Добірка наукової літератури з теми "Cellulose nano fibres"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cellulose nano fibres".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Cellulose nano fibres":

1

Panthapulakkal, S., and M. Sain. "Preparation and Characterization of Cellulose Nanofibril Films from Wood Fibre and Their Thermoplastic Polycarbonate Composites." International Journal of Polymer Science 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/381342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of this study was to develop cellulose-nanofibril-film-reinforced polycarbonate composites by compression molding. Nano fibres were prepared from wood pulp fibres by mechanical defibrillation, and diameter distribution of the fibres produced was in the range of 1–100 nm. Nanofibre films were prepared from the nanofibre suspensions and were characterized in terms of strength properties, crystallinity, and thermal properties. Strength and modulus of the nano fibre films prepared were 240 MPa and 11 GPa, respectively. Thermal properties of the sheets demonstrated the suitability of processing fibre sheets at high temperature. Tensile properties of the films subjected to composite-processing conditions demonstrated the thermal stability of the fibre films during the compression molding process. Nanocomposites of different fibre loads were prepared by press-molding nano fibre sheets with different thickness in between polycarbonate sheet at 205°C under pressure. The tensile modulus and strength of the polycarbonate increased with the incorporation of the fibres. The strength of the thermoplastic increased 24% with 10% of the fibres and is increased up to 30% with 18% of the fibres. Tensile modulus of the polycarbonate demonstrated significant enhancement (about 100%).
2

Janardhnan, Sreekumar, and Mohini Sain. "Isolation of Cellulose Nanofibers: Effect of Biotreatment on Hydrogen Bonding Network in Wood Fibers." International Journal of Polymer Science 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/279610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The use of cellulose nanofibres as high-strength reinforcement in nano-biocomposites is very enthusiastically being explored due to their biodegradability, renewability, and high specific strength properties. Cellulose, through a regular network of inter- and intramolecular hydrogen bonds, is organized into perfect stereoregular configuration called microfibrils which further aggregate to different levels to form the fibre. Intermolecular hydrogen bonding at various levels, especially at the elementary level, is the major binding force that one need to overcome to reverse engineer these fibres into their microfibrillar level. This paper briefly describes a novel enzymatic fibre pretreatment developed to facilitate the isolation of cellulose microfibrils and explores effectiveness of biotreatment on the intermolecular and intramolecular hydrogen bonding in the fiber. Bleached Kraft Softwood Pulp was treated with a fungus (OS1) isolated from elm tree infected with Dutch elm disease. Cellulose microfibrils were isolated from these treated fibers by high-shear refining. The % yield of nanofibres and their diameter distribution (<50 nm) isolated from the bio-treated fibers indicated a substantial increase compared to those isolated from untreated fibers. FT-IR spectral analysis indicated a reduction in the density of intermolecular and intramolecular hydrogen bonding within the fiber. X-ray spectrometry indicated a reduction in the crystallinity. Hydrogen bond-specific enzyme and its application in the isolation of new generation cellulose nano-fibers can be a huge leap forward in the field of nano-biocomposites.
3

Osong, Sinke H., Sven Norgren, Per Engstrand, Mathias Lundberg, and Peter Hansen. "Crill: A novel technique to characterize nano-ligno-cellulose." Nordic Pulp & Paper Research Journal 29, no. 2 (May 1, 2014): 190–94. http://dx.doi.org/10.3183/npprj-2014-29-02-p190-194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The CrillEye is a technique for qualitatively assessing loose slender and fibrillar particles created during pulping. It has also been demonstrated that the crill measurement technique can easily be used to measure the degree of fibrillation of mechanical pulp based nano-ligno-cellulose (NLC). The measurement technique is based on an optical response of a suspension at two wavelengths of light; UV and IR. The UV light contains information on both fibres and crill, while IR only contains information on fibres. The resolution on the CrillEye module is based on optical response of the pulp and on an analogue signal analysis making it concentration independent. Characterization of particlesize distribution of nano-ligno-cellulose is both important and challenging. The objective of the work presented in this paper was to study the crill values of TMP and CTMP based nano-ligno-celluloses as a function of homogenization time. Results showed that the crill value of both TMP-NLC and CTMP-NLC correlated fairly well with the homogenization time.
4

Abdullah, ABM, Maruf Abony, MT Islam, MS Hasan, MAK Oyon, and Md Bokhtiar Rahman. "Extraction and Proximate Study of Sansevieria Trifasciata L. As Fibre Source for Textile and Other Uses." Journal of the Asiatic Society of Bangladesh, Science 46, no. 2 (June 29, 2021): 155–62. http://dx.doi.org/10.3329/jasbs.v46i2.54411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Natural fibres are getting importance for their sustainable development in their uses in mitigation of climate change and ecological balance. A fibre extraction retting method is formulated and proximate chemical composition and various physical properties such as tensile strength, elongation, diameter along with fibre, cellulose, lignin and ash content were determined. This preliminary observation indicates its potential to be used as a source of fibre for textile and non-textile uses such as woven, nonwoven, composite, blanded and a good source of α-cellulose, microcrystalline cellulose, nano-cellulose and lignin-based products. Asiat. Soc. Bangladesh, Sci. 46(2): 155-162, December 2020
5

Mamat Razali, Nur Amira, Wan Mohd Hanif Wan Ya'acob, Rusaini Athirah Ahmad Rusdi, and Fauziah Abdul Aziz. "Extraction of Rice Straw Alpha Cellulose Micro/Nano Fibres." Materials Science Forum 888 (March 2017): 244–47. http://dx.doi.org/10.4028/www.scientific.net/msf.888.244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Rice straw cellulose a biomass materials, naturally found in abundance. It is low cost, eco-friendly and biodegradable. Alpha cellulose is prepared from rice straw using chemical method namely acid hydrolysis and alkaline treatment. Both of the samples treatments were bleached using sodium chlorite (NaClO2). Alkaline treatment shows higher in producing alpha cellulose, 20.68% rather than 12.20% by acid hydrolysis.
6

