate ventilation modes and tidal volumes deli
APA, Harvard, Vancouver, ISO, and other styles
5

Rozanek, Martin, and Petr Kudrna. "SIMULATION AND MODELLING IN EDUCATION OF BIOMEDICAL ENGINEERS." In eLSE 2017. Carol I National Defence University Publishing House, 2017. http://dx.doi.org/10.12753/2066-026x-17-259.

Full text
Abstract:
We have designed a few laboratory exercises within the course "Respiratory therapy" which is taught as an elective course in the studying programme "Biomedical engineer". The aim of the course was to prepare practically oriented education with the use of modern medical devices commonly used in the clinical practice. High fidelity simulators and models were involved into the education to maximally increase an interest of students about the education. The graduates of the course should gain theoretical and practical knowledge from ventilator technique and its use in the clinical practice. A labo
APA, Harvard, Vancouver, ISO, and other styles
6

Kanbar, L., J. Dexheimer, and N. M. Pajor. "The Correlation of Respiratory Support to Ventilator Weaning in the Pediatric Long-term Mechanical Ventilator Dependent Population." In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a1859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Conci, Diego I., Philip Ong, Frederick Ramos, Shivashanker Balasingham, Spyridon Fortis, and Constantine A. Manthous. "Factitious Respiratory Failure: Bound To The Ventilator By Pressure Support?" In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a3039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yarascavitch, Julie, Christina Vogler, and Sidney Cannon-Bailey. "A preliminary clinical evaluation of a new portable life support ventilator with invasively ventilated home users." In ERS International Congress 2019 abstracts. European Respiratory Society, 2019. http://dx.doi.org/10.1183/13993003.congress-2019.pa2278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Salama, Suzan, Aliae A. R. Mohamed-Hussein, and Waleed Gamal. "Proportional assist ventilation (pav+) versus pressure support ventilation (psv) for weaning and patient ventilator interaction in chronic obstructive pulmonary disease." In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.oa3295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hasan, Md Mahmudul, Md Rafiul Islam, Wasif Ahmed, et al. "Cost Effective Bluetooth Technology Based Emergency Medical Ventilator for Respiratory Support." In 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). IEEE, 2021. http://dx.doi.org/10.1109/acmi53878.2021.9528262.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ventilator support"

1

Ding, Huaze, Yiling Dong, Kaiyue Zhang, Jiayu Bai, and Chenpan Xu. Comparison of dexmedetomidine versus propofol in mechanically ventilated patients with sepsis: A meta-analysis of randomized controlled trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, 2022. http://dx.doi.org/10.37766/inplasy2022.4.0103.

Full text
Abstract:
Review question / Objective: The aim of the present study was to evaluate the effects of dexmedetomidine compared with propofol in mechanically ventilated patients with sepsis. Condition being studied: Sepsis, which is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, contributes the highest mortality to intensive care units (ICU) worldwide . Because of the high incidence of respiratory failure in sepsis care, mechanical ventilation is always adopted to give life support and minimize lung injury . And sedation is a necessary component of sepsis
APA, Harvard, Vancouver, ISO, and other styles
2

Thomas, Daphne, Cole Vest, Luke Wilson, Shannon Witcher, and Bobby Bellflower. Decreasing Extubation Times Using Adaptive Support Ventilation: A Scoping Review. University of Tennessee Health Science Center, 2025. https://doi.org/10.21007/con.dnp.2025.0112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

VanPutte, William, Tia Arevalo, Dominique Greydanus, and Leopoldo Cancio. Evaluation of Two Mechanical Ventilators for Use in U.S. Army Combat Support Hospitals. Defense Technical Information Center, 2004. http://dx.doi.org/10.21236/ada424230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wojdac, L. F. Calculation notes in support of ammonia releases from waste tank ventilation systems. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/670064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ryan, G. W. Ventilation system consequence calculations to support salt well pumping single-shell tank 241-A-101. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/350819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Madrzykowski, Daniel, and Craig Weinschenk. Understanding and Fighting Basement Fires. UL Firefighter Safety Research Institute, 2018. http://dx.doi.org/10.54206/102376/etsa5492.

Full text
Abstract:
Many firefighters have been injured or killed while trying to extinguish a basement fire or a fire on a level below them. Prior research has shown basement fires present a high risk to firefighters. This risk stems from unexpected floor collapse and high heat. Prior research also indicated the tools that firefighters have traditionally used to determine the structural integrity of the floor offer little value with lightweight construction. Past experiments in small basements have indicated that the most effective method of fighting a basement fire may be from the exterior of the building. This
APA, Harvard, Vancouver, ISO, and other styles
7

Dy, Sydney M., Arjun Gupta, Julie M. Waldfogel, et al. Interventions for Breathlessness in Patients With Advanced Cancer. Agency for Healthcare Research and Quality (AHRQ), 2020. http://dx.doi.org/10.23970/ahrqepccer232.

Full text
Abstract:
Objectives. To assess benefits and harms of nonpharmacological and pharmacological interventions for breathlessness in adults with advanced cancer. Data sources. We searched PubMed®, Embase®, CINAHL®, ISI Web of Science, and the Cochrane Central Register of Controlled Trials through early May 2020. Review methods. We included randomized controlled trials (RCTs) and observational studies with a comparison group evaluating benefits and/or harms, and cohort studies reporting harms. Two reviewers independently screened search results, serially abstracted data, assessed risk of bias, and graded str
APA, Harvard, Vancouver, ISO, and other styles
8

ANDRADE, RAUL RIBEIRO, Edla Vitória Santos Pereira, Igor Hudson Albuquerque e. Aguiar, et al. Effectiveness of Early Tracheostomy compared with Late Tracheostomy Or Prolonged Orotracheal Intubation in Traumatic Brain Injury: Protocol of Umbrella Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, 2022. http://dx.doi.org/10.37766/inplasy2022.8.0096.

Full text
Abstract:
Review question / Objective: What is the effectiveness of Early Tracheostomy compared with Late Tracheostomy Or Prolonged Orotracheal Intubation in Traumatic Brain Injury? Eligibility criteria: The inclusion criteria are (P) studies with patients above 18 years old, male or female, who had a severe traumatic brain injury and who need advanced airway support; (I) patient undergoing early tracheostomy (less than 10 days of orotraqueal intubation); (C) patient undergoing late tracheostomy (after 10 days of orotraqueal intubation) or undergoing prolonged intubation; (O) With data about mortality,
APA, Harvard, Vancouver, ISO, and other styles
9

Yoginder P. Chugh. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/833436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weinschenk, Craig, Keith Stakes та Robin Zevotek. Impact of Fire Attack Utilizing Interior and Exterior Streams on Firefighter Safety and Occupant Survival: Air Entrainment. UL Firefighter Safety Research Institute, 2017. http://dx.doi.org/10.54206/102376/gmax3657.

Full text
Abstract:
As research continues into how fire department interventions affect fire dynamics in the modern fire environment, questions continue to arise on the impact and implications of interior versus exterior fire attack on both firefighter safety and occupant survivability. Previous research into various types of fire ground ventilation, flow paths, and exterior fire streams has provided the fire service with an increased understanding of fire dynamics. However, in some instances, the information from the studies did not support current, experience-based practices. This gap between the research to da
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!