Varaprasad, Kokkarachedu, Gownolla Malegowd Raghavendra, Tippabattini Jayaramudu, and Jongchul Seo. "Nano zinc oxide–sodium alginate antibacterial cellulose fibres." Carbohydrate Polymers 135 (January 2016): 349–55. http://dx.doi.org/10.1016/j.carbpol.2015.08.078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gaduan, Andre N., Laleh Solhi, Eero Kontturi, and Koon-Yang Lee. "From micro to nano: polypropylene composites reinforced with TEMPO-oxidised cellulose of different fibre widths." Cellulose 28, no. 5 (February 11, 2021): 2947–63. http://dx.doi.org/10.1007/s10570-020-03635-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractTEMPO-oxidised cellulose fibres are often explored as nano-reinforcement for polymers. However, it is unclear whether micrometre-sized TEMPO-oxidised cellulose fibres also possess similar reinforcing potential. In this work, we report the mechanical response of polypropylene (PP) composites reinforced with TEMPO-oxidised cellulose (TOC) of different fibre widths. Micrometre-sized TOC fibres (TOCF) containing sodium carboxylate (TOCF-Na) and free hydroxyl (TOCF-H) groups, as well as nano-sized TOC nanofibrils (TOCN) were produced from dissolving pulp and incorporated into PP matrix via melt-extrusion. It was found that model PP composites containing micrometre-sized TOCF-Na and TOCF-H possessed the highest tensile modulus of up to 2.5 GPa; 40% improvement over neat PP and 30% increase over PP/TOCN composite. No significant differences in the tensile strength of PP/TOCF-Na and PP/TOCF-H composites were observed when compared to neat PP. The incorporation of nano-sized TOCN into PP however, led to a 6% decrease in tensile strength. Single-edge notched beam fracture toughness test further showed that PP/TOCN composite possessed the lowest fracture toughness of 2.52 MPa m1/2; a decrease of 18% over PP reinforced with micrometre-sized TOCF-Na and TOCF-H. Our study shows that micrometre-sized TOCFs serve as better reinforcement for polymers compared to nano-sized TOCN. This is attributed to the better dispersion of TOCF in the PP matrix. Furthermore, the presence of surface microfibrillation on TOCFs also enhanced the quality of the TOCF-PP interface through mechanical interlocking and local stiffening of the PP matrix.
8

Borges, João P., and M. H. Godinho. "Cellulose-Based Anisotropic Composites." Materials Science Forum 587-588 (June 2008): 604–7. http://dx.doi.org/10.4028/www.scientific.net/msf.587-588.604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In an attempt to improve the mechanical properties of an all-cellulose based composite we made solid flexible films containing microcrystalline cellulose fibres produced by a shearing casting technique. To an anisotropic (liquid crystalline) solution of 2-hydroxypropylcellulose (HPC) in N,N – dimethylacetamide (60 w/w %) were added AVICEL fibres (0, 2, 4, 6, 10, 12 w/wHPC %). After homogenization these solutions were poured into a Teflon plate and sheared at a constant rate of 5 mm/s. The cellulosic microfibres in the liquid crystalline polymer medium were partially aligned by shear flow. Mechanical and morphological properties of the films were investigated using tensile tests, polarized optical microscopy and scanning electron microscopy. The mechanical properties of these films, as expected, are higher than those of the films produced from an isotropic solution of HPC. The results show that the orientation of the microfibres, and the mesoscopic properties, can be tuned by adjusting the topography of the nematic matrix in the micro-nano scale.
9

Ahmed, Jubair, Merve Gultekinoglu, and Mohan Edirisinghe. "Bacterial cellulose micro-nano fibres for wound healing applications." Biotechnology Advances 41 (July 2020): 107549. http://dx.doi.org/10.1016/j.biotechadv.2020.107549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kukle, Silvija, Jānis Grāvītis, Anna Putniņa, and Anete Stikute. "The Effect of Steam Explosion Treatment on Technical Hemp Fibres." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (August 5, 2015): 230. http://dx.doi.org/10.17770/etr2011vol1.902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As hemp is a renewable resource with the high biomass yield it could be considered as potential abundant local biomass material for a wide range of applications. In this article hemp fibres architecture as a source of high strength cellulose are analysed. In experimental part steam explosion technology is applied to disintegrate technical hemp fibres to elementary fibres with the aim to find out the best way of procedure without usage to environment harmful chemical pre-treatments and looking forward to solve problems on further nano-level environment friendly hemp cellulose disintegration.

Дисертації з теми "Cellulose nano fibres":

1

Hernandez, Zurine. "Conditions required for spinning continuous fibres from cellulose nano-fibrils." Thesis, Edinburgh Napier University, 2012. http://researchrepository.napier.ac.uk/Output/5286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The thesis describes a programme of work to develop a novel cellulose based fibre. The most important innovative step in this work lies in the manufacture of the fibre from a chiral nematic suspension of plant based cellulose nano-fibrils. In the course of the project a number of key steps have been addressed in the development process. These included: • Developing a method for extraction of nano-fibrils from wood and cotton based pulp and filter paper; • Development of concentrated chiral nematic suspensions of the nano-fibrils suitable for extrusion (spinning); • Spinning a continuous fibre or filament; • Fibre characterization. A key objective of the work was to understand the factors that could contribute to nematic order of the nano-fibrils in the fibre and produce a high strength fibre. The fibres developed showed reasonably good strength potential and good stiffness properties with the best fibres having a tenacity of between 40 and 100 cN/tex and an initial modulus of 5000-6000 cN/tex. These values fall midway between lyocell and Kevlar. Two patents have to date been published based upon the developments described in this work (Turner et al., 2010, 2011). However, the work highlighted a number of gaps in current knowledge that prevented development of the full potential strength properties of these fibres. These included: • Incomplete knowledge of the gel conditions required to achieve complete alignment of the fibrils in the spinning process; • Challenges in being able to draw the fibre sufficiently during spinning to produce target fibre diameters of 5-10μm; • The linear density of the spun fibres had a key impact on fibre strength. It was only when linear density values dropped below 1 tex (1g/km) that a significant increase in fibre strength occurred. Factors that had an important impact on linear density included solids content of the suspension, zeta potential, extrusion rate and fibre drying temperature. All these factors relate directly to the mobility of the cellulose nano-fibrils and their subsequent ability to align under flow during spinning. The thesis can be seen as a first phase in an ongoing process to develop a new approach to the manufacture of cellulose based industrial textile fibres.
2

Jimenez, Saelices Clara. "Développement de matériaux super-isolants thermiques à partir de nano-fibres de cellulose." Thesis, Lorient, 2016. http://www.theses.fr/2016LORIS417/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'objectif de cette thèse est la préparation d’aérogels biosourcés ayant des propriétés de super-isolation thermique. Pour cela, nous avons choisi de développer de nouveaux aérogels à base de nanofibres de cellulose (NFC). Les aérogels ont été préparés par lyophilisation. Dans un premier temps, une analyse des paramètres expérimentaux jouant un rôle sur la morphologie et les propriétés physico-chimiques des aérogels a été réalisée afin d’obtenir les meilleures propriétés d’isolation thermique. Avec une suspension de NFC à 2% en masse, sans ajout de sels et sans faire varier le pH, une lyophilisation réalisée dans des moules d’aluminium à une température de -80°C a permis d’obtenir des aérogels ayant une conductivité thermique de 0,024 W/m.K. Afin de diminuer cette conductivité thermique, nous avons choisi de réduire la taille des pores pour obtenir un effet Knudsen. Pour cela, une nouvelle technique de séchage a été proposée : la lyophilisation par pulvérisation. Les aérogels préparés dans les mêmes conditions expérimentales que précédemment avec cette technique ont des propriétés thermiques super-isolantes (0,018 W/m.K) grâce à la nano-structuration du réseau poreux. Finalement, un nouveau dispositif expérimental a été développé pour caractériser plus finement les propriétés thermiques des aérogels. C’est un dispositif transitoire impulsionnel qui permet d'estimer simultanément la contribution de la conduction solide et gazeuse, l'effet radiatif et la diffusivité thermique grâce à un modèle théorique simple. Ce dispositif permettra d’approfondir l’étude complexe du transfert thermique à travers des matériaux poreux semi-transparents tels que les aérogels
The objective of this thesis is the preparation of renewable aerogels having thermal super-insulating properties. To do it, we designed new aerogels from nanofibrillated cellulose (NFC) by freeze-drying. This technique is simple and has the advantage of not using organic solvents. First of all, the parameters playing a role on the aerogel morphology and physico-chemical properties of the aerogels were analyzed to get the best thermal insulating properties. Using 2 wt% NFC suspensions, without addition of salts, keeping the initial pH, the obtained freeze-dried aerogels in alumina molds at -80 °C have a thermal conductivity of 0.024 W/m.K. In order to reduce the pore size and to improve the thermal insulating properties by Knudsen effect, a new drying technique was proposed: the spray freeze-drying. Aerogels prepared in the same experimental conditions with this technique have thermal super-insulating properties (0.018 W/m.K) thanks to the nanostructuration of the porous network. Finally, a new device was designed to characterize more precisely the thermal properties of aerogels. This is an impulsive transient device, which can estimate simultaneously the contribution of solid and gas conduction, the radiative effect and thermal diffusivity using a simple theoretical model. This device will allow studying complex heat transfer through porous semi-transparent materials such as aerogels
3

Phillips, Justin. "Dextrin nanocomposites and deep eutectic solvents as matrices for solid dosage forms." Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/81724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Controlled-release formulations for pesticide applications act as depot systems that continuously release the active ingredients into the environment over a speci ed period, usually from months to years. However, some applications require fast-dissolving drug delivery. The interest of this research is in fast-release of water-insoluble pesticides into aquatic environments. This study considered the use of dextrin starch and urea eutectics as fast release, solid dosage carrier forms that contain an active ingredient. The chosen active for this study is an acaricide called amitraz (N-methylbis-(2,4-xylyliminomethyl)- methylamine). The focus is on matrix-based dosage forms such as tablets, granules or bres that either disintegrate or dissolve to release a water-insoluble active. These types of dosage forms can be fabricated using processes such as lyophilisation, spray drying, solvent casting, hot melt extrusion, compression moulding, wet granulation, compaction and electrospinning. A simple melt-casting procedure has been discussed in the present work. Dextrin is a water-soluble form of partially hydrolysed starch and is a promising candidate matrix material for dissolving solid dosage forms. The molecular weight of the dextrin was analysed with MALDI-TOF methods and rheological relations. Glycerolplasticized thermoplastic dextrin-based nanocomposites were prepared with a twin-screw extrusion-compounding process. The nano llers included a layered double hydroxide (LDH), cellulose nano bres (CNF) and stearic acid. The time-dependent retrogradation of the compounds was monitored by X-ray di raction (XRD) and dynamic mechanical thermal analysis (DMA). XRD showed that the inclusion of stearic acid in the formulations led to the formation of an amylose-lipid complex and a stable crystallinity during ageing. Dissolution rates in water for samples containing dextrin starch, were characterised using an iodine indicator and UV-visible spectroscopy. High pressure di erential scanning calorimetry (HPDSC) indicated that the addition of stearic acid led to the formation of amylose-lipid complexes (ALC's). An additive system containing stearic acid and CNF was deemed suitable for compounding with amitraz. Compounding at temperatures above the melting point of the latter led, on dissolution in water, to the release of much ner particles of the acaricide, which was con rmed with particle size analysis (PSA). The addition of the acaricide caused an apparent increase in the dissolution rate of the thermoplastic dextrin. Two eutectic urea systems were considered for casting with amitraz. A eutectic system of urea and acetamide was found to display a melting point of 44 C at a 37 wt.% urea composition. The other system consisting of urea and 1,3-dimethylurea displayed a eutectic point at 32 wt.% urea composition which melted at 59 C. Di erential scanning calorimetry (DSC), however, con rmed a melting point depression due to a high moisture content caused by the compounds high hygroscopicity. The endotherm of the sample containing no excess moisture showed a melting point of 70 C. The 1,3-dimethylurea system was deemed suitable for casting with amitraz. XRD of the eutectic composition indicated a small amount of co-crystallisation. The samples were cast as disks of various diameters while keeping the height of the disks constant. The creation of the cast disks showed automatic generation of a nely dispersed form of the active through the process of melting the deep eutectic solvent, the dissolution of the active and its phase separation on cooling and solidi cation of the eutectic. This implies that ne grinding of the actives might not be necessary. Eutectic casts containing 20 wt.% amitraz dissolved at a slower rate than casts not containing the hydrophobic active ingredient. The advantageous features of these casts were exempli ed using the acaricide incorporated into the urea & 1,3-dimethylurea eutectic. This work provides two safe, biodegradable and water soluble materials for use as a matrix to contain active ingredients. One material, the eutectic organic salt casts, can be produced at low temperatures (<100 C) and can be directly cast into storage containers. The complete dissolution of the cast compounded with a hydrophilic active is rapid (4-6 min). The second material, a thermoplastic dextrin, was melt compounded in an extruder at temperatures not exceeding 120 C. This compound containing 20 wt.% of the active dissolved over a 12 hour period. Dextrin, known to be widely used as an adhesive, will aid in the adhesion of the active ingredient to the surface where it must be used.
Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2019.
PAMSA
Department of Science and Innovation under Grant DST/CON 0004/2019
Chemical Engineering
MEng (Chemical Engineering)
Unrestricted
4

Foruzanmehr, Mohammadreza. "Greffage d’un film mince de nano-TiO2 sur les fibres naturelles cellulosiques pour le renforcement de biocomposites polymériques." Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract : Natural materials have received a full attention in many applications because they are degradable and derived directly from earth. In addition to these benefits, natural materials can be obtained from renewable resources such as plants (i.e. cellulosic fibers like flax, hemp, jute, and etc). Being cheap and light in weight, the cellulosic natural fiber is a good candidate for reinforcing bio-based polymer composites. However, the hydrophilic nature -resulted from the presence of hydroxyl groups in the structure of these fibers- restricts the application of these fibers in the polymeric matrices. This is because of weak interfacial adhesion, and difficulties in mixing due to poor wettability of the fibers within the matrices. Many attempts have been done to modify surface properties of natural fibers including physical, chemical, and physico-chemical treatments but on the one hand, these treatments are unable to cure the intrinsic defects of the surface of the fibers and on the other hand they cannot improve moisture, and alkali resistance of the fibers. However, the creation of a thin film on the fibers would achieve the mentioned objectives. This study aims firstly to functionalize the flax fibers by using selective oxidation of hydroxyl groups existed in cellulose structure to pave the way for better adhesion of subsequent amphiphilic TiO[subscript 2] thin films created by Sol-Gel technique. This method is capable of creating a very thin layer of metallic oxide on a substrate. In the next step, the effect of oxidation on the interfacial adhesion between the TiO[subscript 2] film and the fiber and thus on the physical and mechanical properties of the fiber was characterized. Eventually, the TiO[subscript 2] grafted fibers with and without oxidation were used to reinforce poly lactic acid (PLA). Tensile, impact, and short beam shear tests were performed to characterize the mechanical properties while Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic mechanical analysis (DMA), and moisture absorption were used to show the physical properties of the composites. Results showed a significant increase in physical and mechanical properties of flax fibers when the fibers were oxidized prior to TiO[subscript 2] grafting. Moreover, the TiO[subscript 2] grafted oxidized fiber caused significant changes when they were used as reinforcements in PLA. A higher interfacial strength and less amount of water absorption were obtained in comparison with the reference samples.
Résumé : Les matériaux naturels retiennent actuellement toute l’attention dans de nombreuses applications et ceci, car ils sont biodégradables et proviennent de ressources renouvelables telles que les plantes (le lin, le chanvre, le jute, etc.). De plus, du fait de leur faible coût et de leur faible densité, les fibres naturelles cellulosiques sont d’excellents candidats pour le renforcement des composites polymères bio-sourcés. Cependant, malgré leurs nombreux avantages, leur caractère hydrophile - résultant de la présence de fonctions hydroxyle dans leur structure - limite leur application dans les matrices polymères. Ceci est dû à la faible mouillabilité existant entre les fibres cellulosiques et les matrices polymériques (généralement hydrophobes) causant une faible adhésion et une mauvaise dispersion des fibres dans la matrice. De nombreuses tentatives de modification des propriétés de surface des fibres naturelles par des traitements physiques, chimiques, ainsi que physico-chimiques ont été effectuées. Cependant, ces traitements se sont révélés incapables de guérir les défauts intrinsèques présents à la surface des fibres et d’améliorer leur résistance à l'humidité et aux alcalis. Une solution permettant d’atteindre les objectifs mentionnés serait la création d’un film mince à la surface des fibres. Cette étude vise tout d'abord à fonctionnaliser les fibres de lin par une oxydation sélective des fonctions hydroxyle présentes sur la cellulose. Cette oxydation permet la création d’une meilleure adhésion entre la surface des fibres et les couches minces amphiphiles de TiO[indice inférieur 2] créées par la technique sol-gel. En effet, le procédé sol-gel est une méthode dite douce capable de créer une fine couche d'oxydes métalliques à la surface d’un substrat. Dans l'étape suivante, l'effet de l'oxydation sur l'adhésion interfaciale entre la couche de TiO[indice inférieur 2] et la fibre, et donc sur les propriétés physiques et mécaniques de la fibre, a été caractérisé. Enfin, les fibres recouvertes de TiO[indice inférieur 2] avec et sans oxydation préalable ont été utilisées pour renforcer l’acide polylactique (PLA). Des tests de traction, d’impact et de cisaillement ont été réalisés afin de caractériser les propriétés mécaniques des composites. De plus, de la calorimétrie différentielle à balayage (DSC), des mesures d'absorption d'humidité ainsi que des analyses thermogravimétrique (ATG) et mécanique dynamique (DMA) ont été effectuées dans le but de déterminer les propriétés physiques des composites. Les résultats ont montré une augmentation significative des propriétés physiques et mécaniques des fibres de lin recouvertes de TiO[indice inférieur 2], en particulier lorsque les fibres ont été préalablement oxydées. De plus, ces fibres à la fois oxydées et greffées de TiO[indice inférieur 2] ont causé de grands changements lorsque utilisées dans le renforcement du PLA. En effet, une meilleure résistance au cisaillement interlaminaire et une diminution de la quantité d’eau absorbée est obtenue en comparaison avec les échantillons de référence.
5

Privas, Edwige. "Matériaux ligno-cellulosiques : "Élaboration et caractérisation"." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2013. http://pastel.archives-ouvertes.fr/pastel-00933754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'objectif de ce travail est de développer l'utilisation de la biomasse ligno-cellulosique dans le domaine des matériaux. Ce travail explore trois voies différentes d'utilisation de la ligno-cellulose afin de balayer un large spectre de constituants et de matériaux finaux. La première voie concerne l'incorporation de fibres naturelles dans la fabrication de panneaux utilisant la lignine comme adhésif. Des améliorations dans la fabrication de ces panneaux de fibres ont été apportées, par traitement chimique ou ajout de nouveaux compatibilisants, permettant un renforcement des propriétés mécaniques. La seconde voie a consisté à développer un procédé original de mise en forme sous haute pression testé et mis en place sur du coton dans le but d'obtenir des objets tridimensionnels sans étape de dissolution/régénération de la cellulose. Une fois le protocole défini, les effets des paramètres de mise en forme et de la variété de coton sur la microstructure et les propriétés mécaniques des objets en coton compressé ont été étudiés. Enfin, une troisième voie à consisté à élaborer des matériaux nanocomposites à partir d'hydroxydes double lamellaire modifiés par la lignine (HDL/LS). L'utilisation de cette nanocharge dans l'amidon a montré une capacité de renforcement pour un faible taux de charge. Ce composite amidon-(HDL/LS) a ainsi été utilisé avec une matrice polyéthylène afin d'augmenter la part renouvelable de la matrice sans diminuer significativement ses propriétés mécanique. Ce travail permet d'envisager des développements futurs pour ces différents matériaux développés et offre ainsi de nouvelles possibilités d'utilisation de la biomasse ligno-cellulosique dans l'élaboration de matériaux techniques.
6

Sharma, Sudhir. "Green barrier materials from cellulose nano fibers." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54450.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Renewable, recyclable, and high performing barrier materials were made from cellulose nano fibers. Various strategies to enhance performance in dry, wet and humid conditions were proposed. These methods included thermal treatment to induce hornification, PAE resin based cross linking, and inclusion of high aspect ratio filler materials to form composites. Results indicated that hornification alone, even though effective in enhancing the barrier properties comes at the cost of severe degradation of mechanical properties. In the second case, where a cross linker was used, lower heating temperature limited the degradation of mechanical properties. Moreover, the new bonds included due to cross linking also modified the mechanical properties of the material and cause significant improvement. In the case of inclusion of filler materials, improvement of mechanical properties due to reinforcing effect was observed, and additionally the improvement in barrier properties was observed due to increased tortuosity of the materials. Furthermore, when the composites were made with cross linker, there was a significant improvement in barrier and mechanical properties as compared to the barrier material made from the pure cellulose nano fibers. In all cases the barrier materials were found to be resistant to degradation by water, as measured by water retention value, and surface contact angle. The resistance to water in the first case was as a result of severe hornification of the material. Whereas in the second and third case the cross linking and concomitant limited hornification played a significant role in water resistance. In addition to the three methods to improve barrier properties, the use of nano fibers made from cellulose II was also studied. Different stages of fibrillation of the starting cellulose pulps were studied and the fibers and films made from them were characterized in detail. Results from this study indicated that fibers made from cellulose II pulp are much harder to fibrillate as compared to cellulose I fibers. Moreover, due to fibril aggregation it is harder to form nano fibers from cellulose II. Even though from the perspective of better inter and intra fibril bonding cellulose II might be favorable over cellulose I, significant work in the formation of nano fibers from cellulose II is required before they can be used for making barrier materials.
7

Hussain, Arif. "Adsorption of Polyvinyl Alcohol on Nano-Cellulose Fibers." Thesis, Karlstads universitet, Fakulteten för teknik- och naturvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-6720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nano-cellulose fibers/suspension has very high viscosity, its viscosity has to be lower before it can be applied in the paper coating recipe. For this purpose the adsorption behaviour of polyvinyl alcohol on nano-cellulose fibers were investigated using method developed by Zwick in 1960, based on the formation of PVA-iodide blue complex in the presence of boric acid. The experiments showed that the maximum adsorbed amount i.e. 0.13 g PVA/g NFC was obtained in a dispersion with 0.2 % PVA concentration. It should be possible to further increase the PVA adsorption as the adsorbed amount didn’t reach a saturation point where the PVA adsorption attained a constant value. It was also found that adsorption of PVA on NFC is time dependent. The absorbance measurement after four days of mixing PVA/NFC suspension showed only partially adsorption of PVA on nano-cellulose surface.  An equilibrium time of 10-13 days was needed for PVA to fully adsorb on nano-cellulose fibers surface. Another important observation was that PVA adsorption also depends on the concentration of nano-cellulose fibers. A lower concentration of NFC easily allows PVA to adsorb on its surface, as compared to higher NFC concentration. An important finding during the methodology development was the method to get rid of formation of flocs in the blue iodide complex solution; by slowly addition of reactants, especially the KI/I2 solution under continuous stirring around 60oC the tendency to flocs formation was suppressed.
8

Deng, Xinying. "Toughening of natural-fibre composites using nano- and microcrystalline cellulose particles." Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/64794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Environmental concerns have prompted research into natural materials to improve sustainability. Cellulose has some of the highest mechanical properties among naturally-derived materials, and natural-fibre composites have better specific stiffness than glass-fibre composites, and are thus increasingly used in the transport and construction sectors. However, cellulose is hydrophilic and it is difficult to obtain a uniform dispersion of cellulose modifiers in epoxy polymers. This makes it challenging to achieve high performance natural-fibre composites with good delamination resistance, which is critical in composite applications. Therefore, in the present study, the toughening effect of cellulose modifiers in an anhydride-cured diglycidyl ether of bisphenol-A (DGEBA) epoxy polymer, and in regenerated cellulose-fibre (CeF) composites are investigated. The cellulose modifiers initially agglomerated and sedimented in the epoxy. However, the addition of a silane during the three-roll mill process resolved this issue, and a good dispersion of cellulose modifiers was achieved. The addition of 10 wt% of cellulose modifiers, i.e. microcrystalline cellulose (MCC) and cellulose nanocrystals (CNCs), increased the fracture energy (GC) of the epoxy by more than 100 %, compared with 57 % for nanosilica, which is a well-studied and effective epoxy toughener. Hybridisation of MCC and CNCs with nanosilica or rubber particles, i.e. carboxyl-terminated butadiene-acrylonitrile (CTBN) and core-shell rubber (CSR), generally yielded additive toughening effects since the toughening mechanisms associated with each modifier were largely still present in the hybrids. To assess the effectiveness of the transfer of the increased matrix toughness to fibre composites, plain-weave CeF composites were fabricated using the wet layup process. Their mode I interlaminar fracture energies were compared with the bulk fracture energies, and their properties were benchmarked with glass-fibre (GF) composites. Although GF composites have better tensile properties than CeF composites, the composite propagation fracture energies (GC,prop) of CeF composites (e.g. control-CeF: 1155 J/m2) were about twice those of GF composites (e.g. control-GF: 567 J/m2). This was due to more extensive fibre bridging and crack branching behaviours. Analytical models showed reasonably good agreement with the experimental GC for the epoxy polymers, GF composites and CeF composites. These models were able to predict the significance of various fibre and matrix toughening mechanisms identified through fractography, which also correlated well with experimental observations. The highest GC,prop values obtained for the GF and CeF composites were 901 ± 102 J/m2 and 1537 ± 56 J/m2, respectively, which are 59 % and 33 % higher than their respective control composites. It was found that the GC,prop values did not increase further when matrices with higher toughness were used. Hence, cellulose modifiers can be used to replace nanosilica in hybrid matrices to obtain GF or CeF composites with reasonably high fracture energy and increased renewable content.
9

Peters, Sarah June. "Fracture Toughness Investigations of Micro and Nano Cellulose Fiber Reinforced Ultra High Performance Concrete." Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/PetersSJ2009.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Falcoz-Vigne, Léa. "Caractérisation et modélisation des interactions cellulose - hémicelluloses au sein des microfibrilles de cellulose (MFC)." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV091/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le cadre de cette étude est le coût énergétique lié à la production des Microfibrilles de Cellulose (MFC) qui est aujourd’hui un facteur limitant à son développement à l’échelle industrielle. Le but de cette étude est de caractériser les interactions cellulose/hémicellulose au sein de ces systèmes.Des MFC provenant de différentes pâtes à papier chimiques ont été caractérisées par RMN du solide afin d’obtenir des informations à l’échelle moléculaire. Suite à l’optimisation d’un protocole expérimental, les hémicelluloses contenues dans les MFC issues de pâte kraft de bouleau ont ensuite été extraites avec un rendement de 60% et sont composés uniquement d’un homopolymère de xylan de DP 75.La turbidimétrie a été utilisée pour qualifier la qualité des suspensions, dont il a été montré qu’elle dépend fortement du procédé de mise en pâte et du séchage. Des corrélations positives ont été établies entre l’état de dispersion et les propriétés mécaniques de feuilles de papier additionnées de microfibrilles. L’analyse RMN de modèles biomimétiques reconstitués a confirmé le changement de conformation du xylan lorsqu’il est adsorbé sur la cellulose et les mesures de surface spécifique ont montré que seule la couche de xylan en contact avec la cellulose était concernée par ce changement.Les interactions cellulose/xylane ont été étudiées par RMN du solide et par dynamique moléculaire atomistique (MD). Les simulations MD ont montré que le xylan s’adsorbe parallèlement aux chaines de cellulose. Des mesures d'interaction sur ce système ont conduit à une mesure d'énergie de 9kJ/résidu de xylose.Des tests de mesure d’adhésion ont également été réalisés à partir d’un modèle trois couches constitué de xylan entre deux films de cellulose et une forte adhésion a pu être observée.L’utilisation de xylanase comme prétraitement est proposé pour améliorer la production des MFC
The study was motivated by the necessity to reduce the high energy costs of Micro-Fibrillated Cellulose (MFC) production, which is a limiting factor for its industrial development and aimed at understanding the cellulose/hemicelluloses interaction within this system. MFC resulting from different chemical pulps were characterized by solid-state NMR spectroscopy to get information on the hemicelluloses content and molecular conformation. By optimizing an extraction protocol, more than 60% of the residual hemicelluloses were extracted from birch kraft MFC and characterized as a high purity homopolymer of β-1,4 linked xylan of DP 75.Turbidimetry was used to qualify the quality of the suspensions, which strongly depended on the pulping and drying history. Positive correlations between the state of dispersion, specific surface and mechanical properties of MFC-reinforced handsheets were evidenced.Cellulose/xylan interactions were investigated using solid-state NMR and atomistic molecular dynamics (MD) simulation. NMR spectra confirmed that xylan in contact with cellulose altered its conformation, from the three-fold helix to a presumable cellulose-like two-fold one. In combination with specific surface area measurements, the conformational change was shown to happen only for the first layer of xylan adsorbed in direct interaction with the cellulose surface. MD simulations showed that adsorbed xylan tends to align parallel to the cellulose chain direction fully extended. Interaction energy between xylan chain and cellulose surface estimated with MD was 9kJ/xylose. Then a three-layers system made of xylan between two cellulose films were built to perform adhesion tests that showed strong adhesion between xylan and cellulose surfaces. Xylanase was proposed as a pulp pretreatment for MFC production

Книги з теми "Cellulose nano fibres":

1

Kalia, Susheel, B. S. Kaith, and Inderjeet Kaur, eds. Cellulose Fibers: Bio- and Nano-Polymer Composites. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kalia, Susheel. Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kaur, Inderjeet, Susheel Kalia, and B. S. Kaith. Cellulose Fibers : Bio- and Nano-Polymer Composites: Green Chemistry and Technology. Springer, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kaur, Inderjeet, Susheel Kalia, and B. S. Kaith. Cellulose Fibers : Bio- and Nano-Polymer Composites: Green Chemistry and Technology. Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Cellulose nano fibres":

1

Thomas, S., S. A. Paul, L. A. Pothan, and B. Deepa. "Natural Fibres: Structure, Properties and Applications." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 3–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lee, Koon-Yang, Anne Delille, and Alexander Bismarck. "Greener Surface Treatments of Natural Fibres for the Production of Renewable Composite Materials." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 155–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sodipo, Bashiru Kayode, and Folahan Abdul Wahab Taiwo Owolabi. "Extraction of Nano Cellulose Fibres and Their Eco-friendly Polymer Composite." In Sustainable Polymer Composites and Nanocomposites, 245–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05399-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sodipo, Bashiru Kayode, and Folahan Abdul Wahab Taiwo Owolabi. "Correction to: Extraction of Nano Cellulose Fibres and Their Eco-friendly Polymer Composite." In Sustainable Polymer Composites and Nanocomposites, E1. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05399-4_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Foulk, Jonn, Danny Akin, Roy Dodd, and Chad Ulven. "Production of Flax Fibers for Biocomposites." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 61–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mathew, Lovely, M. K. Joshy, and Rani Joseph. "Isora Fibre: A Natural Reinforcement for the Development of High Performance Engineering Materials." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 291–324. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sapuan, S. M., A. R. Mohamed, J. P. Siregar, and M. R. Ishak. "Pineapple Leaf Fibers and PALF-Reinforced Polymer Composites." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 325–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wanjale, Santosh D., and Jyoti P. Jog. "Polyolefin-Based Natural Fiber Composites." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 377–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Borges, J. P., M. H. Godinho, J. L. Figueirinhas, M. N. de Pinho, and M. N. Belgacem. "All-Cellulosic Based Composites." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 399–421. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Avérous, Luc. "Biocomposites Based on Biodegradable Thermoplastic Polyester and Lignocellulose Fibers." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 453–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Cellulose nano fibres":

1

Karlovits, Igor. "Lignocellulosic bio-refinery downstream products in future packaging applications." In 10th International Symposium on Graphic Engineering and Design. University of Novi Sad, Faculty of technical sciences, Department of graphic engineering and design,, 2020. http://dx.doi.org/10.24867/grid-2020-p2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The concept of efficient utilisation of renewable bio-based materials (biomass feedstock) is the driving force in the green transformation to a more sustainable and circular society. Biorefineries or biochemical platforms convert and utilise different sources of biomass into fuels and other beneficial derivates like fibres and other bio-based chemicals. These can be used as building blocks for many potentially useful applications. In this review, we shall describe the current state of the art and trends in the conversion of lignocellulosic feedstock into materials which can be primarily used in packaging applications. The three main constituents (cellulose, hemicellulose and lignin) are being re-engineered into new products with higher added value. The main goal of all these downstream products is that they do not compete with animal feed and food applications. The main downstream products of different kind of transformations are different natural fibres which can be further processed into micro or nano fibrillated state and used for a broad application of fields from ink, adhesive and packaging materials. Also, fibres and its derivates can be bonded successfully into bio-composites or fibre-based foams applications for the protective packaging applications. Hemicellulose, as a second most abundant component, has been researched for applications in adhesives and paper and paperboard coatings. Lignin which is currently utilised as an energy source for the paper industry, has been recently actively researched. Lignin-based biopolymers have a potential to be used in many different applications from additives in the barrier coatings on the packaging to active packaging and even as lignin-based foams. All these applications are currently in the development stages and cover niche market segments, but are expected to grow and to be used in future markets.
2

Nuruddin, Md, Mahesh Hosur, Eldon Triggs, and Shaik Jeelani. "Comparative Study of Properties of Cellulose Nanofibers From Wheat Straw Obtained by Chemical and Chemi-Mechanical Treatments." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Objective of this work was to compare morphology, crystalline and thermal properties of cellulose nano fibers derived from wheat straw by two different processes (ball milling and acid hydrolysis treatment). The characterization of extracted CNFs was done by Scanning electron micrograph (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Thermogravimetric analysis (TGA). It was found from morphological, crystalline and thermal analyses that isolated cellulose nanofibers have diameter of nano meter ranges (10–25 nm), 68–80 % crystallinity and decomposition temperature of around 284–353° C, depending upon isolation techniques.
3

Dikici, Birce, Samarth Motagi, Prahruth Kantamani, Suma Ayyagari, and Marwan Al-Haik. "Thermal Conductivity Study of Biomass Reinforced Polymer Composites." In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-9065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The aim of this study was to investigate the thermal conductivity of natural fiber reinforced polymer composites (NFRP) as potential structural materials. As a natural fiber, Bermuda grass seeds, conifer cones and pinecones are selected. The matrix comprised Vinyl ester resin. The mechanical properties (tensile strength and Young’s modulus) and fractography analysis were investigated in our previous study (Dikici B. M. S.-H., 2019). In the current study, the thermal conductivity was probed using transient plane source technique implemented in the TPS 2500S Thermal Constants Analyzer. The addition of 9% Bermuda fibers yielded a decrease of approximately 19.3% in thermal conductivity compared to that of the neat epoxy. With the addition of 9% nano cellulose fibers, a decrease of approximately 40.7% in thermal conductivity was observed in the nanocellulose/vinyl ester resin composite compared to the neat vinyl ester samples.
4

Habib, Md Ahasan, and Bashir Khoda. "Effect of Process Parameters on Cellulose Fiber Alignment in Bio-Printing." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-3011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Three dimensional (3D) bio-printing or direct writing technique has become a popular tool in tissue engineering applications that uses a computer-controlled process to deposit bio-ink for reproducing 3D tissue. Among multiple bio-printing modal, extrusion-based printing is capable of depositing diverse range of hydrogel materials and their compositions as bio-ink. Both acellular bio-ink and cell-laden bio-ink can be extruded by controlling the writing parameters to achieve high (&gt;80%) cell survivability and density along with spatial precision and accuracy in 3D space. To increase cell viability and improve mechanical properties, nano-materials are often added in the bio-ink. However, the interplay between 3D bio-printing process parameters, solid fiber content and deposited fiber orientation has not been investigated yet. A novel cellulose based nano-fiber filled bio-ink (i.e. TEMPO nano fibrillated cellulose fiber) is developed and used in this research. The distribution of fiber is explored with respect to the 3D bio-printing process parameters such as nozzle diameter, applied pressure, fiber content and, alginate content. We found, fiber alignments has a very strong correlation with the deposition direction and about 70% fiber falls within 20 degree of the deposition direction.
5

Kim, Jaehwan, Abdullahil Kafy, Hyun Chan Kim, Young-Min Yun, and Tae June Kang. "Fabrication and characterization of cellulose nanofiber/graphene oxide blended fibers." In Nano-, Bio-, Info-Tech Sensors and 3D Systems, edited by Vijay K. Varadan. SPIE, 2018. http://dx.doi.org/10.1117/12.2296840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Illera, Danny, Chatura Wickramaratne, Diego Guillen, Chand Jotshi, Humberto Gomez, and D. Yogi Goswami. "Stabilization of Graphene Dispersions by Cellulose Nanocrystals Colloids." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87830.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The outstanding properties of single-layer graphene sheets for energy storage are hindered as agglomeration or restacking leads to the formation of graphite. The implications of the aforementioned arise on the difficulties associated with the aqueous processing of graphene sheets: from large-scale production to its utilization in solvent-assisted techniques like spin coating or layer-by-layer deposition. To overcome this, aqueous dispersions of graphene were stabilized by cellulose nanocrystals colloids. Aqueous cellulose nanocrystals dispersion highlights as a low-cost and environmentally friendly stabilizer towards graphene large-scale processing. Colloids of cellulose nanocrystals are formed by electrostatic repulsion of fibrils due to de-protonated carboxyl or sulfate half-ester functional groups. Graphene dispersions are obtained by hydrothermal reduction of electrochemically exfoliated graphene oxide in the presence of cellulose nanocrystals. This approach allows the preservation of the intrinsic properties of the nano-sheets by promoting non-covalent interactions between cellulose and graphene. The dispersions could be cast to form free-standing flexible conducting films or freeze-dried to form foams and aerogels for capacitive energy storage.
7

Duan, Ling, and Weidong Yu. "Review of recent research in nano cellulose preparation and application from jute fibers." In 2016 3rd International Conference on Materials Engineering, Manufacturing Technology and Control. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmemtc-16.2016.148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kim, Hyun Chan, Lindong Zhai, Debora Kim, Jiyun Lee, and Jaehwan Kim. "Fabrication of nanocellulose-based long and strong fiber via aligning processes of cellulose nanofibers." In Nano-, Bio-, Info-Tech Sensors and 3D Systems, edited by Jaehwan Kim. SPIE, 2019. http://dx.doi.org/10.1117/12.2513852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hayat, Nuim, Hamidah Harahap, and Halimatuddahliana Nasution. "Semi chemically–processed nano fiber cellulose isolated from palm fiber waste: Morphology and physical characterization." In PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5134586.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Iioka, M., I. Shohji, and T. Kobayashi. "Accuracy Assessment of Quantification Method of Cellulose Nano-Fiber in Nickel Plating Film Using Image Analysis." In 2021 International Conference on Electronics Packaging (ICEP). IEEE, 2021. http://dx.doi.org/10.23919/icep51988.2021.9451959.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії